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Abstract—The threat of malicious insider activity continues
to be of paramount concern in both the public and private
sectors. Though there is great interest in advancing the state
of the art in predicting and stopping these threats, the difficulty
of obtaining suitable data for research, development, and
testing remains a significant hinderance. We outline the use
of synthetic data to enable progress in one research program,
while discussing the benefits and limitations of synthetic insider
threat data, the meaning of realism in this context, as well as
future research directions.

I. INTRODUCTION

Malicious insiders are current or former employees or
trusted partners of an organization who abuse their autho-
rized access to an organization’s networks, systems, and/or
data. Insider threats, the malicious acts carried out by
these trusted insiders include, but not limited to, theft of
intellectual property or national security information, fraud,
and sabotage. Many government, academic, and industry
groups seek to discover and develop solutions to detect and
protect against these insider threats.

A significant impediment to these programs is the lack
of data to analyze. To be useful, this data must contain a
detailed account of human behavior within the monitored
environment. Insider threats are, after all, about the actions
of humans and not machines, and detection techniques will
inevitably incorporate methods from the social sciences. But
such data sets are difficult to come by. Researchers in this
domain have two options—they can use or collect real user
data, or they can use synthetic data. Because malicious
insiders are, first and foremost, insiders, to collect real data,
some organization must directly monitor and record the
behavior and actions of its own employees. Confidentiality
and privacy concerns create barriers to the collection and
use of such data for research purposes. Thus, it is sometimes
preferable to proceed with synthetic data.

With a mature synthetic data generation framework like
the one used here, a user can flexibly control and rapidly
and economically generate data sets with desired character-
istics, size and quality relative to measurable characteristics.
Because they are not real, the data sets are fully intact,
with no need for de-identification, and free of privacy
restrictions or limitations. Because they are generated, there
is, theoretically, no limit on the length of time or number

of individuals represented. Such data can be published,
and thus allows other researchers to repeat experiments
and compare algorithms. And because true positives in the
data set are labeled, synthetic data can enable development,
quality assurance, and performance testing in ways that may
be difficult or impossible with real data.

Because using real, even de-identified, corporate data
raises a variety of legal, ethical, and business issues, the
DARPA Anomaly Detection at Multiple Scales (ADAMS)
program turned to proxy data sets and synthetic data. Our
task was to generate data to simulate the aggregated col-
lection of logs from host-based sensors distributed across
all the computer workstations within a large business or
government organization over a 500 day period. Despite
a widespread use of synthetic data to test classification
systems [13], producing synthetic data that achieves a high
level of human realism is a much more difficult problem [5].

In the process of performing this work, we made prag-
matic choices to achieve sufficient fidelity and learned im-
portant lessons about the benefits and limitations of synthetic
data in this domain. Our purpose in this paper is to give a
simplified overview of our general approach, to highlight
some of the challenges and lessons learned about the uses
and misuses of synthetic data, especially regarding the role
and meaning of realism in synthetic data, and to mention
opportunities for future research.

II. RELATED WORK

Most systems for generating cybersecurity test data focus
on network traffic. These include network traffic generation
appliances, such as BreakingPoint, and software solutions
such as Swing [17] or Harpoon [15]. BreakingPoint is deliv-
ered with preloaded profiles for various types of traffic, while
Swing and Harpoon are designed to learn traffic profiles by
example. All three systems directly output network traffic to
simulate a large number of machines. An alternate approach,
used by Lincoln Labs’ LARIAT [18] and Skaion’s TGS,
programatically drives applications on a virtual machine to
more naturally generate the traffic. This approach is more
interesting for our problem domain, since something like
these systems could drive machines to generate other, host-
based, sensor data. In fact, we see this in later work for
DARPA ADAMS where Skaion’s ConsoleUser, a relative of
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TGS, is used to generate activity logs from a host-based
sensor. Unlike these systems, the generator used for the
effort discussed here simulates the sensor internally and
directly outputs the activity logs.

Regardless of whether the final data is output directly by
the generator, or is generated as a side effect of activity,
LARIAT, TGS, and ConsoleUser follow an approach that
calls for individual models for each agent being simulated.
This model may be a set sequence of steps or a probabilistic
model from which decisions are made. In the network
domain, models and configurations based on real networks
are already available. But the insider threat domain concerns
itself with higher level user activity, and in this case, host-
based activity, and such models are not readily available.
Our work required us to choose reasonable dimensions
and parameters for those dimensions in order to generate
plausible background data.

