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Abstract
With the example of the capillary condensation of Lennard-Jones fluid in
nanopores ranging from 1 to 10 nm, we show that the non-local density
functional theory (NLDFT) with properly chosen parameters of intermolecular
interactions bridges the scale gap from molecular simulations to macroscopic
thermodynamics. On the one hand, NLDFT correctly approximates the results
of Monte Carlo simulations (shift of vapour–liquid equilibrium, spinodals,
density profiles, adsorption isotherms) for pores wider than about 2 nm. On the
other hand, NLDFT smoothly merges (above 7–10 nm) with the Derjaguin–
Broekhoff–de Boer equations which represent augmented Laplace–Kelvin
equations of capillary condensation and desorption.

1. Introduction

In studies of nanoscale systems, researchers confront two fundamental problems:

(i) how to reconcile molecular simulations dealing with an ensemble of interacting molecules
confined by potential fields and classical thermodynamics operating with homogeneous
phases separated by suitably defined interfaces; and

(ii) how to establish the limits of applicability of macroscopic equations of capillarity.

In this paper, we address these problems with the example of capillary condensation of the
Lennard-Jones (LJ) fluid in nanopores with cylindrical LJ walls. We show that the non-local
density functional theory (NLDFT) [1–3] with properly chosen parameters of intermolecular
interactions [4, 5] bridges scales from molecular simulations to classical thermodynamics:
NLDFT approximates the results of Monte Carlo (MC) simulations [6] for pores wider than
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about 2 nm and, in turn, can be approximated by the macroscopic Derjaguin–Broekhoff–de
Boer (DBdB) equations [7–9] for pores wider than 7–10 nm. Thus, the density functional
theory, which operates with inhomogeneous phases characterized by coarse-grained densities,
provides a reasonable compromise between the discrete approach of molecular simulations
and the homogeneous representation of classical thermodynamics.

The paper is organized as follows. In section 2 we describe the phenomenon of capillary
condensation in nanopores, present instructive experimental examples, and discuss general
problems of experimental observations and theoretical analyses of metastable states and
hysteretic phase transitions inherent to confined fluids. Special attention is paid to the role of
constraints in the thermodynamics of hysteresis and to the specifics of phase equilibrium and
criticality. In section 3, we discuss MC simulations of capillary condensation and focus on the
gauge cell MC method [6, 10] designed for simulations of multiple metastable and labile states
under appropriate constraints. In section 4, we present the canonical ensemble version of the
NLDFT model of capillary condensation. In section 5, we compare the NLDFT results with the
MC simulation data. Good agreement is found for sorption isotherms, density profiles, points
of condensation transitions, and spinodals. A comparison of the NLDFT and MC results with
the macroscopic Laplace–Kelvin and DBdB equations is made in section 6. In section 7, we
demonstrate correlations with experimental data. Final conclusions are formulated in section 8.

2. Experimental specifics of capillary condensation. What do we want to understand?

Capillary condensation of vapours in pores of solids represents a prominent example of phase
transitions in confined fluids. When a porous solid is exposed to the vapour of a wetting fluid,
the latter condenses in pores at a vapour pressure lower than the saturation pressure at the given
temperature. The pressure of condensation depends on the liquid–vapour interfacial tension,
the adhesion interaction between the solid and the fluid, and the pore geometry, its size and
shape. Capillary condensation is usually characterized by a step in the adsorption isotherm. In
materials with a uniform pore size distribution, the capillary condensation step is notably sharp,
as exemplified by the adsorption of vapours on ordered mesoporous molecular sieves templated
on regular surfactant or block-copolymermesophases. In figure 1 we present a typical example
of argon adsorption at its boiling temperature 87 K on a series of MCM-41-type samples
possessing regular arrays of cylindrical channels of different diameters [11, 12]. In pores wider
than about 5 nm,capillary condensation is associated with an apparent hysteresis: as the vapour
pressure decreases, the desorption occurs at a pressure lower that the pressure of condensation.
Everett [13] has named this irreversible behaviour a permanent hysteresis, emphasizing that
the hysteresis loop is reproducible in adsorption experiments performed with a sufficient
equilibration time and does not depend on the number of repeatable sorption–desorption
cycles. Here, we are dealing with long-living metastable states separated from the stable
states by insurmountable, at given experimental conditions, energy barriers. The permanent
hysteresis takes place when the observation time is much larger than the time of relaxation
to a given metastable state and is much smaller than the characteristic time of nucleation
of the stable phase. This situation is typical for confined fluids which are characterized by
multiple equilibrium states, metastability, and hysteretic phase transformations [14]. Indeed,
the constraints imposed by confinement reduce the level of thermal density fluctuations, so
the nucleation is severely suppressed and the system remains in a metastable state over the
experimentally ‘infinite’ time. As the pore size decreases, the experimental hysteresis loop
gradually narrows, and finally disappears for pores smaller than about 4 nm.

According to a traditional viewpoint [15, 16], the disappearance of hysteresis indicates
the critical conditions of capillary condensation as the first-order phase transition and thus
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Figure 1. Experimental adsorption and desorption isotherms of Ar at 87 K on a series of mesoporous
molecular sieves with cylindrical pores of characteristic diameter 3.1, 3.6, 4.0, and 4.4 nm [11],
and 5.1 and 5.8 nm [73].

determines the shift of the critical temperature for a pore from the bulk value Tc to a lower
temperature Tcc, which is called the pore critical temperature. The smaller the pore, the lower
the pore critical temperature Tcc. Consequently, during adsorption isothermal measurements
at a given subcritical temperature T , liquid–vapour phase separation is possible only in pores
wider than the critical pore size Dcc. The critical pore size Dcc decreases as the temperature
decreases. Thus, under this assumption the critical pore size Dcc for argon adsorption at 87 K
from experimental data given in figure 1 is estimated as ∼4 nm.

