
1

Bridging Text Visualization and Mining:
A Task-Driven Survey

Shixia Liu, Xiting Wang, Christopher Collins, Wenwen Dou,
Fangxin Ouyang, Mennatallah El-Assady, Liu Jiang, and Daniel A. Keim

A

(a) (b)

(c)

B

C

vis papers mining papers

Visualization Techniques

3D visualizations

timeline visualizations

graph visualizations

spatial projections

radial visualizations

topological maps

high-dimensional visualizations

chart visualizations

typographic visualizations

Tasks

outlier analysis

network analysis

predictive analysis

trend analysis

exploratory analysis

classification

cluster/topic analysis

natural language
processing (NLP)

information retrieval

Mining Techniques

modeling

model inference

data processing
2000

2005

D

E

2000

2005

Fig. 1: Task-oriented analysis: visualization and mining techniques are connected through their shared analysis tasks (here, only 80% of

the edges are shown), to aid researchers and practitioners in understanding current practices in visual text analytics, identifying research

gaps, and seeking potential research opportunities. Concepts are organized into three taxonomies which can be navigated interactively.

Abstract—Visual text analytics has recently emerged as one of the most prominent topics in both academic research and the commercial
world. To provide an overview of the relevant techniques and analysis tasks, as well as the relationships between them, we comprehensively
analyzed 263 visualization papers and 4,346 mining papers published between 1992-2017 in two fields: visualization and text mining.
From the analysis, we derived around 300 concepts (visualization techniques, mining techniques, and analysis tasks) and built a taxonomy
for each type of concept. The co-occurrence relationships between the concepts were also extracted. Our research can be used as a
stepping-stone for other researchers to 1) understand a common set of concepts used in this research topic; 2) facilitate the exploration
of the relationships between visualization techniques, mining techniques, and analysis tasks; 3) understand the current practice in
developing visual text analytics tools; 4) seek potential research opportunities by narrowing the gulf between visualization and mining
techniques based on the analysis tasks; and 5) analyze other interdisciplinary research areas in a similar way. We have also contributed a
web-based visualization tool for analyzing and understanding research trends and opportunities in visual text analytics.

1 INTRODUCTION

The significant growth of textual data and the rapid advancement

of text mining have led to the emergence and prevalence of visual
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text analytics [191], [213]. This research combines the advantages

of interactive visualization and text mining techniques to facilitate

the exploration and analysis of large-scale textual data from both

a structured and unstructured perspective. Visual text analytics

has recently emerged as one of the most prominent topics in both

academic research and the commercial world. For example, a

leading business intelligence system, Power BI, announced features

that enable the exploration and analysis of textual collections in

2016 [377]. The ultimate goal of visual text analytics is to enable

human understanding and reasoning about large amounts of textual

information in order to derive insights and knowledge [97].
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Due to the rapid expansion of research in the area of visual

text analytics [10], [97], [209], [308], there is a growing need

for a meta-analysis of this area to support understanding how

approaches have been developed and evolved over time, and their

potential to be integrated into real-world applications. There are

several initial efforts to summarize the existing text visualization

techniques by different aspects, such as data sources, tasks, and

visual representations [10], [122], [170]. For example, Alencar

and Oliveira summarized around 30 text visualization techniques

published before 2013 [10]. Later, Kucher and Kerren extended this

survey work by creating a comprehensive taxonomy with multiple

categories and items in order to classify the techniques with fine

granularity [191]. They also developed a useful Web-based survey

browser to facilitate the exploration of the created taxonomy. The

most recent effort focuses on analyzing scientific literature [112].

While these efforts provide an overview of text visualization

techniques, they do not investigate the underlying text mining

techniques. On the other hand, several comprehensive surveys of

the work on text mining have been published summarizing the

relevant research progress [6], [7], [44], [132], [148], [231], [344].

These surveys provide much valuable complementary information

to existing literature reviews on text visualization. However, they

do not establish a link between text mining and interactive

visualization. The most powerful visual text analytics systems make

use of advanced data mining algorithms and techniques, and we

are still in need of an overview, accounting for both the user-facing

visualization and the back-end data mining approaches. Our survey

will provide practical knowledge that relates to building visual

text analytics tools, and it will support researchers in discovering

opportunities to narrow the gulf between the visualization and text

mining fields. In particular, the gaps between these two fields based

on analysis tasks have not been explored yet. Many available text

mining techniques that may be useful for visual text analytics have

not been connected to visualizations. This may hinder the further

development of this research area.

Hence, our approach is to highlight associations between

analysis tasks, visualization techniques, and text mining techniques

through a set of taxonomies. As shown in Fig. 1, these taxonomies

contribute to 1) understanding current practices in developing

visual text analytics tools, the on-going research, and the principal

research trends; and 2) seeking potential research opportunities

by relating text visualization research with text mining research.

Ultimately, these taxonomies will pave the way for identifying

the relationships and gaps between analysis tasks and techniques

(visualization and text mining) to explore future research directions

and develop novel applications.

To this end, we analyzed over 4,600 research papers published

between 1992–2017 in 4 journals (IEEE TVCG, ACM TOCHI,

IEEE TKDE, and JMLR) and 16 conference proceedings (InfoVis,

VAST, SciVis, EuroVis, PacificVis, AVI, CHI, IUI, KDD, WWW,

AAAI, IJCAI, ICML, NIPS, ACL and SIGIR) in the fields of text

mining and visualization. As shown in Fig. 2, a semi-automatic

analysis process was designed to analyze the text visualization

and mining literature. We first extracted and summarized the

concepts (described in phrases) that capture visualization tech-

niques, mining techniques, and analysis tasks related to visual

text analytics. Our extraction method is based on a pattern-based

concept extraction algorithm [131]. Accordingly, three concept

taxonomies—visualization techniques, analysis tasks, and mining

techniques—were derived. The relationships between the concepts

in the taxonomies were then extracted by using the co-occurrence

statistics between different types of concepts in papers (e.g., the

co-occurrence of the visualization techniques and analysis tasks).

Finally, a graph-based interactive visualization was developed

to help understand and analyze the three taxonomies and the

relationships between them.

By semi-automatically refining and analyzing these concepts

in an interactive and progressive process, we identified the

following key features of visual text analytics. First, the most

used visualization techniques are traditional ones such as chart

visualizations, typographic visualizations, and graph visualizations.

The popularity of these techniques is probably due to their simplic-

ity and intuitiveness, as well as the employment of more advanced

mining techniques in recent years. Second, a set of less frequently

studied tasks in visual text analytics were identified, which include

“information retrieval,” “network analysis,” “classification,” “outlier

analysis,” and “predictive analysis.” Third, different analysis tasks

are supported by different techniques, including text mining and

visualization techniques, as well as their combination.

Through a task-oriented and data-driven analysis, we thor-

oughly investigated each of the three concept taxonomies and

their connections to identify overarching research trends and

under-investigated research topics within visual text analytics.

Consequently, we map out future directions and research challenges

to enhance the development of new visual text analytics techniques

and systems. The major contributions of this work are:

• A semi-automatic analysis approach that focuses on ex-

tracting, understanding, and analyzing the major concepts in

the area of visual text analytics. This approach can be easily

extended to analyze other research areas.

• Three concept taxonomies and a data-driven method
to extract the relationships between them, better revealing

overarching research trends and missing research topics within

visual text analytics.

• A web-based visualization tool that enables the analysis of

the major research trends and the potential research directions

in visual text analytics. This visualization tool is published at:

http://visgroup.thss.tsinghua.edu.cn/textvis.

• A comprehensive survey of the literature in visual text

analytics, classifying thousands of papers along our technique-

and task-taxonomies.

2 SURVEY LANDSCAPE

To obtain an overview of visual text analytics and the relationship

between the relevant visualization and mining fields, we systemati-

cally reviewed research articles from both fields. The approach we

took for each type of article was different. For visualization papers,

we followed an exhaustive manual review of relevant venues. For

text mining papers, we followed the semi-automated approach of

Sacha et al. [282], which is a combination of a manual selection

and an automatic keyword-based extraction method.

2.1 Paper Selection: Visualization
There are fewer visualization papers than text mining papers.

Therefore, it was possible to do an in-depth manual selection. For

this group of papers we preferred precision in that we only wanted

papers that deal with visualizing text data. Depending on how

closely related the venue (e.g., a conference) was to visualization

research, we followed two main approaches: full coverage or

search-driven selection. For venues identified as being primarily

about visualization, we reviewed every title from all the conference
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Fig. 2: The analysis pipeline aims at extracting, correlating, organizing, and presenting three types of concepts: mining techniques,

analysis tasks, and visualization techniques. Three concepts comprise our description of the space of visual text analytics.

proceedings to identify candidates. We then reviewed the abstracts

of candidates, and finally the full text of any papers when it was not

clear from the title and abstract whether the paper contained any text

visualizations. The venues for this approach were: InfoVis, VAST,

Vis (later SciVis), EuroVis, AVI, PacificVis, and IUI. For higher

volume venues with a larger proportion of irrelevant papers, we

used two search queries (“text” AND “visualization”; “text” AND “an-

alytics”), then reviewed titles, abstracts, and full texts to finalize the

selections. This approach was applied to all available years of: CHI,

KDD, and WWW. Finally, we used this same search-driven selec-

tion approach on all available years of two relevant journals: IEEE

TKDE and IEEE TVCG. This resulted in a total of 263 included

papers that deal with text visualization and visual text analytics.

Our method is extensible, so it would be possible to add further

venues to the analysis and accompanying website in the future.

2.2 Paper Selection: Text Mining
For the text mining papers, we optimize for recall as we are

open to including text mining techniques that may be unknown or

underutilized in the visualization field. To provide good coverage of

visual text analytics and related text mining methods, we followed

the approach of Sacha et al. [282] to extract relevant research

papers in a semi-automated fashion. The paper collection was done

in three steps.

In the first step, we performed seed paper selection manually

by reviewing titles and abstracts from the most recent year of

papers from leading data mining conferences and journals (AAAI,

KDD, WWW, SIGIR, ICML, NIPS, IJCAI, ACL, and JMLR). 607

papers were thus identified. These were combined with the papers

from our visualization paper collection to create the seed collection

of papers used in the second step. A detailed description of the

statistics is shown in Fig. 3.

In the second step, we performed keyword extraction based on

the seed paper collection. Specifically, we manually checked the top

keywords of the seed paper collection and selected 10 keywords

that denote the data source. The keywords then serve as query

terms to retrieve more mining papers. The 10 extracted keywords

were: “text, document, blog, news, tweet, twitter, wikipedia, book,
microblog, textual.”