While methods for generating large graphs that correctly
model real-world network properties do exist ( [8] [1]), they
have not yet been integrated with a low-level agent-based
system such as the one employed here in order to generate
both the desired macro-level graph properties and the desired
micro-level agent actions.

As an alternative to synthetic data, some data sets col-
lected from real user studies are available. These were,
however, unsuitable to support the breadth of detection
techniques being developed for ADAMS. The Schonlau
data set contains command line histories of 50 users and
while useful for studying algorithms using that particular
feature, it is missing important data types for insider threat
detection including social structure, file accesses, content,
and sentiment [14]. Ben Salem and Stolfo’s RUU data set
contains process, registry, and file access data from 18 users,
along with those same data types from masqueraders [2].
Although we did make some use of this data, and it contains
more data types than the Schonlau data, it is still missing
several very important dimensions. Because of the difficulty
of running such a study, both of these data sets are also based
on a relatively small population of users. Previous work also
addresses the structure and use of, as well as measures of
realism for, synthetic data. Wright discuses the merits of
synthetic data in running cybersecurity experiments which
are controllable and repeatable [18]. Berk examines metrics
for comparing real network traffic to traffic generated by
LARIAT, and concludes that simulated traffic has substantial
shortcomings [3]. Choosing measures appropriate to our
domain we found that our synthetic data, though useful, also
exhibited these substantial shortcomings.

III. OUR APPROACH TO REALISM

Synthetic data will only ever be realistic in some limited
number of dimensions, those being the ones that were called
out as requirements, designed in and tested for. It will rarely
be coincidentally realistic in any other dimensions. These

dimensions of realism are normally defined by the System
Under Test (SUT). By SUT, we refer to any procedure,
process, or system which will use the data as an input. Thus,
anything from a spreadsheet to an insider threat detection
system that uses the data will contribute both criteria for
realism and a judgment as to level of realism the data it
finds. In the absence of such a clear context, ”realism” as
an acceptance criteria cannot be measured, and the effort to
achieve greater realism becomes open ended and unfocused.
While consumers of synthetic test data often wish at the
outset for realism in a large number of dimensions, the
SUT’s needs usually turn out to be limited to a much
narrower set.

To illustrate the wide range of possible definitions for
“realistic”, consider a hypothetical example of synthetic
respondent data for the Census. Say that the Census mails
out forms to people; people fill them in and send them back.
Then the forms go through data capture, and the captured
data gets processed in a variety of ways. If the data were
intended to test handwriting recognition and data capture,
then to be considered realistic, the data might only need
to appear on forms in the correct locations. If the only
criterion were that the captured data matched the data to
be captured, the language content could be nonsensical and
the data would still be sufficiently realistic.

If the SUT were to integrate data type validation rules,
then data would need to not only be in the right position but
also be semantically meaningful at least to the extent of hav-
ing the correct data type. And so on. The more business logic
the data capture system integrates, the more sophisticated the
data needs to be to be considered sufficiently realistic to be
useable. Once past data capture, the data might be processed
in a variety of ways, each with their own additional filters
and business logic. A single piece of data that may be valid
on its own may be inconsistent in relation to other pieces
of data. If the synthetic data were to reach deep enough
through the system to reach every aspect to be tested, all
those layers of consistency must be innate.

In our Census example, we see that if you want to test
the system as a whole, you must create extremely rich and
realistic data. But that if you focus is on some particular part
of the process (e.g., only handwriting recognition), much of
that richness and realism is of no value to you.

Providing data for insider threat research presents an
unusual challenge for many reasons. One principle reason
is that the threat domain is highly dependent on charac-
teristics of human behavior as opposed to the more purely
technical domains of network data generation or handwriting
recognition. In order to provide a rich enough test bed
for development and testing of techniques to identify those
threats, the data needs to try to model the micro and macro
effects of human agency. Furthermore, if consumers are to
use the data not just for engineering, but for research, there
is no SUT to dictate what constitutes sufficient realism. In
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this use case, it would be desirable, though probably not
realistic, to use the data for exploration rather than simply
confirmation. Put more concretely, synthetic data can be
useful to confirm that a system detects a particular type of
anomaly when that anomaly can be defined and measured.
But without a much more sophisticated model of the natural
world, it cannot be used to confirm that the given anomaly
or collection of anomalies correlates to malicious insider
behavior. At best, it can be used to confirm that the SUT
can detect threats consistent with the data producers’ models
of malicious and normal user behavior. By way of analogy to
the Census example above, data can clearly be generated to
test whether the SUT can accurately recognize handwritten
letters and numbers. But it would be difficult or impossible
to generate data which could be used to sufficiently prove or
disprove a SUT’s ability to discern the census-taker’s state
of mind based on their writing.