However, reliable experimental verifications of the capillary condensation theory for
nanopores were not available prior to the early 1990s due to the lack of materials with a
well characterized pore structure. Theoretical hypotheses and conclusions were supported by
experiments with silica gels, porous glasses, and other systems with a disordered pore structure
that prevented an unambiguous theoretical treatment. The discovery in 1992 [17, 18] of the
ordered mesoporous molecular sieves of MCM-41 type has opened a unique opportunity to
test theoretical predictions. MCM-41-type materials possess a uniform system of cylindrical
channels of controlled diameter, which can be evaluated independently. These materials are
considered now as the most suitable references for adsorption measurements.

The first experiments of Ravikovitch et al [4] with reference MCM-41 samples have shown
that the disappearance of hysteresis cannot be explained as the achievement of the critical
conditions of capillary condensation as the first-order phase transition. It was demonstrated
that at elevated temperatures and/or in sufficiently narrow pores the capillary condensation
in open-ended cylindrical pores occurs reversibly without a hysteresis. This concept was
elaborated by Morishige and Shikimi [19] who, in addition to the pore critical temperature Tcc
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and the critical pore size Dcc, introduced the hysteresis critical temperature Tch, which is lower
than Tcc, and the hysteresis critical pore size Dch, which is larger than Dcc. The authors [19]
proposed a special protocol for experimental determination of the critical temperature of
capillary condensation as the first-order phase transition, Tcc, and showed that it exceeds
the hysteresis critical temperature, Tch. For example, for Ar sorption on a sample of MCM-
41 material with channels of 2.2 nm, the hysteresis critical temperature and the pore critical
temperature were estimated as Tch ≈ 62 K and Tcc ≈ 98 K [19]; see also the latest paper
of Morishige and Masataka [20]. Thus, it is implied that for a given fluid–solid pair, three
regimes of sorption are distinguished experimentally, depending on the temperature T and the
pore diameter D:

(i) at T > Tcc, D < Dcc, adsorption occurs at supercritical conditions without a stepwise
transition from a low-density vapour-like phase to a high-density liquid-like state;

(ii) at Tch < T < Tcc, Dcc < D < Dch, a stepwise capillary condensation transition takes
place reversibly without hysteresis;

(iii) at Tc < T < Tch, Dch < D, capillary condensation exhibits hysteresis.

These three regimes of sorption were qualitatively confirmed in MC simulations (see section 5
below).

To avoid possible misinterpretations of the notions of the pore critical temperature Tcc and
the hysteresis critical temperature Tch, let us recall that we study vapour–liquid transformation
in essentially finite-volume systems and the experiments and simulations that we analyse
are performed over a finite time. There is neither true phase equilibrium in terms of the
thermodynamic limit, nor a true critical point with the infinite correlation length. By phase
equilibrium in a finite system we mean the conditions at which there exist two equilibrium states
of different density (vapour-like and liquid-like) with equal grand thermodynamic potentials.
Consequently, by the pore critical temperature Tcc we mean the temperature at which these
two states merge and above which there exists just one ‘supercritical’ equilibrium state. In
this paper, we consider phase transitions in cylindrical pores that may seem to be in apparent
contradiction with the Landau theorem [21], which forbids true phase transitions in one-
dimensional systems with short-range interactions. Here, we deal with cylindrical pores of
finite length, and as shown in [6] and recently in [22],even when the ratio L/D of the pore length
to the pore diameter is large (for pores in MCM-41 materials, L/D ∼ 103), this geometry
cannot be treated as quasi-one-dimensional since at T < Tcc the equilibrium concentration
of interfaces, which is reciprocal to the exponent of the interfacial free energy, is extremely
low—many orders of magnitude less than practically relevant values (L/D)−1. Near Tcc, this
strong inequality is no longer valid, and equilibrium configurations in long pores consist of
sequences of liquid bridges and bubbles, as shown in numerous simulations of phase separation
in cylindrical geometry [23–28]. However, at T < Tcc this domain structure was not observed
in MC simulations of quite long cylindrical capillaries of L/D = 36 [22].

To study metastable states and hysteretic phase transformations one has to control the level
of allowed fluctuations by imposing certain constraints on the system under consideration. In
macroscopic thermodynamic theories and mean-field approximations of statistical mechanics
such as the density functional theories [15], which operate with a finite number of averaged
quantities and functions, the constraints are enforced explicitly. In particular, if we restrict
the probe functions in the canonical ensemble density functional theory to spatially uniform
distributions possessing a symmetry compliant with the confinement geometry, the solution of
the Euler equation at the fixed averaged density gives a continuous trajectory of states in the
form of the adsorption isotherm which, in the coordinates density versus chemical potential or
pressure, has a sigmoid shape similar to that of the van der Waals equation of state.
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3. Monte Carlo simulations of capillary condensation. The gauge cell method