In the third step, we retrieved the full text of all papers from

the aforementioned top data mining venues. The retrieved papers

were indexed by using Lucene [1]. We then searched the Lucene

index with the 10 keywords extracted from the second step, and

ranked the papers based on the relevance score provided by Lucene.

Papers with relevance scores larger than 0.1 were selected as the

text mining papers. This cut-off threshold of 0.1 was used because

we found that it can balance precision and recall. After this step,

we obtained 4,346 mining papers.

Since the number of text mining papers are an order of magni-

tude greater than the number of visual text analytics related articles,

analyzing the two corpora jointly may lead to the results being

dominated by patterns from the text mining articles. Therefore, we

developed an approach for analyzing each corpus separately and

connecting the two corpora by tasks and techniques.

2.3 Analysis Process
Recently, Isenberg et al. [165] developed a data-driven approach

to determine major visualization topics and point out missing

and overemphasized topics. To this end, they mainly focused on

examining and analyzing two sets of keywords: author-assigned
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Fig. 3: Corpus size by data source over time. The volume of mining papers is much larger than that of visualization papers.
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keywords and PCS taxonomy keywords. Inspired by their method,

we first examined the 263 collected text visualization papers and

performed a bottom-up analysis, mainly focusing on checking the

employed techniques and the tasks supported by the techniques.

Our preliminary analysis revealed that visualization techniques,

analysis tasks, and mining techniques are the key types of concepts

in visual text analytics. We distilled the three types of concepts

by 1) studying the definition, scope, and pipelines of visual (text)

analytics; and 2) learning the key aspects of academic papers.

Previous study in the field of natural language processing has

shown that the application domain and technique are two key

aspects for a scientific paper [131]. In the field of visual text

analytics, information regarding application domains is usually

captured by analysis tasks [180]. According to the pipelines

of visual (text) analytics, mining techniques and visualization

techniques are two essential types of techniques [97], [180].

Hence, our analysis is based on analysis tasks, mining techniques,

and visualization techniques. In particular, we focus on identifying

the key concepts in each type, as well as, the co-occurrence

relationships between different types of concepts (Fig. 2).

To identify tasks and techniques from the surveyed research

articles, we performed both manual coding and automated analysis

that leverages the manual coding results to bootstrap concept

identification on a much larger scale. In particular, visualization

papers were gathered first; the manually labeled tasks and mining

techniques from these papers were later used as seeds for extracting

further concepts from the mining papers.

We developed a semi-automatic method to extract the three

taxonomies from our source papers and identified the relationships

between them. Fig. 2 shows the corresponding workflow to generate

and analyze the three types of concepts in visual text analytics.

The workflow consists of three levels: concept extraction to

extract the three types of concepts by using a computational

linguistics method [131]; taxonomy building to create a concept

taxonomy for each type of concept manually or by the K-means

clustering algorithm; and concept visualization to facilitate the

understanding and analysis of the concepts and the relationships

among them. In the following sections, each of the three levels will

be described in more detail.

3 CONCEPT EXTRACTION

Our approach extracts concepts from both text visualization papers

(total number: 263) and text mining papers (total number: 4,346).

As shown in Fig. 4, concepts from the text visualization papers

were annotated manually. In total, we got 92 mining techniques, 77

analysis tasks, and 25 visualization techniques. Since the number

of text mining papers was large, we used a semi-automatic method

to extract the corresponding analysis tasks and mining techniques.

This method combines automatic concept extraction with two types

of expert knowledge: 1) the mining techniques and analysis tasks

extracted manually from the text visualization papers; and 2) expert

labeling and refinement of the concepts. Specifically, our method

consists of three steps: candidate concept extraction, expert labeling

and classification, and concept refinement.

Candidate concept extraction. In the first step, we extract the

candidate concepts using a computational linguistics method

proposed by Gupta et al. [131]. Given a collection of research

papers, this method extracts analysis tasks (e.g., speech recognition)

and techniques (e.g., latent Dirichlet allocation) by matching

dependency patterns between words. For example, given a sentence

“we addressed this problem by using latent Dirichlet allocation,”

we can extract the technique “latent Dirichlet allocation” by using

pattern “using → (direct − ob ject).” A key here is to define the

patterns used to extract the techniques and tasks (application

domains). In this paper, we combine the seed patterns provided

by Gupta et al. [131] with the patterns we extracted by using the

mining techniques and tasks extracted from the visualization papers.

In total, we extracted 1,772 candidate tasks and 8,805 candidate

mining techniques.

Expert labeling and concept classification. While the compu-

tational linguistics method is able to identify many candidate

techniques and tasks, its ability to differentiate meaningless phrases

such as “this problem” from meaningful phrases such as “text

categorization” is limited. To reduce the noise, we sampled 2,000

candidate concepts, asked experts to label whether each concept

was noise or not, and then used classification to identify noise in

the rest of the candidate concepts. Specifically, five experts, all

having more than five years of research experience in text mining

and/or text visualization, were asked to label the candidate concepts.

We assigned the concepts to the experts so that each concept was

labeled by two experts. The labeling agreement was 81.4%. 1,628

concepts that were given the same label by two experts were used

in the classification.

Next, we employed the support vector machine (SVM)

model [82] to classify the remaining concepts. The SVM inputs

were feature vectors and labels of the concepts. To calculate

the feature vector of each concept, we used KNET [85], which

is a deep learning framework for learning word embeddings.
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TABLE 1: Taxonomy of visualization techniques and the papers demonstrating each technique. The number in the bracket is the number

of papers that use each visualization technique.

First-level Second-level Examples

typographic
visualizations (127)

text
highlighting (97)

[22], [25], [27], [35], [39], [42], [67], [75], [80], [86], [96], [116], [125], [127], [142], [144], [154],
[163], [177], [183], [187], [208], [212], [220], [233], [242], [253], [258], [264], [365]

word cloud (56)
[5], [22], [26], [37], [53], [54], [56], [64], [81], [87], [96], [128], [147], [157], [161], [196], [173],
[186], [189], [192], [203], [217], [218], [225], [249], [259], [307], [342], [346], [332]

hybrid (4) [47], [79], [196], [309]

chart
visualizations (102)

other charts
(e.g. bar chart) (52)

[22], [42], [51], [54], [57], [59], [63], [67], [81], [93], [108], [111], [113], [123], [128],
[142], [144], [163], [172], [186], [192], [197], [217], [218], [228], [254], [255], [263], [271], [328]

scatterplot (32)
[25], [36], [39], [67], [71], [78], [98], [113], [124], [142], [144], [183], [195], [202], [214],
[229], [239], [236], [241], [257], [258], [260], [271], [281], [334], [340], [347], [353], [369], [372]

line chart (29)
[23], [34], [37], [61], [115], [124], [152], [159], [164], [196], [217], [218], [229], [230], [236], [238],
[256], [274], [285], [288], [321], [324], [328], [348], [351], [353], [355], [366], [373]

table (15) [12], [20], [60], [96], [124], [141], [153], [171], [179], [203], [239], [241], [288], [311], [320]

graph
visualizations (95)

node-link (48)
[27], [28], [38], [48], [58], [59], [68], [73], [83], [103], [107], [109], [117], [154], [167], [186],
[188], [197], [204], [222], [226], [238], [271], [291], [292], [294], [304], [318], [323], [341]

tree (34)
[3], [19], [35], [39], [46], [78], [84], [88], [100], [124], [157], [181], [208], [214], [218], [226],
[236], [260], [276], [278], [284], [299], [328], [333], [337], [347], [345], [357], [366], [370]

matrix (26)
[16], [43], [50], [59], [70], [77], [83], [105], [117], [127], [145], [164], [182], [197], [241], [245],
[246], [248], [250], [273], [274], [288], [305], [306], [371]

timeline
visualizations (50)

stream graph (35)
[58], [65], [86], [88], [98], [99], [100], [117], [121], [136], [137], [143], [190], [207], [208], [212],
[220], [222], [253], [292], [296], [310], [332], [331], [333], [338], [345], [355], [365], [372]

flow (28)
[9], [20], [26], [55], [60], [72], [86], [88], [100], [117], [120], [121], [169], [171], [173], [199],
[207], [218], [280], [291], [292], [294], [310], [332], [333], [341], [345], [355]

spatial
projections (35)

galaxies (33)
[12], [15], [46], [48], [56], [60], [62], [96], [110], [116], [117], [119], [126], [127], [140], [145],
[146], [153], [164], [192], [200], [204], [225], [238], [243], [273], [311], [319], [334], [345]

voronoi (6) [15], [60], [204], [244], [290], [333]

high-dimensional
visualizations (34)

glyph (24)
[12], [22], [23], [27], [34], [70], [96], [103], [107], [108], [117], [144], [145], [161], [204], [245],
[247], [275], [303], [353], [355], [357], [366], [369]

PCP (11) [11], [79], [98], [196], [197], [217], [275], [277], [294], [324], [341]

topological maps (33)
[35], [48], [46], [54], [55], [65], [84], [95], [99], [110], [116], [119], [123], [146], [154], [169],
[181], [186], [202], [218], [225], [230], [232], [238], [315], [316], [317], [328], [331], [342]

radial visualizations (15) [3], [46], [60], [68], [71], [77], [106], [151], [152], [214], [218], [278], [294], [328], [362]

3D visualizations (10) [57], [90], [134], [145], [167], [236], [239], [251], [279], [316]

By using this framework, concepts with similar syntactic and

semantic relationships were assigned to similar feature vectors.

The SVM model was trained using a five-fold cross validation

with average accuracy of 89.4% for analysis tasks and 91.4% for

mining techniques. After applying the model to the remaining

8,949 candidate concepts, we found 187 analysis tasks and 718

mining techniques.

Concept refinement. When examining the concepts extracted,

we observed that some of them were quite similar (e.g., “text

categorization” and “text classification”). Also, the classification

result of the second step was not perfect. To solve these problems,

we asked two experts to manually check the results, merge similar

concepts, and reduce noise. To facilitate the labeling process, we

organized similar concepts into clusters by applying K-means on

the word embedding feature vectors. By checking the clusters, the

experts were able to detect concepts that needed to be merged or

removed. Following this step, we obtained 141 refined analysis

tasks and 126 refined mining techniques.

4 TAXONOMY BUILDING

Based on the three-level workflow (Fig. 2) and the analysis of a

large number of text visualization papers and text mining papers,

we have constructed three taxonomies: analysis tasks, visualization

techniques, and mining techniques.