Confirmatory Hypothesis: The SUT detects users who
rank in the top 0.1% by frequency of removable USB drive
use.

Exploratory Hypothesis: Users who rank in the top
0.1% by frequency of removable USB drive use are more
likely to be malicious insiders.
Example 1: Confirmation vs. Exploration. Synthetic data is
better suited to test confirmatory hypotheses than exploratory
hypotheses.

While we may wish to be able to point to real data and say
”just like that”, one must articulate mesaureable and concrete
requiremenets for realism. In this case, there were several
different data consumers, each with different metrics and
requirements for realism. There was, furthermore, a tension
between the exploratory use of the data, where knowledge
of the SUT could further invalidate any exploratory results,
and the confirmatory use of the data, where knowledge of
the SUT is absolutely necessary to provide useful test data.
We resolved this tension by soliciting feedback from the
detection teams about dimensions of realism that they would
like to see added, or about unrealistic artifacts found in the
synthetic data sets. Because the generator is parameterized
and extensible, we were able to iteratively assess, extend,
and tune its behavior.

When simulating human agents, as we do here, one
must make a choice between generating observable vari-
ables directly or generating those observations implicitly by
modeling latent variables. Restricting ourselves strictly to
variables observable in our context is the simplest approach,
and the one most easily provable and measurable against real
data. For example, we might try to match the the average
number of times per day an average real user copies file
to a removable drive. Driving a system such as ours with
latent variables means modeling the motivations, prefer-

ences, affinities, and other hidden states of the simulated
users. Generating data from a latent model requires the
generator designer to assert a theory of human behavior
that goes beyond a simple count of observations, and the
provability of these theories is limited by the availability
of human subject research studies. We treaded a middle
ground by combining models based on observable behaviors,
models based on studies of human behavior, and models
based on our own unvalidated but plausible theories of
human behavior. By creating causal effects between these
individually simple models, we are able to create a virtual
world that is both consistent and seemingly complex. See
Figure 1 below for an example of these interdependencies. In
so doing, we aimed to provide synthetic data with sufficient
realism and complexity to reasonably approximate real data
for development and testing purposes.

IV. IMPLEMENTATION

Our implementation reflects these practical constraints and
tradeoffs while yielding synthetic social network topologies
and artifacts that are rich with a variety of types of link
connecting sets of individuals and entities. It employs a
number of different model types including graph models of
the population’s social structure, topic models for generating
content, psychometric models for dictating behavior and
preferences, models workplace behaviors, and others that
don’t fit neatly into these categories. The following are
descriptions of some of the most important components of
our implementation.

Relationship Graph Model. A graph representation of
a real world relational network within organizations. This
graph is constructed from a variety of typed/named inter-
connections representing relationships induced by organi-
zational structure, subsets within the organization (depart-
ments), support relationships, and affinities derived from
demographic elements. In early versions of the generator,
the graph was limited to those affinities (a friendship graph)
and in its simplicity, we were able to match several known
power laws for social graphs [1]. But by adding all of these
other elements to the construction of the relationship model,
we lost the ability to implicitly induce those power law
properties.

Asset Graph Model. A model of non-human assets such
as computers, removable media, files, and printers associated
with various individuals in the organization.

Behavior Model. A model dictating the how employees
use assets, given their relationships, interests, affinities, and
psychological profiles.

Communications Model. A probabilistic expression of
the current state of organization relationships through a
variety of electronic communications artifacts.