In molecular simulations, the metastable states can be stabilized by restricting, in one way
or another, the sampling in order to avoid non-uniform configurations which may give rise
to the development of critical nuclei. Following the pioneering papers of Penrose and
Lebowitz [29, 30], several attempts were made to formulate the statistical mechanics of
metastable phases using restricted ensembles [31–33]. MC simulations in restricted ensembles
were performed for modelling metastable states in bulk fluids [31]. We have recently developed
a new method for MC simulations of confined fluids in the region of metastability [6, 10]. In this
method, called the gauge cell method, the density fluctuations are suppressed by considering
the finite-volume system under study in equilibrium with a reference gauge cell which has a
limited capacity. The level of density fluctuations in the system is controlled by the capacity of
the gauge cell. In the limiting cases of infinitely large and infinitesimally small capacities, the
gauge cell method corresponds respectively to the conventional schemes of grand canonical
ensemble and canonical ensemble simulations.

In [6, 10], the gauge cell method was applied to study capillary condensation of LJ fluids in
cylindrical nanopores with wetting walls. The simulations were performed with the parameters
of fluid–fluid and fluid–solid interactions chosen to mimic adsorption of argon and nitrogen
in cylindrical pores of siliceous mesoporous molecular sieves of MCM-41 type. For a series
of pores of different diameters, we have determined the adsorption isotherms, the density of
adsorbed fluid as a function of the chemical potential or of the vapour pressure. The constraints
imposed on the system ensured that the states constructed in simulations corresponded to
laterally uniform configurations. For relatively wide pores, the adsorption isotherm forms a
continuous sigmoid-shaped trajectory similarly to the van der Waals loop typical for a first-
order transition.

The sorption isotherm constructed, a typical example of which is presented in figure 2, is
comprised of three parts:

(a) the adsorption branch ABSV corresponds to uniform adsorption films on pore walls; these
low-density states are called vapour-like since the density in the pore centre is close to the
bulk vapour density;

(b) the desorption branch HFSL corresponds to the condensed fluid; these states are called
liquid-like since their density is close to the bulk liquid density;

(c) the backward trajectory SVDSL consists of states which would be unstable if the constraints
imposed were removed.

The chemical potential µe of the equilibrium transition between the vapour-like B and liquid-
like E states is determined by the thermodynamic integration in accord with the Maxwell rule:
area BSVB equals area FSLD. The chemical potential µe of the equilibrium transition separates
stable and metastable states. At µ < µe, the adsorption branch AB corresponds to the stable
adsorption films while the desorption branch FSL corresponds to the metastable stretched liquid.
The turnover point SL is the liquid-like spinodal, which represents the limit of mechanical
stability of a stretched condensed liquid. At µ > µe, the desorption branch HF corresponds
to the stable condensed liquid while the adsorption branch BSV corresponds to the metastable
adsorption films. The turnover point SV is the vapour-like spinodal, which represents the limit
of mechanical stability of metastable adsorption films. In an unconstrained system, the points
of spontaneous condensation and desorption are determined by the nucleation barriers at given
experimental conditions.

For comparison, in the same figure we present the results of GCMC simulations: point
C corresponds to the spontaneous condensation and point E corresponds to the spontaneous
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Figure 2. Nitrogen adsorption isotherms for a 6.9 nm cylindrical pore at 77.4 K (kT/ε = 0.762)
calculated using the GCMC and gauge cell methods [10]. Vertical lines show the vapour–
liquid coexistence in pores calculated with the gauge cell method (bold dashed line) and the
thermodynamic integration technique of Peterson and Gubbins [74] (thin solid curve). Points:
B—the vapour-like state at vapour–liquid coexistence; C—the limit of stability of the vapour-like
phase in the GCMC method (the fluid undergoes a spontaneous transition to point G); SV—the
vapour-like spinodal; D—an unstable state, SL—the liquid-like spinodal; E—the limit of stability
of the liquid-like phase in the GCMC method (the fluid undergoes a spontaneous transition to
point A); F—the liquid-like state at vapour–liquid coexistence; H—the stable liquid-like state at
vapour–liquid coexistence for bulk fluid.

evaporation. While the metastable states in the vicinities of spinodals, CSV and ESL, were
not accessible in GCMC simulations, the results of the gauge cell and GCMC simulations
are in remarkable agreement. The dotted line indicates the point of equilibrium transition
determined from the hysteretic GCMC isotherm determined by the Peterson–Gubbins method
of thermodynamic integration [14], circumventing the spontaneous transitions through the
supercritical region.

In the simulations considered below, the number of molecules in the pore cell varied
from 2000 in the largest pore to 300 in the smallest. The number of molecules in the gauge
cell was 30–60 in all simulations. In the simulation conditions, the fluid in the gauge cell
behaved as an ideal gas. Thus, since the fluctuations in the pore cell and in the gauge cell are
coupled, the variations of the number of molecules in the pore cell did not exceed about 2%.
In these conditions, the average values of thermodynamic quantities obtained in the gauge
cell simulation were indistinguishable from those in the CEMC method, and also from the
results of the GCMC method in the case of hysteresis at T < Tch, as illustrated in figure 2.
The discrepancies between the results for different ensembles identify the regime of reversible
condensation at Tch < T < Tcc.