To build the visualization technique taxonomy, two co-authors,

who are the experts in the visualization field, manually constructed

the taxonomy based on the 25 visualization technique concepts

that were manually extracted from text visualization papers. The

other co-authors then examined and refined the visualization

taxonomy. The refinement was done in an iterative fashion; all

co-authors participated in multiple rounds of discussions to finalize

the visualization taxonomy. With this method, we generated a

two-level visualization technique hierarchy with 6 internal nodes.

As more concepts were extracted for analysis tasks and mining

techniques, a semi-automatic method was employed to build the

corresponding taxonomies. Previous research has indicated that

good taxonomies should not be too deep or too wide [92]. As a
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（a） （b） （c）

Fig. 5: Example text visualizations: (a) TopicPanorama [334] leverages graph visualization to encode topic graphs from multiple sources;

(b) EventRiver [220] helps users browse, search, track, associate, and investigate events by using a timeline-based visualization; (c) In

DemographicVis [96], spatial projection is employed to show user groups based on topic interests.

result, we strived to establish a compromise between the tree depth

and width while building these two taxonomies. In particular, we

first employed the popular K-means clustering algorithm to create

the task taxonomy and mining taxonomy. We iteratively divided

the embedding feature vectors into K clusters by using K-means

and generated a four-level task hierarchy with 24 internal nodes as

well as a five-level mining hierarchy with 25 internal nodes. Then

two authors worked iteratively to refine and improve these two

taxonomies. Next, all other authors examined and refined these two

taxonomies iteratively. Finally, we consulted with 4 text mining or

machine learning experts to derive the final taxonomies.

The main objective of the resulting taxonomies is to provide a

framework that is useful from the researcher’s and practitioner’s

standpoint. They help to match techniques to real-world problems

(represented by tasks), and more importantly serve as a foundation

to develop new techniques and new applications.

4.1 Taxonomy of Visualization Techniques
We manually labeled all visualization papers with the concepts in

the visualization technique taxonomy. In Table 1, we present the

two-level taxonomy of visualization techniques, along with a list
of representative papers that use each individual visualization

technique in the hierarchy (at most 30 papers for each second

level visualization technique). For each visualization technique, we

reported the number of papers that use this technique.

The first level visualization techniques include 9 concepts,

such as “graph visualizations” (Fig. 5(a)), “timeline visualizations”

(Fig. 5(b)), and “spatial projections” (Fig. 5(c)). Some first-level

concepts are further organized into 2 to 4 second-level concepts.

Taking “timeline visualizations” as an example, it contains two

second-level concepts: “stream graph” and “flow.” As shown in

Table 1, all papers that belong to a second-level visualization

concept are included in the papers column.

The three first-level visualization concepts that have the largest

number of related papers are “typographic visualizations,” “chart

visualizations,” and “graph visualizations.” The first-level concept

that captures the largest number of publications is “typographic

visualizations,” which contains 125 papers. Since all of the

visualization papers included in our survey are related to text

data, it makes sense that many of these visualizations include a

view that presents the texts in a typographic form.

The second-level techniques under “typographic visualizations”

include “word cloud,” “text highlighting,” and “hybrid.” For

example, 56 papers incorporate a “word cloud” visualization; note

that some papers designate word clouds as a primary view to

summarize texts, while other papers use word clouds as facilitative

visualization in addition to other visualization techniques. Another

large first-level concept, “graph visualizations,” is mentioned by

95 text visualization papers. This concept includes three second-

level concepts, namely “tree,” “matrix,” and “node-link.” The

“node-link” technique captures the largest number of papers (48)

under this concept. The “tree” and “matrix” techniques capture

34 and 26 papers, respectively. As many papers employ tree-

based visualizations as the main view, we separate this concept to

emphasize its role in visual text analytics.

Overall, the taxonomy provides a categorization of the visual-

ization techniques presented in all the papers from the visualization

publication venues. The taxonomy provides both an overview of

the available visualization techniques and a way for researchers

and practitioners to quickly identify papers related to a particular

visualization technique.

4.2 Taxonomy of Analysis Tasks

When iteratively refining and improving the automatically gener-

ated task taxonomy, we first referred to the call for papers (CFPs)

and section organization of several top-tier text-mining-related

conferences and journals, including SIGIR, ACL, WWW, KDD,

AAAI, ICML, NIPS, IJCAI and JMLR. In particular, we used the

topics in the CFPs to organize and refine the concept hierarchy.

We further used the session name of each paper to validate the

concept(s) that are contained in the paper. For example, initially,

“fragment detection” and “duplicate detection” were put at the

first level by the K-means-based taxonomy building method. After

checking the CFPs and section names of several SIGIR conferences,

we found a topic and similar section names in SIGIR 2009 and

2010, for some of the papers related to the two concepts. The topic

was “structure analysis,” so we organized these two concepts as

sub-concepts under the concept “structure analysis” in “information

retrieval.” Second, two senior PhD students, who majored in

interactive machine learning and are not the co-authors of this

paper, worked closely with two of the co-authors to iteratively
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TABLE 2: Taxonomy of analysis tasks (top five largest clusters ranked by the number of papers in each cluster) and example papers. The

number in the bracket represents the number of papers that aim at tackling each analysis task.

First-level Second-level Examples

information retrieval (1884)

entity ranking (6) [8], [21], [168]

XML retrieval (5) [69], [74], [118]

evaluation (35) [52], [162], [290]

user activity tracking (2) [18], [27]

search (76) [17], [27], [126]

recommendation (27) [2], [41], [223]

structure analysis (22) [246], [266], [269]

query analysis (302) [19], [135], [330]

filtering (15) [35], [102], [368]

interactive retrieval (12) [138], [142], [284]

unstructured information retrieval (107) [90], [204], [359]

efficiency and scalability (361) [297], [354], [363]

cluster/topic analysis
(1624)

community discovery (6) [215], [313], [374]

text segmentation (26) [66], [174], [326]

topic analysis (556) [11], [26], [88]

contextual text mining (2) [234], [235]

clustering (699) [160], [194], [356]

natural language processing
(NLP) (1623)

geotagging (8) [13], [184], [201]

data/information extraction (535) [65], [184], [218]

domain adaption (54) [325], [343], [375]

data enrichment (7) [22], [123], [233]

alignment (3) [76], [9], [273]

event analysis (113) [54], [115], [220]

discourse analysis (28) [16], [192], [370]

content analysis (78) [157], [186], [322]

sentiment analysis (467) [250], [347], [333]

lexical/syntactical analysis (73) [250], [333], [347]

question answering (156) [153], [265], [295]

text summarization (526) [50], [64], [187]

classification (1299)

cross language text classification (2) [130], [350]

image classification (37) [219], [227], [352]

sub-document classification (4) [111], [142], [172]

binary classification (64) [237], [270], [283]

taxonomy integration (2) [294], [364]

hierarchical classification (23) [104], [261], [272]

query classification (23) [94], [156], [178]

web page classification (14) [36], [293], [329]

uncertainty tackling (4) [42], [204], [294]

tandem learning (1) [267]

exploratory analysis (1028)

monitoring (113) [12], [35], [302]

comparison (541) [79], [96] , [246]

navigation/exploration (348) [25], [27], [226]

region of interest (6) [127], [240], [371]
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refine the taxonomy through face-to-face discussions. Finally, we

also worked with two researchers who majored in text mining or

machine learning, a senior researcher from Microsoft Research,

and a professor from the Hong Kong University of Science and

Technology, to further verify and refine our taxonomy.

The final taxonomy of analysis tasks consists of three levels.

The first level includes 9 concepts ranging from “information re-

trieval,” “cluster/topic analysis,” to several mining-related concepts

such as “outlier analysis” and “network analysis.” The selection

and refinement of the first level concepts was inspired by previous

studies on data mining tasks [7], [133]. In particular, we roughly

divide the first-level concepts into three categories: tasks on model
building (e.g., “classification” and “cluster/topic analysis”), tasks
on pattern detection (e.g., “outlier analysis” and “trend analysis”),

and tasks on applications (e.g., “natural language processing

(NLP)” and “information retrieval”).

The largest first-level cluster in terms of number of papers

and child nodes is “information retrieval,” which contains 1,884

papers (33 visualization papers and 1,851 mining papers) and

12 children, such as “entity ranking,” “XML retrieval,” and

“efficiency and scalability” (Table 2). Another first-level cluster

which also has the largest number of child nodes (12 children)

is “natural language processing.” The second largest cluster in

terms of number of papers is ”cluster/topic analysis,” which

contains 1,624 papers (54 visualization papers and 1,570 mining

papers). “Exploratory analysis” and “natural language processing”

are the largest and second largest clusters in terms of number of

visualization papers, containing 132 and 120 papers, respectively.

An interesting fact is that “exploratory analysis” only ranks 5th in

terms of paper number. This indicates that the well-studied visual

text analytics topic is not the most popular in the text mining

field. The second level contains 62 concepts. For example, the

cluster “topic analysis” contains sub-clusters “flat topic analysis”,

“hierarchical topic detection,” and “topic evolution.” The cluster

“clustering” contains sub-clusters “flat clustering” and “hierarchical

clustering.” The third level consists of 62 fine-granularity concepts,

such as “part-of-speech tagging,” “co-reference analysis,” “query

processing,” “search log analysis,” and “indexing.” The number

of the second-level concepts is the same as that of the third-level

concepts. After examining the taxonomy, we found that only 14

of the 62 second-level concepts had third-level child nodes.

The top five first-level clusters (including their children) ranked

by the number of papers in each cluster are shown in Table 2. For

each second-level node in the hierarchy, we select a few exemplar

papers to show a range of analysis tasks within the corresponding

visualization and mining papers. As there may be dozens of papers

related to each second-level concept, we selected three visualization

papers for those concepts whose relevant paper number is greater

than three, if the number of visualization papers is less than three,

mining papers are additionally selected.

4.3 Taxonomy of Mining Techniques

We categorized the mining techniques based on the three major

stages of the machine learning life cycle: “data processing,”

“modeling,” and “model inference” [29]. In the “data processing”

stage, data is gathered and preprocessed for training and testing.