As shown in [6], MC simulations quantitatively describe the experimental sorption
isotherms for reference nanoporous materials such as those shown in figure 1. However,
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detailed MC simulations for larger pores require prohibitively long computation times. At the
same time, one expects that for sufficiently wide pores the capillary condensation should follow
the macroscopic laws of capillarity, such as Laplace and Kelvin equations, which become
progressively more inaccurate as the pore diameter decreases to the nanometre range [4, 34–
38]. In order to reconcile the molecular simulations and the macroscopic theory of capillarity,
we apply the NLDFT in the canonical ensemble.

4. Canonical ensemble density functional theory

The DFT implies that the Helmholtz free energy, F , of a confined fluid is represented as a
functional of the spatially varying fluid density ρ(r). Introduction of the spatially varying
density of molecules seems to be a reasonable compromise between the abrupt density
changes in classical thermodynamics and the discrete enumeration of fluctuations in molecular
simulations. Several versions of DFT for inhomogeneous fluids were formulated [3, 39–42].
They differ in how they account for intermolecular correlations. The basic formulations of the
DFT of inhomogeneousfluids can be found in [1, 43, 44]. However, almost any version of DFT
treats attractive interactions in a mean-field approximation, whose validity for a quantitative
description of a given phenomenon can be justified only by comparing with direct molecular
simulations.

Different DFT models were proposed for studies of vapour–liquid equilibrium, wetting
and layering transitions, structure of simple fluids, and single-component and binary mixture
adsorption (see [1, 14, 45] for reviews). In this paper we employ the NLDFT with the functional
developed by Tarazona [2, 3] and known as the smoothed density approximation (SDA). This
version of NLDFT was used efficiently for studying adsorption in model pores [46, 47]. In
particular, in our earlier papers we have shown that this model, implemented for a LJ fluid
confined by solid layers of immobile LJ centres with suitably chosen parameters of fluid–fluid
and fluid–solid intermolecular potentials, gives good agreement with experimental data on
capillary condensation of argon and nitrogen in cylindrical [4, 35, 36, 48] and spherical [38]
pores of mesoporous molecular sieves, and adsorption of nitrogen, methane, krypton, and other
gases in slit-shaped pores of carbons [49–51]. The NLDFT model constitutes a basis of the new
methods for pore size distribution analysis of nanoporous materials [34, 36, 37, 46, 47, 51].

Conventional versions of the DFT imply minimization of the grand thermodynamic
potential with respect to the fluid density within fixed solid boundaries at given temperature
T and chemical potential µ [1]. They correspond to the grand canonical (µ–V –T ) ensemble.
In order to generate continuous isotherms, which, similarly to the gauge cell MC simulations
(figure 2), trace stable, metastable, and labile states in a van der Waals manner, we apply the
DFT in the canonical (N–V –T ) ensemble. While the canonical ensemble DFT was efficiently
used for modelling nucleation in the bulk fluids [52], its application to capillary condensation
was suggested first in [53]. Several lattice and off-lattice versions of DFT in the canonical
ensemble have been reported and discussed recently [54–62].

We consider a closed system consisting of N molecules of fluid confined in a volume V
surrounded by solid walls. The system is embedded in a bath of constant temperature T . The
fluid is modelled as a soft-sphere fluid with a given pairwise attractive potential, �ff(r1, r2).
The fluid–solid interactions are modelled by a given spatially varying external potential,�sf(r).
Equilibrium states of the closed system are defined by minimization of the Helmholtz free
energy functional at constant N , V , and T . The DFT implies that the intrinsic Helmholtz free
energy, Fint , depends entirely upon given fluid–fluid interaction potential(s), �ff(r1, r2), and is
represented as a functional of the spatially varying fluid density ρ(r). The external solid–fluid
interaction potential, �sf(r), does not affect the expression for intrinsic Helmholtz free energy
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functional, Fint[ρ(r), �ff ], and makes an additive contribution, Fext[ρ(r), �sf ], to the total
Helmholtz free energy, F :

F[ρ(r)] = Fint[ρ(r),�ff ] + Fext[ρ(r),�sf ]. (1)

Equilibrium states in the canonical ensemble are obtained by minimization of the
Helmholtz free energy functional (1) with respect to the fluid density ρ(r), provided that
the total number of molecules is a given constant N :∫

V
ρ(r) dr = N. (2)

To find a solution of this conditional extremum problem,one has to solve the Euler equation
for the functional

�[ρ(r)] = F[ρ(r)] − µ

∫
V

ρ(r) dr. (3)

Here, an additional unknown parameter, µ, is introduced. The Euler equation for the
functional (5) reads

µ = δF

δρ
. (4)

Here, δ/δρ denotes the functional derivative. The right-hand side of the equation (4)
depends on the representation employed for the intrinsic Helmholtz free energy functional,
Fint[ρ(r)]. Equations (4) and (2) represent a closed system for determination of two
unknowns, a function ρ(r) and a constant µ. The solution gives the equilibrium density profile
ρ(r, N, V , T ) and the value of µ(N, V , T), which turns out to be equal to the chemical potential
of the corresponding N, V , T state. Hence, the functional �[ρ(r, N, V , T ), µ(N, V , T )]
is equal to the grand potential. Note that the system does not imply a unique solution at
given N [63]. The chemical potential obtained, µ, is not necessarily a single-valued function
of N . In the region of a phase transition there may exist multiple equilibrium states and
an additional analysis is required to select between stable, metastable, and labile states.
Constraints imposed on trial functions reduce the number of admissible states. For example,
while considering capillary condensation in cylindrical channels we restrict ourselves to
laterally uniform symmetric configurations assuming that the fluid density is one-dimensional
and depends on the distance to the pore centre. Because of this, non-uniform equilibrium
configurations such as menisci, liquid bridges, and bubbles are ruled out of consideration.
Typically, the functions N(µ) determined within constraints of uniformity consistent with the
channel symmetry are non-monotonic and exhibit S-shaped swings in the regions of first-order
phase transitions.

It should be noted that the CEDFT procedure described above is not rigorously consistent
with the statistical mechanics foundations behind the density functional theory [64, 65]. We
apply in CEDFT the same free energy functional as in GCDFT, restricting the density to a given
constant. This procedure gives exactly the same equilibrium states as GCDFT and provides an
analytical extension over the region of labile states, thus spanning the gap between equilibrium
adsorption and desorption isotherms. Indeed, in finite-volume systems the radial distribution
functions in the canonical and grand canonical ensembles differ [66], as well as the mean-
density profiles in the CE and GC for the states of equal density. To address this problem,
Gonzalez et al [58, 60, 62] suggested a rationale for recalculating the GC density profiles as
their CE counterparts. Recently, White et al [61] augmented the free energy functional of
GCDFT to provide consistent results in CEDFT. Hernando and Blum [58] and Hernando [62]
attempted to construct a rigorous approach to CEDFT based on a hierarchy of correlation and
distribution functions. However, appreciable deviations between CEDFT and GCDFT were
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found in extreme confinements such as a spherical pore, which can accommodate just a few
guest molecules [54, 60, 61]. The smallest confinement considered here is significantly larger,
so the approach that we use is justified. The extension of the mean-field density functional
over the region of labile states naturally produces continuous loops of van der Waals type.

5. Capillary condensation of Ar in cylindrical pores. Comparison of DFT and MC
results

As an example of CEDFT calculations, we present in figure 3 the capillary condensation
isotherms of Ar in a series of cylindrical pores mimicking pore channels in MCM-41
mesoporous molecular sieves. The isotherms are presented in the coordinates adsorption
N versus relative pressure P/P0. Calculations were performed at 87 K for internal diameters
ranging from 1.43 to 100 nm. We used Tarazona’s SDA representation of the Helmholtz free
energy [2, 3] with parameters for fluid–fluid and solid–fluid interaction potentials, which were
validated in our previous papers [11]. A detailed description of the model can be found in [5].
The density profiles were determined by solving the Euler equation (4) with the condition (2)
by means of the Broiden method [67]. It is important to note that the fluid–fluid interaction
parameters were chosen to give the best fit to the bulk equilibrium experimental data including
the vapour and liquid densities and also the liquid surface tension at the given temperature.
They differ somewhat from the fluid–fluid parameters used in MC simulations which in turn
provided the best fit to the bulk equilibrium data. The fluid–solid interaction parameters were
chosen to reproduce a reference Ar isotherm for non-porous silica. For a justification of the
parameters employed, see [5].

The isotherms presented in figure 3 correspond to the pore sizes for which we performed
MC simulations earlier [6]. The pore dimensions in figure 3 represent internal diameters of
channels. The results of the GCMC and gauge cell MC simulations are given for comparison.
For pores wider than 3 nm (figure 3, right panel), the NLDFT and MC isotherms agree
remarkably well. NLDFT isotherms reproduce well the density of condensed fluid on the
desorption branch HSL, the thickness of an adsorbed layer on the adsorption branch ASV,
and also the density of the labile states on the unstable backward branch SLSV. Figure 4
demonstrates a typical example of almost identical density profiles determined by NLDFT and
constructed in MC simulations. The positions of equilibrium transitions and vapour-like as
well as liquid-like spinodals coincide within an experimentally negligible error; see figure 5.
In figure 6 we show plots of the grand thermodynamic potential along the NLDFT and MC
isotherms for 5.54 nm pores. The NLDFT grand thermodynamic potential was determined
directly from equation (3), while the MC grand thermodynamic potential was calculated by
thermodynamic integration along the continuous MC isotherm. The intersection point E in
figure 6, which corresponds to the merging points B on the adsorption branch and F on the
desorption branch (see figures 2 and 3), indicates the equality of the grand thermodynamic
potentials of vapour-like and liquid-like states at equilibrium. The equilibrium chemical
potential, µe, at point E can be defined from Maxwell’s rule of equal areas by integrating
along the S-shaped isotherm in coordinates N versus µ between the coexisting states:∫ NF(µe)

NB(µe)

µ dN = µe(NF − NB). (5)

The results of GCMC simulations are given in the same plots (figures 2, 3). Since in
GCMC simulations, fluid within the pore is considered as an open system without imposing
special constraints on density fluctuations, adsorption and desorption trajectories of GCMC
states form a hysteresis loop with abrupt capillary condensation and desorption transitions. In
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Figure 3. Argon adsorption isotherms for cylindrical pores at 87.3 K obtained using MC simulations
and NLDFT. Vertical solid lines indicate spontaneous condensation and desorption in GCMC
simulations. The thick solid vertical line shows the vapour–liquid coexistence in the pores obtained
using the gauge cell method; the vertical broken line shows the vapour–liquid equilibrium obtained
from NLDFT.