In the “modeling” stage, we gather knowledge about the problem

domain, make assumptions based on our knowledge, and express

these assumptions in a precise mathematical form. In the “model

inference” stage, the model variables are computed based on

the data. Techniques related to other stages (e.g., evaluation and

diagnosis) were merged with the three major stages to keep the

taxonomy concise and clear. After building the taxonomy, we asked

three researchers who majored in data mining to help refine the

taxonomy. One researcher is a professor from the Hong Kong

University of Science and Technology, the other two researchers

are senior PhD students with more than four years of research

experience in data mining.

The first two levels of the mining technique taxonomy are

presented in Table 3. As shown in the table, we divided data

processing techniques based on the data types. Accordingly, we

got four second-level concepts: “document-level” data processing

(e.g., document segmentation), “sentence/paragraph-level” data

processing (e.g., sentence embedding), “word/phrase/entity-level”

data processing (e.g., tokenization), and “hybrid” processing (e.g.,

relevance calculation). The modeling techniques were summarized

based on textbooks on text mining and machine learning [7],

[30]. Specifically, we have models for “classification” (e.g.,

Support Vector Machine), “clustering” (e.g., K-means), “dimension

reduction” (e.g., multidimensional scaling), “topic” (e.g., latent

Dirichlet allocation), and “regression” (e.g., convex regression).

We also have “language model,” “graphical models” (e.g., hidden

Markov model), “neural networks” (e.g., convolutional neural

networks), and “mixture models.” The data inference techniques

were categorized based on whether the method was probabilistic

or not. For “probabilistic inference,” the taxonomy contains

parametric methods such as expectation maximization, as well

as non-parametric methods such as Gibbs sampling. For “non-

probabilistic inference,” we have optimization techniques such as

dynamic programming and convex optimization.

5 VISUALIZATION OF CONCEPT RELATIONS

To understand the relationship between the visualization techniques,

analysis tasks, and mining techniques, we developed an interactive

visualization which connects the three concept hierarchies and

provides access to the underlying research papers (see Fig. 1). Our

visualization is task-oriented, placing analysis tasks at the center as

the bridge between mining and visualization techniques. The goal of

the visualization is to reveal common connections between visual-

ization and text mining, as well as show research topics that are not

well connected to identify potential opportunities for future work.

Our visualization is a tripartite graph, framed around the

three concept hierarchies extracted from the research papers. Each

column initially contains the first-level concepts, while connections

are shown between the columns (see Fig. 6 left). Level-of-detail

filters are provided to reduce clutter by decreasing the number of

edges (co-occurrences) based on frequency thresholds. Connections

at lower levels of the hierarchy are propagated to the parent concept,

so that the initial overview shows a summary of all connections in

the dataset, and drill-down can be used to see the details.

We separated source concepts into ones coming from visual-

ization papers, shown in red, and others coming from data mining

papers, shown in blue (bi-colored connections between (b) and (c)

in Fig. 1). The total number of occurrences of a concept across all

papers is encoded in the size of the concept label. Trends over time

between visualization and data mining are revealed through spark

lines appearing beside the concept label. Since the total number

varies widely across concepts, we normalized the spark lines for

each concept so that they reveal the relative number of papers
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TABLE 3: Taxonomy of mining techniques and example papers. The number in the bracket is the number of papers that leverage each

mining technique.

First-level Second-level Examples

data processing (1175)

sentence-level (sentence embedding) (25) [327], [335], [339]

word/phrase/entity-level (679) [4], [286], [289]

document-level (288) [14], [252], [376]

hybrid (387) [40], [155], [349]

model inference (1335)
non-probabilistic inference (267) [91], [101], [336]

probabilistic inference (1160) [185], [198], [360]

modeling (3085)

models for classification (1636) [45], [176], [216]

models for clustering (908) [300], [301], [361]

models for dimension reduction (247) [129], [221], [287]

topic models (1089) [32], [33], [139]

models for regression (256) [49], [149], [298]

language model (271) [24], [89], [158]

graphical models (187) [262], [268], [367]

neural networks (412) [175], [193], [224]

mixture models (128) [31], [166], [314]

All Concepts→[T] cluster/topic analysis

Visualization Techniques

3D visualizations

timeline visualizations

graph visualizations

spatial projections

radial visualizations

topological maps

high-dimensional visualizations

chart visualizations

typographic visualizations

Tasks

outlier analysis

network analysis

predictive analysis

trend anal ysis

exploratory analysis

classification

cluster/topic analysis

natural language
processing (NLP)

information retrieval

Mining Techniques

modeling

model inference

data processing

Visualization Techniques

3D visualizations

timeline visualizations

graph visualizations
2008, 3/95 vis papers008, 3/9

spatial projections

radial visualizations

topological maps

high-dimensional visualizations

chart visualizations

typographic visualizations

Tasks

clustering

others

topic analysis

text segmentation

community discovery

contextual text mining

Mining Techniques

modeling

model inference

data processing

Fig. 6: Our hierarchical visualization of concept relationships. On the left, the initial overview shows relationships extracted from

visualization papers in red and data mining papers in blue. On the right, a drill down operation has been applied to investigate tasks

under the high level concept of cluster/topic analysis, and the timeline for task topic analysis is hovered, isolating connections to this

task and revealing detailed statistics in a tooltip. The paper panel is populated with papers related to this task.

at each year. The absolute number of papers in each concept is

encoded in the horizontal bar charts under the spark lines.

Connections in the visualization are based on concept co-

occurrences. The number of papers containing both concepts at

the endpoints of an edge is encoded in the thickness of the edge.

The color of the edge is split along the length of the edge to show

the proportion of contributing papers from each research field. For

example, in Fig. 6 on the left, the connection between the task

“cluster/topic analysis” and the mining technique “modeling” shows

that most co-occurrences of these concepts came from mining pa-

pers (edge is mostly blue). We found a similar proportional pattern

between “natural language processing” and “model inference,” but

overall a lower number of co-occurrences (thinner edge).

Hovering on a concept label highlights all reachable edges and

concepts while fading the others, thus revealing the co-occurring

concepts across the dataset (see Fig. 6 right). Hovering on a

timepoint in a spark line graph reveals a rich tooltip with precise

numerical data. Since each spark line is independently scaled to

maximize the visibility of trends, the precise values can be used

to compare across spark lines. Selecting a concept populates the

paper panel at the right to show titles, abstracts, and metadata for

papers labelled with that concept. Selecting an edge populates the

paper panel with papers containing both of the associated concepts.

Target concepts appearing in the abstract text are highlighted in

the paper panel for quick identification. Finally, the full text of any

paper can be accessed by clicking its DOI link in the paper panel.

6 RESULTS

In this section, we examine the current practices in visual

text analytics by analyzing the three concept taxonomies, the

connections between them, and the temporal trends revealed

by our visualization tool. We also discuss potential research
opportunities by comparing the trends observed in the literature

of visual text analytics to the trends in text mining.
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6.1 Current Practices of Visual Text Analytics
This study demonstrates that the visualization tool based on

our literature analysis can help researchers and practitioners to

better understand the current practices in visual text analytics. In

particular, we discuss different trends in visualization techniques,

the major analysis tasks, frequently used mining techniques, and

the connections between them.

6.1.1 Current practices of visualization techniques
Fig. 1(a) summarizes nine first-level visualization techniques, their

temporal trends, and how frequently they are used. One can see

that the usage patterns vary among different types of techniques. To

better understand the current practices, we divided these techniques

into three groups based on how frequently they were used.

The first group (Fig. 1A) contains the three most frequently

used techniques: “typographic visualizations” (125 papers), “chart

visualizations” (102 papers), and “graph visualizations” (95 papers).

We observed that these popular techniques were the traditional
ones: they were also frequently used in text visualization papers

before 2000. Moreover, the proportion of papers that use these

techniques has tended to increase the past few years.

To study this phenomenon in more detail, we drilled into the

next level of “chart visualization.” As shown in Fig. 7, “chart

visualization” has four children: “line chart,” “scatterplot,” “table,”

and “other charts.” After we switched to the temporal spark lines

that display the absolute number of papers at each year, we observed

an interesting “revival” of these techniques (Fig. 7). While these

techniques were popular in early years, there was a time period

(2000 to 2005) when these techniques were not used frequently.

After this time period, researchers started to use these techniques

again. The trend to use these simple yet effective techniques

has been even stronger the past five years. This phenomenon

is interesting because of two reasons. First, all four types of chart

visualizations share similar patterns. Second, the percentage of

visualization papers involved (39%) is large. We then checked

the latest papers that used the techniques with the paper panel in

the visualization tool. The paper panel reveals that in some cases,

these techniques served a supportive role as part of a detail view or

dashboard (e.g., in [218]), but in other cases, they were the main

visualization components described in the papers (e.g., in [25]).

One hypothesis regarding the revival of chart visualizations is due

to the preference for simpler and more intuitive visualizations in

order to reduce the learning curve of users. Another possible reason

is that researchers tend to rely on more advanced learning methods

instead of more complex visualizations to discover interesting

patterns. For example, Berger et al. presented cite2vec [25], a

visualization scheme that allows users to dynamically browse

documents via how other documents use them. This usage-oriented

exploration is enabled by projecting the words and documents into

a common embedding space via word embedding. Here, a simple

scatterplot was leveraged to visualize the embedding space. While

chart visualizations

graph visualizations

timeline visualizations

other charts

scatterplot

line chart

table

20002005

drill in

Fig. 7: All chart visualizations began to “revive” after 2005.

Visualization Techniques

3D visualizations

timeline visualizations

graph visualizations

spatial projections

radial visualizations

topological maps

high-dimensional visualizations

chart visualizations

typographic visualizations

Tasks

outlier analysis

network analysis

predictive analysis

trend analysis

exploratory analysis

classification

cluster/topic analysis

natural language
processing (NLP)

information retrieval

Fig. 8: Visualization techniques supporting the “predictive analysis”

task.

the visualization was relatively simple, a variety of useful patterns

could be found due to special properties of the embedded space.

The second group consists of four first-level techniques: “time-

line visualizations” (50 papers), “spatial projections” (35 papers),

“high-dimensional visualizations” (34 papers), and “topological

maps” (33 papers) (Fig. 1B). These techniques are effective for

specific types of data. For example, “timeline visualizations” are

suitable for analyzing textual data with time stamps. “Topological

maps” are intuitive choices for joint analysis of geographical

information and text. This scenario illustrates that our visualization

tool helps new researchers and practitioners to identify relevant

visualization and mining techniques as well as the related papers

for a certain type of data.

The last group (Fig. 1C) includes two first-level techniques that

are not used very frequently: “radial visualization” (15 papers),

“3D visualizations” (10 papers). Studying such techniques may help

to discover the potential for rarely-used techniques and trigger the

development of novel visualizations.