Figure 4. Local density profiles of Ar in an 11 σ (3.4 nm internal diameter) cylindrical pore at
87.3 K and P = P0.

wider pores, these spontaneous transitions occur near the spinodal points. As the pore size
decreases, the hysteresis loop of GCMC states narrows and disappears for a ∼2 nm pore, which



Bridging scales: DFT of capillary condensation 357

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8

Pore diameter, [Å]

P
/P

0

NLDFT, vapour spinodal
NLDFT, equilibrium
NLDFT, liquid spinodal
MC, vapour spinodal
MC, equilibrium
MC, liquid spinodal

Figure 5. The conditions of spinodal condensation, desorption, and vapour–liquid coexistence of
argon in a series of cylindrical pores at 87.3 K obtained using NLDFT and MC simulations.

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0.2 0.3 0.4 0.5 0.6 0.7
P /P 0

kT
Å

CE DFT

gauge MC

E

SL

SV

Figure 6. Isotherms of the grand potential of argon in a 5.54 nm cylindrical pore at 87.3 K obtained
from thermodynamic integration along the MC and NLDFT adsorption isotherms. The intersection
of the adsorption and desorption branches (point E) determines the vapour–liquid equilibrium.

is still subcritical, since both the gauge cell MC simulation and the CEDFT method distinguish
low-density (adsorption, or vapour-like) and high-density (desorption, or liquid-like) states.
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For supercritical pores, narrower than ∼1.5 nm, the MC isotherm is reversible, regardless to
the simulation method.

Thus, in GCMC simulations, which mimic sorption from a vapour reservoir, we observe
the same qualitative picture of three regimes of sorption as that observed experimentally:
hysteretic condensation–evaporation in pores of D > Dch ≈ 2 nm, supercritical sorption in
pores of D < Dcc ≈ 1.5 nm, and reversible condensation in intermediate pores. In the latter
case, the GCMC isotherm is rounded and, as shown in [6], the system during the simulation
run jumps up and down, overcoming nucleation barriers from the low-density state to the high-
density state. Note that while the value of the critical pore size Dcc is an objective quantity, the
critical size of the hysteresis Dch depends on the length of the simulation run (or the time of
observation): the longer the run, the larger the probability of nucleation—and, consequently,
Dch increases. In the mathematical limit of infinite time of observation, there is no room for
hysteresis in a finite size system at all. A quantitative analysis of spontaneous transitions and
hysteresis in open systems is related to the nucleation phenomena [6] and is beyond the scope
of this paper.

From figures 3–6, we conclude that CEDFT gives, in general, good agreement with the
gauge cell and GCMC simulations for pores wider than about 3 nm. For smaller pores
deviations become progressively more pronounced as expected. However, even for pores
as small as 1–2 nm, the characteristic features of capillary condensation are still captured by
CEDFT quite well. Note that the DFT adsorption isotherms feature the consecutive formation
of adsorption layers associated with sigmoid swings indicating layering transitions. These
transitions are common artefacts of the complete neglect of local density fluctuations in DFT.
While these layering transitions make DFT isotherms visibly different from MC isotherms,
the quantitative differences in integral parameters are negligible. Also, while the positions of
spinodals in MC simulations and DFT practically coincide, DFT produces states of smaller
density and larger compressibility in the vicinity of the liquid-like spinodal. This leads to
exaggeration of the so-called superspinodal behaviour [63] associated with the existence of
multiple states of equal average density which are seen in the DFT isotherm for the 5.54 nm
pore.

6. Comparison of DFT and MC results with macroscopic capillary condensation theory

The classical scenario of capillary hysteresis [8, 13, 68, 69] in cylindrical geometry implies
that the equilibrium capillary condensation and desorption are associated with the formation
of a hemispherical meniscus in the channel while the spontaneous capillary condensation is
associated with the formation of a cylindrical liquid film on the channel wall. The conditions of
equilibrium and spontaneous condensation are given by the Kelvin–Cohan (KC) equations [68]:

RT ln(Pe/P0) = − 2γ VL

RP − he
(6)

RT ln(Pc/P0) = − γ VL

RP − hc
. (7)

Here Pe/P0 and Pc/P0 are the relative pressures of equilibrium condensation/desorption and
spontaneous condensation, respectively; γ and VL are the surface tension and the molar volume
of the bulk liquid; RP is the pore radius; and he and hc are the adsorption film thicknesses at
the relative pressures Pe/P0 and Pc/P0 respectively.

Let us return to figure 5. There are several features worth noticing. As the pore size
increases, the line of liquid-like spinodal saturates at the value corresponding to the spinodal
of the bulk liquid. DFT calculations performed for larger pores (up to 50 nm) show that
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Figure 7. A schematic diagram of an adsorption isotherm according to the DBdB theory.

the line of equilibrium capillary condensation asymptotically approaches the KC equation (6)
for the spherical meniscus and the line of spontaneous capillary condensation asymptotically
approaches the KC equation (8) for the cylindrical meniscus; see below.

The deviations from the KC equations become appreciable for pores as large as 10 nm. The
KC equations do not account for the interactions between the adsorption film and the substrate
and thus does not consider the conditions of adsorption film stability which determine the onset
of spontaneous capillary condensation. This shortcoming is overcome in the macroscopic
theory of DBdB [7–9, 70].

According to Derjaguin [7, 70] the equilibrium thickness of the adsorbed film in a
cylindrical pore is determined by the balance of the capillary and disjoining pressures and
is given by

�(h)VL +
γ VL

RP − h
= RT ln(P0/P). (8)

The disjoining pressure �(h) caused by the fluid–solid interaction potential and the surface
tension γ are assumed to be independent of the pore wall curvature. The disjoining pressure
�(h) in equation (8) can be obtained from the adsorption isotherm on a flat surface. This
approach is equivalent to the scheme used later by Broekhoff and de Boer [8, 9] to describe
capillary condensation and is referred to as DBdB theory [35]. DBdB theory assumes also
that the adsorption film and the condensed fluid are incompressible and have the density of the
bulk liquid. It is equivalent to the Saam–Cole theory [69]. For many practical applications, the
adsorption isotherm of a flat surface is approximated by the power law �(h) ∝ h−m , known
as the Frenkel–Halsey–Hill (FHH) equation [71].

For monotonic adsorption isotherms of FHH type, equation (8) implies a characteristic
shape of adsorption isotherms for cylindrical pores, depicted in figure 7. The adsorption Na

as a function of the relative pressure P/P0 has a van der Waals sigmoid shape. The ascending
branch that corresponds to adsorption films turns over at the spinodal SV determined from
the condition of stability of films fulfilling equation (8). The limiting thickness h = hcr of
mechanically stable adsorption films is given by the algebraic equation

−
(

d�(h)

dh

)
h=hcr

= γ

(RP − hcr)2
. (9)
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In the DBdB method it is assumed that, as the vapour pressure increases, condensation
occurs spontaneously when the limit of stability of the adsorbed films is achieved, i.e. at the
spinodal SV. Thus, the conditions of capillary condensation in an open-ended cylindrical pore
are determined by the system of two equations (8) and (9).

The descending branch SVSL corresponds to unstable cylindrical films with a progressively
decreasing internal radius. This branch merges with the desorption branch as the vapour
pressure vanishes. The desorption branch is represented by a plateau at the bulk liquid density
due to the assumption of fluid incompressibility. The behaviour of the isotherm at low pressure
is obviously unphysical; however, this region does not contribute appreciably to the results of
thermodynamic integration for relatively wide pores.

Similarly to the classical KC scenario, desorption takes place at the equilibrium between
the condensed fluid and the adsorption film. The condition of equilibrium is determined from
the equality of grand thermodynamic potentials, or the Maxwell rule (5). Thus, desorption
from an open-ended cylindrical capillary is determined by the condition of formation of
the equilibrium meniscus given by the augmented Kelvin equation, known as the Derjaguin
equation [7]:

RT ln(P0/P) = 2γ VL + 2VL
(RP−he)

∫ RP

he
(RP − h)�(h) dh

RP − he
. (10)

Here, he is the thickness of the adsorbed film in equilibrium with the meniscus, given by
equation (8).

In our previous paper [35], we showed that the NLDFT adsorption isotherm of a flat
surface can be approximated by the FHH equation in the region of polymolecular adsorption,
and thus the effective disjoining pressure is given by

�(h) = RT

VL

K

hm
. (11)

For our case study, Ar on silica, K = 73.17 and m = 2.665, with h in Å and
VL = 34.66 cm3 mol−1, were chosen from the best fit of the NLDFT isotherm with the
FHH equation [35].

Using equation (11) with the above parameters, we have determined the conditions of
spontaneous capillary condensation from equations (8) and (9),and the conditions of desorption
from equations (8) and (10). The results are presented in figure 8. The predictions of the
DBdB theory smoothly merge with the NLDFT calculations for pores of 7–10 nm and larger.
It is worth noting that the DBdB theory significantly extends the range of applicability of
macroscopic theories compared with KC equations (1) and (2). However, the departure from
the MC data for pores of 5 nm and smaller is quite appreciable. The macroscopic theory can
be further improved by taking into account the fluid compressibility and dependences of the
surface tension and the disjoining pressure on the pore wall curvature.

7. Correspondence of NLDFT results to experimental data

In a series of earlier publications [35–37], we demonstrated with various examples of capillary
condensation of argon and nitrogen in open-ended cylindrical pores of mesoporous molecular
sieves of MCM-41 [17, 18] and SBA-15 [72] types that the capillary condensation and
desorption isotherms predicted by NLDFT agree remarkably well with experimental hysteretic
data for pores wider than ∼5 nm. For pores smaller than ∼4 nm, experimental isotherms are
reversible and the position of capillary condensation is predicted by the condition of equilibrium
meniscus formation, equation (5). For intermediate pores, ∼4–5 nm, the experimental
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Figure 8. Bridging scales: capillary hysteresis of argon in cylindrical pores at 87.3 K. The pressures
of condensation and desorption predicted by the NLDFT, gauge cell method, and DBdB theory.

hysteresis loop is narrower than that predicted by NLDFT, yet the experimental and theoretical
desorption branches are quite close.

These conclusions are illustrated in figure 9, where we collected available experimental
data on N2 sorption on MCM-41 and SBA-15 types of material from different sources and
compared with the NLDFT predictions of spontaneous and equilibrium capillary condensation
transitions. The details of NLDFT calculations for this system were given in [11, 36, 37].
To show the prominent departures from conventional equations, the predictions of KC
equations (6) and (7) are also given.