6.1.2 Current practices of analysis tasks

The task taxonomy consists of nine first-level concepts (Fig. 1(b)),

which are divided into the following two groups.

The first group contains the most studied tasks in text visualiza-

tion papers. Tasks in this group are “exploratory analysis,” “natural

language processing,” “trend analysis,” and “cluster/topic analysis.”

All these tasks have been studied in more than 50 visualization

papers. Except for “trend analysis,” all the tasks were frequently

studied before 2000. Their temporal trends are also diverse. For

example, “cluster/topic analysis” shows an upward trend between

2006 and 2014, while “exploratory analysis” experiences a surge

after 2000.

The second group contains the less frequently studied tasks in

the visualization field, namely “information retrieval,” “network

analysis,” “classification,” “outlier analysis,” and “predictive analy-

sis.” We were a little surprised when we found that there were only

a few text visualization papers on classification. In our collection,

there were several visualization papers on classification at IEEE

VIS each year. After a careful examination of the relevant papers

published at IEEE VIS in recent years, we found that most of
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models for
classification
topic models
graphical models

models for regression

models for clustering

neural networks

models for dimension reduction

language model

2008
2008

(a) (b)

Fig. 9: Models used in text visualization papers: (a) traditional

models used frequently before 2008; (b) models that attract more

attention after 2008.

them considered general data sources instead of textual data [211],

[312]. Among the five tasks in this group, only “information

retrieval” has shown a downward trend in the visualization field in

recent years. The task concepts “classification,” “outlier analysis,”

and “predictive analysis” have experienced an upward trend in

recent years. However, in interpreting these trend lines one has

to be cautious due to the small sample size, with fewer than 10

visualization papers for each concept.

Using our interactive visual interface, users may analyze and

explore the relationships between the visualization techniques

and tasks to understand which visualization techniques have

been applied to support which tasks. For example, we selected

the task “predictive analysis” for further investigation. Hovering

over this task in the web-based visualization tool will highlight

all visualization techniques that have been used to support the

predictive analysis (Fig. 8). The visualization techniques supporting

the “predictive analysis” task include: “typographic visualizations,”

“chart visualizations,” “spatial projections,” “high-dimensional

visualizations,” “topological maps,” and “radial visualizations.”

Different groups of visualization techniques are applied to support

various predictive analysis tasks. “Spatial projections” and “topolog-

ical maps” are employed when predicting the user’s demographic

information. “High-dimensional visualizations,” “topological maps,”

and “chart visualizations” are applied when predicting user actions

in social media.

6.1.3 Current practices of mining techniques
The current practices of the three first-level mining techniques:

“modeling,” “model inference,” and “data processing” are illustrated

in Fig. 1(c). Most of the text visualization papers focus on

“modeling” (131 papers) and “data processing” (110 papers), while

fewer papers support “model inference” (17 papers). The spark lines

show that the proportion of visualization papers focusing on “data

processing” and “model inference” was the largest between 2000

and 2005 (Fig. 1D and Fig. 1E). After that, their popularity waned.

In contrast, “modeling” has continued to attract attention since

1995. To further study the temporal pattern, we drilled into the

concept “modeling.” The eight types of models used in text

visualization papers appear in Fig. 9. They can be divided into two

groups based on their temporal trends. The first group contains

traditional models used frequently before 2008 (Fig. 9(a)). Models

in this group include “clustering,” “dimension reduction,” “neural

networks,” and “language model.” The second group consists of

trending models that became more popular after 2008 (Fig. 9(b)).

This group includes “classification,” “topic models,” “graphical

models,” and “regression.” We further drilled into these second-

level concepts to determine which specific techniques contribute

to the aforementioned temporal trends. Fig. 10(a) and Fig. 10(b)

show three specific models for classification and three types of

topic models, respectively. The spark lines indicate that “support

(a) (b)
boosting

support vector machine

part-of-speech tagging (
tagging)

static topic models

dynamic topic models

others

Fig. 10: Drilling into (a) models for classification; (b) topic models.

information retrieval classification

federated search

query ambiguity

distributed information retrieval

drill in

hierarchical classification

cross language text classification

taxonomy integration

drill in

Fig. 11: Example tasks proposed by mining researchers.

vector machine” and “boosting” contribute more to the trendiness

of classification in contrast to “part-of-speech tagging.” For topic

models, the temporal trends of static and dynamic models are

similar. Researchers and practitioners interested in text visualization

can utilize our visualization tool to find more trending techniques

and leverage these state-of-the-art methods in their work.

6.2 Investigating Research Opportunities

In this study, we illustrate how our visualization may help to iden-

tify potential research opportunities in a data-driven manner. This

is achieved by revealing research gaps between text visualization

and text mining research.

6.2.1 Opportunities learned by comparing analysis tasks
To understand the gaps between the text visualization and mining

fields, we compared the paper distributions from these two fields

under different tasks, as well as examined the connections between

these concepts. In particular, we identified two main types of

interesting tasks.

Tasks less frequently studied in the visualization field. Some

tasks are considered by many mining papers, but by few text

visualization papers, as shown in Fig. 1(b). For example, “clas-

sification” and “information retrieval” have been less studied

in text visualization papers. In contrast, these two tasks have

been extensively studied in the text mining field. Based on these

observations, we summarize two opportunities.

Opportunity 1: Supporting tasks proposed by mining researchers.
After we drilled into the hierarchy and examined more specific

tasks, we recognized that many tasks proposed by text mining

researchers are complex and/or interactive in nature, for which

visual analytics research may be suitable. However, currently,

the visualization field has not paid much attention to them. For

example, by drilling into “information retrieval” (Fig. 11(a)), we

identified tasks such as “query ambiguity,” “federated search,” and

predictive analysis outlier analysis

structured prediction

causality analysis

drill in

novelty detection

spammer detection

drill in

Fig. 12: Example tasks that can be better supported by tightly

integrating interactive visualization with text mining techniques.
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“distributed information retrieval,” which have not been well studied

in the visualization field. Among the children of “classification,”

the least studied tasks in the visualization field are “taxonomy

integration,” “cross language text classification,” and “hierarchical

classification” (Fig. 11(b)). Studying these tasks may help broaden

the horizon of current visual text analytics research.

Opportunity 2: Integrating human knowledge to better support
text mining tasks. When we explored the task taxonomy, tasks

such as ‘binary classification” and “recommendation” attracted

our attention. These tasks are typical tasks for a mining paper.

They have been less considered by the visualization field because

they can be solved using an automatic algorithm. Usually, these

tasks are well defined and the performance of the solution can

be automatically evaluated. For these tasks, we believe that

visual analytics can help improve the model performance by

integrating human knowledge, especially when models do not

work as expected. For example, to improve the performance of

text classification, an interactive visualization can be developed

to enable experts to effectively provide informative supervision

at every stage of the classification pipeline. Such supervision can

be performed through the identification of outliers in the training

data, verification of labels of important data samples, and better

parameter settings.

Tasks with insufficient coverage in both fields. We also noticed

that several tasks had not yet attracted much attention from either

the visualization or the mining field. Examples are “predictive

analysis” and “outlier analysis” (Fig. 1(b)). After analyzing these

tasks, we identified the following opportunity.

Opportunity 3: Supporting challenging tasks in text analysis.
After drilling into “predictive analysis” and “outlier analysis,” we

found several tasks that were difficult to handle, even for human

experts, including “causality analysis,” “structured predication,”

and “novelty detection” (Fig. 12). Developing visual text analytics

approaches that support such challenging tasks is an open research

opportunity. To better support these tasks, we need to employ the

full potential of both interactive visualization and text mining. One

possible starting point is to study the state-of-the-art literature

from both the visualization and mining fields and find a solution

to tightly combine them by active learning or semi-supervised

learning.

6.2.2 Opportunities learned by comparing mining tech-
niques
We compared the visual text analytics papers with the text mining

papers in terms of the mining techniques they used. Through our

analysis, we identified the following three opportunities.

Opportunity 4: Incorporating state-of-the-art mining techniques.
Connections between tasks and mining techniques demonstrate

that a majority of mining techniques are not supported by existing

text visualization papers (as shown by the bi-colored connections

between (b) and (c) in Fig. 1). This gap can be observed by

comparing the lengths of red segments with the lengths of blue

segments. For each task, our visualization allows users to find

the relevant state-of-the-art mining techniques. Leveraging these

techniques may help in supporting more difficult tasks and in

developing better visual analytics methods. Take topic modeling

as an example. To find the state-of-the-art techniques, we drilled

into a relevant mining technique: “static topic models.” Examples

of several static topic models are shown in Fig. 13. While

the visualization field tends to use “Latent Dirichlet Allocation

(LDA),” text mining researchers also use other topic models such

a mixture latent topic model
latent structure identification
geometric Dirichlet means algorithm
spherical topic models

hierarchical topic models
correlated topic model (CTM)

latent semantic model
latent dirichlet allocation (LDA)

Fig. 13: Examples of static topic models and their temporal trends.

as “spherical topic models” and a “correlated topic model.” By

observing the temporal trends, we discovered a recently-proposed

model named “geometric Dirichlet means algorithm” [360] that

is more computationally efficient than LDA and can handle larger

numbers of documents. Accordingly, our analysis results can be

leveraged to discover the state-of-the-art technique(s) from both

the visualization and the mining fields. This can further advance

the research and development of visual text analysis applications.

Opportunity 5: Opening the black-box of text mining. In addition,

we recognized that the text mining field has produced a substantial

amount of techniques that were specialized black-box models

tailored to specific tasks. Examples are “mixture models,” “neural

networks,” and “graphical models.” An open research challenge

that involves both text mining and visualization is to make

these techniques understandable. Therefore, developing new visual

analytics approaches for understanding the inner-workings of these

models, which can steer users to better performance, is a gap that

has a great deal of potential for innovative research.

Opportunity 6: Connecting big textual data with people. Textual

data such as web pages, tweets, emails, instant messages, web

click-streams, or CRM information, is flooding into the business

world, academic community, and relevant governmental agencies.

This data deluge is a large part of big data. In our exploration,

we noticed that there were already some initial efforts in the

visualization and mining fields for divining actionable information

from the deluge. For example, the task concept “trend/pattern

analysis” under “trend analysis” contains one recent paper on

visually analyzing streaming textual data [212]. We also observed

that there were a few initial efforts from the mining field. For

example, Twitter, Inc. developed a large-scale topic modeling

method for handling Twitter data [358] (under the task concept

“cluster/topic analysis”). Despite the promising start in both fields,

more research is needed for this research topic, especially for

shaping visual analytics research that tightly integrates interactive

visualization and text mining techniques to maximize the value of

both in handling large-scale textual data.