8. Conclusions

We show that the NLDFT efficiently spans the gap between the molecular simulations
performed at the scale below ∼5 nm and the macroscopic thermodynamic equations. We
applied NLDFT in the canonical ensemble to generate continuous adsorption isotherms which,
at subcritical conditions, form sigmoid curves of van der Waals type. Tarazona’s smooth density
approximation was implemented to construct the free energy functional. The calculations
were carried out for a series of cylindrical pores from 1 to 100 nm. The fluid–fluid and solid–
fluid interaction parameters were chosen to represent argon and nitrogen sorption on silica.
Capillary condensation of argon at its boiling temperature was selected as a case study due to the
availability of MC data generated recently by the gauge cell MC method and also experimental
data collected on reference mesoporous molecular sieves with uniform cylindrical pores.

The NLDFT isotherms agree remarkably well with the MC isotherms for pores wider
than ∼3 nm. The condensed fluid density and the positions of equilibrium transitions and
spinodals coincide within an experimentally negligible error. The density profiles are almost



362 A V Neimark et al

1

10

100

0 0.2 0.4 0.6 0.8 1

P/Po

P
o

re
 d

ia
m

et
er

, 
[n

m
]

NLDFT equilibrium transition
NLDFT spinodal condensation
Kelvin-Cohan, hemispherical meniscus
Kelvin-Cohan, cylindrical meniscus
Neimark et al, 1998, no hysteresis
Carrott et al, 2001, no hysteresis
Kruk et al, 1997, no hysteresis or DES
Kruk et al, 1997, ADS
Zhao et al, 1998, DES
Zhao et al, 1998, ADS
Lukens et al, 1999, DES
Lukens et al, 1999, ADS
Yue et al, 2000, DES
Yue et al, 2000, ADS
Kruk et al, 2001, DES
Kruk et al, 2001, ADS
Van der Voort et al, 2002, DES
Van der Voort et al, 2002, ADS

Figure 9. Relative pressures of the adsorption and desorption for N2 at 77 K in open cylindrical
pores in comparison with the experimental data [11, 73, 75–79] on ordered MCM-41 and SBA-15
nanoporous materials with cylindrical pores. Predictions of the macroscopic KC equation are also
shown.

identical. Some deviations are found in the vicinity of the liquid-like spinodal; NLDFT
liquid-like states are of lower density and larger compressibility. The overall behaviour of the
isotherms in the regions of monolayer and multilayer formation is also quite good. However,
the NLDFT isotherm exaggerates layering transitions producing artificial ‘first-order’ loops,
whose contributions are luckily cancelled out during thermodynamic integration; thus they
do not affect the overall course of the grand thermodynamic potential. Surprisingly, the
two methods produce quantitatively similar labile states on the unstable backward branch of
the isotherm. For sufficiently wide pores, canonical ensemble NLDFT revealed a peculiar
behaviour: the existence of multiple states of equal density in the vicinity of the liquid-
like spinodal. This observation was confirmed by MC simulations and is discussed in detail
elsewhere [63]. For pores narrower than ∼3 nm, agreement between the theoretical and
simulated isotherms progressively worsens; however, the major features, such as the positions
of the equilibrium capillary condensation and spinodals, are captured satisfactorily even for
pores as narrow as ∼2 nm.

The comparison of the results of GCMC simulations, which are performed without
constraints on density fluctuations, with the CEDFT and gauge cell MC data provides a
qualitative description of three experimentally observed regimes of capillary condensation:



Bridging scales: DFT of capillary condensation 363

supercritical, reversible, and hysteretic. Indeed, similarly to the experimental observations for
GCMC simulations of Ar sorption at 87.4 K, the hysteresis critical pore size Dch ≈ 2 nm
exceeds the critical pore size Dcc ≈ 1.5 nm. While the critical pore size is determined
by the temperature, pore geometry, and fluid–solid interactions, and does not depend on the
experimental conditions, such as the observation time and the system size, the hysteresis critical
pore size does depend on the scales of time and size which determine the level of admissible
fluctuations and, consequently, the probability of nucleation. Thus, it is not surprising that
since the level of fluctuations in experiments is drastically larger than in GCMC simulations,
the experimental hysteresis critical pore size estimated as ∼4 nm significantly exceeds the
hysteresis critical pore size obtained in simulations.

The MC and NLDFT results were compared with macroscopic theories of capillary
condensation. Appreciable departures from the classical KC equations were found for pores
as large as 10 nm. We checked the applicability of the DBdB theory, which employs the
disjoining pressure to characterize the fluid–solid interactions. The isotherm of disjoining
pressure for argon on silica was constructed from the adsorption isotherm on a flat surface
calculated by means of NLDFT. The DBdB equations for the relations between the pressures
of capillary condensation and desorption and the pore diameter agree fairly accurate with the
NLDFT calculations for pores of 7–8 nm and larger.

We have also presented a comprehensive collection of experimental data on capillary
condensation of nitrogen on mesoporous molecular sieves of MCM-41 and SBA-15 types,
which contain uniform cylindrical pores, and demonstrated good agreement of NLDFT
predictions with experimental data.

That is, we draw a final conclusion that NLDFT with properly chosen parameters for
intermolecular interactions correctly approximates results of MC simulations (shift of vapour–
liquid equilibrium, spinodals, density profiles, adsorption isotherms) for pores wider than about
2 nm. On the other hand, NLDFT smoothly merges (above 7–10 nm) with the DBdB equations
of capillary condensation and desorption, thus bridging scales from molecular simulations to
macroscopic description.
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