7 DISCUSSIONS AND REFLECTIONS

Our work has studied three primary concepts, visualization tech-

niques, mining techniques and analysis tasks. The analysis with the

web-based visualization tool (Sec. 6) has disclosed the connection

between mining and visualization techniques through analysis tasks,

as well as their temporal trends over time. By investigating the

relationships between the three types of concepts, we schematically

illustrated current practices and developments of visualization

techniques, mining techniques, and analysis tasks. Popular research

topics and potential emerging research topics were extracted by
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examining the connections between the three types of concepts

and the gaps between them. One unique aspect of our survey is

that the research question drove us to survey two distinct research

fields, and the need to identify a bridge connecting them. Our goal

is to provide an overview of the research related to text mining and

visualization from the two fields, and foster more cross-pollination

research. In this section, we introduce the by-product of our review

work, lessons learned, and the limitations of our work.

7.1 Research By-Product

In addition to a comprehensive survey, our research has also

delivered a research by-product, a visual-analytics-based literature

analysis approach. The major feature of this approach is that it

is based on the overall understanding and analysis of the major

concepts (e.g., utilized techniques) mentioned in research papers.

In this work, we mainly focused on analyzing two types of

concepts, techniques and tasks. Inspired by Gupta and Manning’s

method [131] for automatically extracting key concepts, we devel-

oped a semi-automatic concept annotation method. By examining

and analyzing the connections between different types of concepts,

we provided a comprehensive overview of the on-going research

efforts in the area of visual text analytics, including major research

topics, their temporal trends, hot research topics, as well as less

studied research topics. Based on the analysis of the aforementioned

data, several research opportunities were identified and highlighted

for the visualization domain. As the whole process is data-driven,

this approach can be easily extended to other literature review work.

It is particularly useful for an interdisciplinary review. Together

with this approach, a visualization tool for navigating these

concepts and the connections between them was also deployed as a

web-based tool (http://visgroup.thss.tsinghua.edu.cn/textvis), which

allows users to navigate through the major concepts in a publication

dataset, their connections, and the corresponding papers.

7.2 Lessons Learned

This taxonomy was constructed in a semi-automatic way, where

we iteratively and progressively extracted concepts and built a

taxonomy for each type of concept. During this process, we learned

several practical lessons, which are summarized in the remainder

of this section.

Combination of data and knowledge. In order to provide a

comprehensive overview of visual text analytics, we analyzed over

4,600 research papers and extracted around 300 keyword-based

concepts. We settled on a semi-automatic method for concept

extraction that is driven by both data and knowledge for two

reasons. On the one hand, with such a large number of papers

and concepts involved, manual labeling would have been very

difficult and time-consuming. On the other hand, the accuracy

of the automatic concept extraction method is not sufficient and

depends on the coverage of the seed patterns. To overcome these

issues, we employed a semi-automatic concept extraction method

that tightly couples human knowledge with data (Fig. 4). Initially,

we manually extracted a set of techniques and analysis tasks from

the visualization papers that we were familiar with (knowledge-

driven approach). Next, we extracted more concepts from the

mining papers based on the manually extracted concepts and Gupta

and Manning’s method (data-driven approach). All the authors then

worked together to verify the extracted concepts iteratively and

resolved conflicts (knowledge-driven approach). The combination

of the data- and knowledge-driven approaches improved both the

quality of the concepts extracted and the labeling performance.

A similar approach that combines data and human knowledge

(e.g., expert feedback) was also used to build the taxonomy. K-

means clustering was employed to build the initial taxonomy. Then

the authors, as well as several experts from machine learning and

data mining refined and improved the taxonomy progressively. The

experts preferred a balanced concept taxonomy that was not too

deep or too wide. This is also consistent with a recent study [150].

Another useful lesson we learned is that human knowledge and

experience are very useful to code concepts and build taxonomies.

Typically, coding and taxonomy building are an iterative and

progressive process. This process is most efficiently handled if

experienced experts build an initial taxonomy that gets enriched by

others, based on their understanding.

The data-driven approach for finding research opportunities
is a good complement to the knowledge-based method. In the past,

most literature reviews were manually carried out with the aim of

examining the progress of a particular research topic and identifying

emerging research opportunities. Typically, the breadth and depth

of research opportunities depend on the experts’ knowledge and

their understanding of the research area. Our work contributes

to this body of work by presenting the connections between

different types of concepts, which allows experts to examine the

overall trend of different research topics, as well as the gaps

between different research fields in an interdisciplinary research

area. This data-driven approach can be considered as a complement

to the current knowledge-based approach for identifying emerging

research opportunities.

7.3 Limitations

Although the developed semi-automatic approach sheds light on

the research progress and emerging research opportunities in visual

text analytics, we would like to note a few limitations.

When gathering the data, we tried our best to collect all relevant

papers in both research fields. However, we may have missed some

papers due to the large number of available venues and articles. To

compensate for this, we will further extend our visualization tool to

allow users to manually add papers that they believe to be relevant.

We will then batch process and verify the submitted papers and

merge the results into the existing concept taxonomies.

Another limitation is related to the calculations of connections

between different concepts. We chose to leverage concept co-

occurrences in the full-text to derive the connections between

different concepts. This strategy may lead to some inaccurate

connections between concepts. For example, one paper mentions

using a scatterplot for an overview and a line chart for observing

the temporal trend. Based on concept co-occurrences, we built

all the possible connections between the four concepts, including

“scatterplot” and “overview,” “scatterplot” and “trend analysis,”

“line chart” and “overview,” as well as “line chart” and “trend

analysis.” Here the concepts “scatterplot” and “trend analysis,” as

well as “line chart” and “overview,” did not need to be connected.

The correlation accuracy can be improved by employing more

advanced approaches such as relationship extraction [114]. Another

solution is to utilize a crowd-sourcing platform in order to collect

multiple annotations for each pair of connections. Accordingly, an

interesting avenue of potential future work is to leverage a crowd-

sourcing model such as M3V [205] to infer the correct connection

from noisy crowd-sourced labels.
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8 CONCLUSIONS

In this work, we conducted a comprehensive survey based on 263

text visualization papers and 4,346 text mining papers that have

been published between 1992 and 2017. With a semi-automatic,

data-driven analysis, we identified and extracted three types of

concepts. Two of the concepts, visualization techniques and mining
techniques, summarize the research trends in the respective research

fields, while the analysis tasks summarizes the goals of such

research. Through statistically analyzing the relationships between

the three types of concepts, we connected visualization techniques

and mining techniques with analysis tasks serving as the bridge.

In addition, a web-based visualization tool has been developed

to facilitate the investigation of the major research trends in the

area of text visualization, including the major techniques and tasks,

their development over time, as well as the gaps between the

visualization and mining fields.

We believe the data-driven analysis process developed in

this work can be directly used to conduct literature analysis in

other interdisciplinary research areas, such as interactive machine

learning [206], [210], bio-informatics visualization, or brain-

inspired artificial intelligence. The key is to find an important

intermediate concept that bridges the two fields. For example, for

the research area of brain-inspired artificial intelligence, different

types of neurons and their operating mechanisms might be a

candidate intermediate concept that connects neuro-science and

artificial intelligence. In this survey we have shown that using

such an intermediate concept may help to narrow the gaps

between two research domains and provide useful insights into an

interdisciplinary area, which can foster a better understanding of

the research field and opens promising avenues for future research.
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G. Melançon, “Visual analytics: Definition, process, and challenges,” in
Information visualization, 2008, pp. 154–175.

[181] D. A. Keim, F. Mansmann, C. Panse, J. Schneidewind, and M. Sips,
“Mail explorer—spatial and temporal exploration of electronic mail,” in
EuroVis, 2005, pp. 247–254.

[182] D. A. Keim and D. Oelke, “Literature fingerprinting: A new method for
visual literary analysis,” in IEEE VAST, 2007, pp. 115–122.

[183] M. Kim, K. Kang, D. Park, J. Choo, and N. Elmqvist, “TopicLens:
Efficient multi-level visual topic exploration of large-scale document
collections,” IEEE TVCG, vol. 23, no. 1, pp. 151–160, 2017.

[184] Y. Kim, J. Han, and C. Yuan, “TOPTRAC: Topical trajectory pattern
mining,” in ACM SIGKDD, 2015, pp. 587–596.

[185] Y.-H. Kim, S.-Y. Hahn, and B.-T. Zhang, “Text filtering by boosting
naive bayes classifiers,” in ACM SIGIR, 2000, pp. 168–175.

[186] S. Koch, H. Bosch, M. Giereth, and T. Ertl, “Iterative integration of
visual insights during scalable patent search and analysis,” IEEE TVCG,
vol. 17, no. 5, pp. 557–569, 2011.

[187] S. Koch, M. John, M. Wörner, A. Müller, and T. Ertl, “VarifocalReader –
In-depth visual analysis of large text documents,” IEEE TVCG, vol. 20,
no. 12, pp. 1723–1732, 2014.

[188] A. Kochtchi, T. von Landesberger, and C. Biemann, “Networks of names:
Visual exploration and semi-automatic tagging of social networks from
newspaper articles,” Computer Graphics Forum, vol. 33, no. 3, pp.
211–220, 2014.

[189] K. Koh, B. Lee, B. Kim, and J. Seo, “ManiWordle: Providing flexible
control over Wordle,” IEEE TVCG, vol. 16, no. 6, pp. 1190–1197, 2010.

[190] M. Krstajic, E. Bertini, and D. Keim, “CloudLines: Compact display of
event episodes in multiple time-series,” IEEE TVCG, vol. 17, no. 12, pp.
2432–2439, 2011.

[191] K. Kucher and A. Kerren, “Text visualization techniques: Taxonomy,
visual survey, and community insights,” in IEEE PacificVis, 2015, pp.
117–121.

[192] B. C. Kwon, S.-H. Kim, S. Lee, J. Choo, J. Huh, and J. S. Yi, “VisOHC:
Designing visual analytics for online health communities,” IEEE TVCG,
vol. 22, no. 1, pp. 71–80, 2016.

[193] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification,” in AAAI, 2015, pp. 2267–2273.

[194] B. Larsen and C. Aone, “Fast and effective text mining using linear-time
document clustering,” in ACM SIGKDD, 1999, pp. 16–22.

[195] T. M. V. Le and H. W. Lauw, “Semantic visualization for spherical
representation,” in ACM SIGKDD, 2014, pp. 1007–1016.

[196] B. Lee, N. H. Riche, A. K. Karlson, and S. Carpendale, “SparkClouds:
Visualizing trends in tag clouds,” IEEE TVCG, vol. 16, no. 6, pp. 1182–
1189, 2010.

[197] H. Lee, J. Kihm, J. Choo, J. Stasko, and H. Park, “iVisClustering: An
interactive visual document clustering via topic modeling,” Computer
Graphics Forum, vol. 31, no. 3, pp. 1155–1164, 2012.

[198] J. Lee, C. Heaukulani, Z. Ghahramani, L. F. James, and S. Choi,
“Bayesian inference on random simple graphs with power law degree
distributions,” in ICML, 2017, pp. 2004–2013.

[199] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the
dynamics of the news cycle,” in ACM SIGKDD, 2009, pp. 497–506.

[200] A. Leuski and J. Allan, “Lighthouse: Showing the way to relevant
information,” in IEEE InfoVis, 2000, pp. 125–129.

[201] M. D. Lieberman and H. Samet, “Adaptive context features for toponym
resolution in streaming news,” in ACM SIGIR, 2012, pp. 731–740.

[202] X. Lin, “Visualization for the document space,” in IEEE VIS, 1992, pp.
274–281.

[203] C. Y. Liu, M. S. Chen, and C. Y. Tseng, “IncreSTS: Towards real-time
incremental short text summarization on comment streams from social
network services,” IEEE TKDE, vol. 27, no. 11, pp. 2986–3000, 2015.

[204] M. Liu, S. Liu, X. Zhu, Q. Liao, F. Wei, and S. Pan, “An uncertainty-
aware approach for exploratory microblog retrieval,” IEEE TVCG,
vol. 22, no. 1, pp. 250–259, 2016.

[205] M. Liu, L. Jiang, J. Liu, X. Wang, J. Zhu, and S. Liu, “Improving
learning-from-crowds through expert validation,” in IJCAI, 2017, pp.
2329–2336.

[206] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu, “Towards better analysis
of deep convolutional neural networks,” IEEE TVCG, vol. 23, no. 1, pp.
91–100, 2017.

[207] S. Liu, W. Zhu, N. Xu, F. Li, X.-q. Cheng, Y. Liu, and Y. Wang, “Co-
training and visualizing sentiment evolvement for tweet events,” in WWW,
2013, pp. 105–106.

[208] S. Liu, Y. Chen, H. Wei, J. Yang, K. Zhou, and S. M. Drucker, “Exploring
topical lead-lag across corpora,” IEEE TKDE, vol. 27, no. 1, pp. 115–129,
2015.

[209] S. Liu, W. Cui, Y. Wu, and M. Liu, “A survey on information
visualization: recent advances and challenges,” The Visual Computer,
vol. 30, no. 12, pp. 1373–1393, 2014.

[210] S. Liu, X. Wang, M. Liu, and J. Zhu, “Towards better analysis of machine
learning models: A visual analytics perspective,” Visual Informatics,
vol. 1, no. 1, pp. 48–56, 2017.



18

[211] S. Liu, J. Xiao, J. Liu, X. Wang, J. Wu, and J. Zhu, “Visual diagnosis of
tree boosting methods,” IEEE TVCG, vol. 24, no. 1, pp. 163–173, 2018.

[212] S. Liu, J. Yin, X. Wang, W. Cui, K. Cao, and J. Pei, “Online visual
analytics of text streams,” IEEE TVCG, vol. 22, no. 11, pp. 2451–2466,
2016.

[213] S. Liu, M. X. Zhou, S. Pan, Y. Song, W. Qian, W. Cai, and X. Lian,
“TIARA: Interactive, topic-based visual text summarization and analysis,”
ACM TIST, vol. 3, no. 2, p. 25, 2012.

[214] X. Liu, A. Xu, L. Gou, H. Liu, R. Akkiraju, and H.-W. Shen,
“SocialBrands: Visual analysis of public perceptions of brands on social
media,” in IEEE VAST, 2016, pp. 71–80.

[215] Y. Liu, A. Niculescu-Mizil, and W. Gryc, “Topic-link LDA: Joint models
of topic and author community,” in ICML, 2009, pp. 665–672.

[216] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins,
“Text classification using string kernels,” JMLR, vol. 2, no. Feb, pp.
419–444, 2002.

[217] Y. Lu, R. Kr uger, D. Thom, F. Wang, S. Koch, T. Ertl, and R. Maciejew-
ski, “Integrating predictive analytics and social media,” in IEEE VAST,
2014, pp. 193–202.

[218] Y. Lu, M. Steptoe, S. Burke, H. Wang, J.-Y. Tsai, H. Davulcu,
D. Montgomery, S. R. Corman, and R. Maciejewski, “Exploring evolving
media discourse through event cueing,” IEEE TVCG, vol. 22, no. 1, pp.
220–229, 2016.

[219] Z. Lu, L. Wang, and J.-R. Wen, “Direct semantic analysis for social
image classification,” in AAAI, 2014, pp. 1258–1264.

[220] D. Luo, J. Yang, M. Krstajic, W. Ribarsky, and D. A. Keim, “EventRiver:
Visually exploring text collections with temporal references,” IEEE
TVCG, vol. 18, no. 1, pp. 93–105, 2012.

[221] M. Luo, F. Nie, X. Chang, Y. Yang, A. G. Hauptmann, and Q. Zheng,
“Probabilistic non-negative matrix factorization and its robust extensions
for topic modeling,” in AAAI, 2017, pp. 2308–2314.

[222] S. J. Luo, L. T. Huang, B. Y. Chen, and H.-W. Shen, “EmailMap:
Visualizing event evolution and contact interaction within email archives,”
in IEEE PacificVis, 2014, pp. 320–324.

[223] Y. Lv, T. Moon, P. Kolari, Z. Zheng, X. Wang, and Y. Chang, “Learning
to model relatedness for news recommendation,” in WWW, 2011, pp.
57–66.

[224] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K.-F. Wong, and M. Cha,
“Detecting rumors from microblogs with recurrent neural networks,” in
IJCAI, 2016, pp. 3818–3824.

[225] A. M. MacEachren, A. Jaiswal, A. C. Robinson, S. Pezanowski, A. Save-
lyev, P. Mitra, X. Zhang, and J. Blanford, “SensePlace2: GeoTwitter
analytics support for situational awareness,” in IEEE VAST, 2011, pp.
181–190.

[226] K. Madhavan, N. Elmqvist, M. Vorvoreanu, X. Chen, Y. Wong, H. Xian,
Z. Dong, and A. Johri, “DIA2: Web-based cyberinfrastructure for visual
analysis of funding portfolios,” IEEE TVCG, vol. 20, no. 12, pp. 1823–
1832, 2014.

[227] T. Maekawa, T. Hara, and S. Nishio, “Image classification for mobile
web browsing,” in WWW, 2006, pp. 43–52.

[228] J. Mahmud, G. Fei, A. Xu, A. Pal, and M. Zhou, “Predicting attitude
and actions of Twitter users,” in IUI, 2016, pp. 2–6.

[229] Y. Mao, J. Dillon, and G. Lebanon, “Sequential document visualization,”
IEEE TVCG, vol. 13, no. 6, pp. 1208–1215, 2007.

[230] A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madden, and
R. C. Miller, “Twitinfo: Aggregating and visualizing microblogs for
event exploration,” in ACM SIGCHI, 2011, pp. 227–236.

[231] A. Martinez and W. Martinez, “At the interface of computational lin-
guistics and statistics,” Wiley Interdisciplinary Reviews: Computational
Statistics, vol. 7, no. 4, pp. 258–274, 2015.

[232] D. Mashima, S. Kobourov, and Y. Hu, “Visualizing dynamic data with
maps,” IEEE TVCG, vol. 18, no. 9, pp. 1424–1437, 2012.

[233] N. McCurdy, J. Lein, K. Coles, and M. Meyer, “Poemage: Visualizing
the sonic topology of a poem,” IEEE TVCG, vol. 22, no. 1, pp. 439–448,
2016.

[234] Q. Mei, D. Cai, D. Zhang, and C. Zhai, “Topic modeling with network
regularization,” in WWW, 2008, pp. 101–110.

[235] Q. Mei and C. Zhai, “A mixture model for contextual text mining,” in
ACM SIGKDD, 2006, pp. 649–655.

[236] N. E. Miller, P. C. Wong, M. Brewster, and H. Foote, “TOPIC
ISLANDSTM—a wavelet-based text visualization system,” in IEEE VIS,
1998, pp. 189–196.

[237] A. Mishra, K. Dey, and P. Bhattacharyya, “Learning cognitive features
from gaze data for sentiment and sarcasm classification using convolu-
tional neural network,” in ACL, 2017, pp. 377–387.

[238] F. Morstatter, S. Kumar, H. Liu, and R. Maciejewski, “Understanding
Twitter data with TweetXplorer,” in ACM SIGKDD, 2013, pp. 1482–
1485.

[239] S. Mukherjea, K. Hirata, and Y. Hara, “Visualizing the results of
multimedia Web search engines,” in IEEE InfoVis, 1996, pp. 64–65,
122.

[240] S. Muthiah, B. Huang, J. Arredondo, D. Mares, L. Getoor, G. Katz, and
N. Ramakrishnan, “Planned protest modeling in news and social media,”
in AAAI, 2015, pp. 3920–3927.

[241] M. Nacenta, U. Hinrichs, and S. Carpendale, “FatFonts: Combining the
symbolic and visual aspects of numbers,” in AVI, 2012, pp. 407–414.

[242] M. Nafari and C. Weaver, “Augmenting visualization with natural lan-
guage translation of interaction: A usability study,” Computer Graphics
Forum, vol. 32, no. 3, pp. 391–400, 2013.

[243] T. N. Nguyen and J. Zhang, “A novel visualization model for web search
results,” IEEE TVCG, vol. 12, no. 5, pp. 981–988, 2006.

[244] A. Nocaj and U. Brandes, “Organizing search results with a reference
map,” IEEE TVCG, vol. 18, no. 12, pp. 2546–2555, 2012.

[245] D. Oelke, D. Kokkinakis, and D. A. Keim, “Fingerprint Matrices: Un-
covering the dynamics of social networks in prose literature,” Computer
Graphics Forum, vol. 32, no. 3, pp. 371–380, 2013.

[246] D. Oelke, D. Spretke, A. Stoffel, and D. A. Keim, “Visual readability
analysis: How to make your writings easier to read,” in IEEE VAST,
2010, pp. 123–130.

[247] D. Oelke, H. Strobelt, C. Rohrdantz, I. Gurevych, and O. Deussen,
“Comparative exploration of document collections: A visual analytics
approach,” Computer Graphics Forum, vol. 33, no. 3, pp. 201–210, 2014.

[248] D. Oelke, P. Bak, D. A. Keim, M. Last, and G. Danon, “Visual evaluation
of text features for document summarization and analysis,” in IEEE VAST,
2008, pp. 75–82.

[249] D. Oelke and I. Gurevych, “A study on human-generated tag structures
to inform tag cloud layout,” in AVI, 2014, pp. 297–304.

[250] D. Oelke, M. Hao, C. Rohrdantz, D. A. Keim, U. Dayal, L.-E. Haug,
and H. Janetzko, “Visual opinion analysis of customer feedback data,”
in IEEE VAST, 2009, pp. 187–194.

[251] P. Oesterling, G. Scheuermann, S. Teresniak, G. Heyer, S. Koch, T. Ertl,
and G. H. Weber, “Two-stage framework for a topology-based projection
and visualization of classified document collections,” in IEEE VAST,
2010, pp. 91–98.

[252] P. Ogilvie and J. Callan, “Combining document representations for
known-item search,” in ACM SIGIR, 2003, pp. 143–150.

[253] S. Pan, M. X. Zhou, Y. Song, W. Qian, F. Wang, and S. Liu, “Optimizing
temporal topic segmentation for intelligent text visualization,” in IUI,
2013, pp. 339–350.

[254] H. Park and J. Choi, “V-model: A new innovative model to chrono-
logically visualize narrative clinical texts,” in ACM SIGCHI, 2012, pp.
453–462.

[255] S. Park, S. Lee, and J. Song, “Aspect-level news browsing: Understanding
news events from multiple viewpoints,” in IUI, 2010, pp. 41–50.

[256] R. Patel and W. Furr, “ReadN’Karaoke: Visualizing prosody in children’s
books for expressive oral reading,” in ACM SIGCHI, 2011, pp. 3203–
3206.

[257] F. V. Paulovich and R. Minghim, “HiPP: A novel hierarchical point
placement strategy and its application to the exploration of document
collections,” IEEE TVCG, vol. 14, no. 6, pp. 1229–1236, 2008.

[258] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz, “Least
Square Projection: A fast high-precision multidimensional projection
technique and its application to document mapping,” IEEE TVCG, vol. 14,
no. 3, pp. 564–575, 2008.

[259] F. V. Paulovich, F. M. B. Toledo, G. P. Telles, R. Minghim, and L. G.
Nonato, “Semantic wordification of document collections,” Computer
Graphics Forum, vol. 31, no. 3, pp. 1145–1153, 2012.

[260] A. Perer and M. A. Smith, “Contrasting portraits of email practices:
Visual approaches to reflection and analysis,” in AVI, 2006, pp. 389–395.

[261] A. J. Perotte, F. Wood, N. Elhadad, and N. Bartlett, “Hierarchically
supervised latent Dirichlet allocation,” in NIPS, 2011, pp. 2609–2617.

[262] D. Pinto, A. McCallum, X. Wei, and W. B. Croft, “Table extraction using
conditional random fields,” in ACM SIGIR, 2003, pp. 235–242.

[263] P. Pirolli and S. K. Card, “Information foraging models of browsers for
very large document spaces,” in AVI, 1998, pp. 83–93.

[264] P. Pirolli, E. Wollny, and B. Suh, “So you know you’re getting the best
possible information: A tool that increases Wikipedia credibility,” in
ACM SIGCHI, 2009, pp. 1505–1508.

[265] J. Prager, E. Brown, A. Coden, and D. Radev, “Question-answering by
predictive annotation,” in ACM SIGIR, 2000, pp. 184–191.



19

[266] J. Proskurnia, M.-A. Cartright, L. Garcia-Pueyo, I. Krka, J. B. Wendt,
T. Kaufmann, and B. Miklos, “Template induction over unstructured
email corpora,” in WWW, 2017, pp. 1521–1530.

[267] H. Raghavan and J. Allan, “An interactive algorithm for asking and
incorporating feature feedback into support vector machines,” in ACM
SIGIR, 2007, pp. 79–86.

[268] M. M. Rahman and H. Wang, “Hidden topic sentiment model,” in WWW,
2016, pp. 155–165.

[269] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis, “Automatic detection
of fragments in dynamically generated web pages,” in WWW, 2004, pp.
443–454.

[270] M. D. Reid and R. C. Williamson, “Information, divergence and risk for
binary experiments,” JMLR, vol. 12, no. Mar, pp. 731–817, 2011.

[271] D. Ren, X. Zhang, Z. Wang, J. Li, and X. Yuan, “WeiboEvents: A crowd
sourcing Weibo visual analytic system,” in IEEE PacificVis, 2014, pp.
330–334.

[272] Z. Ren, M.-H. Peetz, S. Liang, W. van Dolen, and M. de Rijke,
“Hierarchical multi-label classification of social text streams,” in ACM
SIGIR, 2014, pp. 213–222.

[273] R. L. Ribler and M. Abrams, “Using visualization to detect plagiarism
in computer science classes,” in IEEE InfoVis, 2000, pp. 173–178.

[274] N. H. Riche, B. Lee, and F. Chevalier, “iChase: Supporting exploration
and awareness of editing activities on Wikipedia,” in AVI, 2010, pp.
59–66.

[275] P. Riehmann, M. Potthast, B. Stein, and B. Froehlich, “Visual assessment
of alleged plagiarism cases,” Computer Graphics Forum, vol. 34, no. 3,
pp. 61–70, 2015.

[276] P. Riehmann, H. Gruendl, B. Froehlich, M. Potthast, M. Trenkmann, and
B. Stein, “The NETSPEAK WORDGRAPH: Visualizing keywords in
context,” in IEEE PacificVis, 2011, pp. 123–130.

[277] P. Riehmann, H. Gruendl, M. Potthast, M. Trenkmann, B. Stein, and
B. Froehlich, “WORDGRAPH: Keyword-in-context visualization for
NETSPEAK’s wildcard search,” IEEE TVCG, vol. 18, no. 9, pp. 1411–
1423, 2012.

[278] C. Rohrdantz, M. Hund, T. Mayer, and D. A. Keim, “The world’s
languages explorer: Visual analysis of language features in genealogical
and areal contexts,” Computer Graphics Forum, vol. 31, no. 3, pp.
935–944, 2012.

[279] R. M. Rohrer, D. S. Ebert, and J. L. Sibert, “The shape of Shakespeare:
visualizing text using implicit surfaces,” in IEEE InfoVis, 1998, pp.
121–129.

[280] S. Rose, S. Butner, W. Cowley, M. Gregory, and J. Walker, “Describing
story evolution from dynamic information streams,” in IEEE VAST, 2009,
pp. 99–106.

[281] D. A. Rushall and M. R. Ilgen, “DEPICT: Documents evaluated
as pictures. Visualizing information using context vectors and self-
organizing maps,” in IEEE InfoVis, 1996, pp. 100–107.

[282] D. Sacha, L. Zhang, M. Sedlmair, J. A. Lee, J. Peltonen, D. Weiskopf,
S. C. North, and D. A. Keim, “Visual interaction with dimensionality
reduction: A structured literature analysis,” IEEE TVCG, vol. 23, no. 1,
pp. 241–250, 2017.

[283] U. Sapkota, T. Solorio, M. Montes-y Gómez, and S. Bethard, “Domain
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topic detection in online reputation monitoring,” in ACM SIGIR, 2014,
pp. 527–536.

[303] A. Spoerri, “InfoCrystal: A visual tool for information retrieval &
management,” in IEEE VIS, 1993, pp. 150–157.

[304] J. Stasko, C. Görg, Z. Liu, and K. Singhal, “Jigsaw: Supporting
investigative analysis through interactive visualization,” in IEEE VAST,
2007, pp. 131–138.

[305] F. Stoffel, W. Jentner, M. Behrisch, J. Fuchs, and D. Keim, “Interactive
ambiguity resolution of named entities in fictional literature,” Computer
Graphics Forum, vol. 36, no. 3, pp. 189–200, 2017.

[306] H. Strobelt, D. Oelke, C. Rohrdantz, A. Stoffel, D. A. Keim, and
O. Deussen, “Document Cards: A top trumps visualization for doc-
uments,” IEEE TVCG, vol. 15, no. 6, pp. 1145–1152, 2009.

[307] H. Strobelt, M. Spicker, A. Stoffel, D. Keim, and O. Deussen, “Rolled-
out Wordles: A heuristic method for overlap removal of 2d data
representatives,” Computer Graphics Forum, vol. 31, no. 3, pp. 1135–
1144, 2012.

[308] G.-D. Sun, Y.-C. Wu, R.-H. Liang, and S.-X. Liu, “A survey of visual
analytics techniques and applications: State-of-the-art research and future
challenges,” Journal of Computer Science and Technology, vol. 28, no. 5,
pp. 852–867, 2013.

[309] G. Sun, T. Tang, T.-Q. Peng, R. Liang, and Y. Wu, “Socialwave: Visual
analysis of spatio-temporal diffusion of information on social media,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 9,
no. 2, p. 15, 2017.

[310] G. Sun, Y. Wu, S. Liu, T. Q. Peng, J. J.H.Zhu, and R. Liang, “EvoRiver:
Visual analysis of topic coopetition on social media,” IEEE TVCG,
vol. 20, no. 12, pp. 1753–1762, 2014.

[311] D. A. Szafir, D. Stuffer, Y. Sohail, and M. Gleicher, “TextDNA: Visu-
alizing word usage with configurable colorfields,” Computer Graphics
Forum, vol. 35, no. 3, pp. 421–430, 2016.

[312] G. K. Tam, V. Kothari, and M. Chen, “An analysis of machine-and
human-analytics in classification,” IEEE TVCG, vol. 23, no. 1, pp. 71–
80, 2017.

[313] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis in
large-scale networks,” in ACM SIGKDD, 2009, pp. 807–816.

[314] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical
Dirichlet processes,” Journal of the American Statistical Association, vol.
101, no. 476, pp. 1566–1581, 2006.
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