Topic Model. A user’s topical interests both for data
consumption (i.e., web browsing) and data production (i.e.,
email communication). In earlier versions of the generator,
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content was generated as a bag of words. The algorithm for
choosing the mix of words is inspired by Latent Dirichlet
Allocation (LDA) [4], which we postulated would be one
of the analysis methods the data would be targeting. Since
we were treating each synthetic web page or email as a
collection of words about some topic or topics, we needed
a labeled source for words associated with named topics.
We chose a collection of Wikipedia articles as that source.
Treating each article as a topic, we performed a TF.IDF
[7] analysis to determine an approximate weighting of term
importance for each topic. For each generated document,
we first chose the mix of topics and the desired length of
the document. Then we randomly selected the collection of
words for each topic giving more weight to the terms with
the highest TF.IDF scores. As the program progressed, it
became more important to provide grammatically coherent
text, so we partially abandoned this method of choosing indi-
vidual words for a method of choosing complete sentences,
in proportion to the desired mix of topics. It should be noted
that these methods of generating text could only be useful
for testing topic analysis algorithms. Other approaches, such
as sentiment analysis, would require a different strategy.

Psychometric Model. Each user is endowed at the outset
with a set of static personality characteristics as well as a dy-
namic job satisfaction variable. We chose these personality
variables and their affects according to [10] and [6].

Decoy Model. A set of decoy files, based on Ben Salem
and Stolfo’s masquerade detection work [2].

Threat Scenarios. Each data set produced contains a
small number of insider threat incidents, or scenarios. These
scenarios were developed in consultation with counter-
intelligence experts. Each scenario is instantiated as syn-
thetic data in the same form and scope as the “normal”
background data generated for all users in the dataset. For
the high-level description of one of these scenarios, see
Example 2.

“A member of a group decimated by layoffs suffers a drop
in job satisfaction. Angry at the company, the employee
uploads documents to Dropbox, planning to use them for
personal gain.”

This scenario would result in a number of observables in
the generated data:

• Data streams end for laid-off co-workers, and they
disappear from the LDAP directory.

• As evidenced by logon and logoff times, subject be-
comes less punctual because of a drop in job satisfac-
tion.

• HTTP logs show document uplods by subject to Drop-
box.

Example 2: Sample Threat Scenario

Figure 1: Example Variable Interdependencies. Read A→B
as “A influences B”.

Variable Interdependency. Causal relationships are es-
tablished between various observable and latent variables,
creating the appearance of a complex, natural system. For
example, job satisfaction influences punctuality, graph re-
lationships and communications affect topic affinities, and
relationships to laid off employees affect job satisfaction. A
simplified example appears in Figure 1.

Every decision point within each component is control-
lable, allowing both the tuning of each component (for
instance, in order to establish the base rate for the presence
of features or the actions of entities) and establishing triggers
for, and injecting of, specific patterns or occurrences of
features or the actions of entities.

The system collects information about both observable
and latent state as data is produced. Both data and meta-
data are automatically captured for ground truth analysis.

V. SUCCESSES, FAILURES, AND LESSONS LEARNED

The data sets we produced were shared within a large
community of researchers engaged in the DARPA ADAMS
program to develop techniques for insider threat detection.
Their analysis of our data confirmed our belief that simple
models of social network topology, together with abstract
models of user activity, can successfully aid in the de-
velopment of those technologies, at least to the point of
integration testing and confirmatory hypothesis testing. But
their experience also showed that exploratory uses of this
synthetic data are not fruitful, which could motivate the
creation of more valid synthetic data in the future. The
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following are some of the most most important successes,
failures, and lessons learned in this effort.

A. Development and Integration Testing

We confirmed that synthetic data is serves well as a stub
during development and integration testing. It is an excellent
fit for confirming that well-defined functions of the SUT
work as expected.

B. No Privacy Restrictions

We confirmed the high value of data that is absolutely free
of the confidentiality and privacy concerns that come with
real data. Synthetic data provides the basis for meaningful
experimental results and it can be used freely by researchers
for demonstrations. Research can be performed anywhere,
even by those who might otherwise be ineligible to access
the real data. There is no exposure to possible privacy
violations when using the data. Neither is there any need
to de-identify the data, or worry that the data can be un-de-
identified, because the data is not, nor never was, real.

C. Enhanced Collaboration

Another important benefit of synthetic data benefits to the
insider threat research community is that it enables broad
collaboration and increasing the velocity of innovation.
Synthetic data provides a common basis for all researchers,
allowing them to share a common set of threat scenarios.
Because with synthetic data the ground truth can be perfectly
known, researchers can readily explore data transforms and
test algorithms. Enhanced collaboration enables design of
common representations and interfaces that promote and
enable integration of algorithms within and between groups
and areas of research.

D. Controllable Social Network Topology

Research has shown that real-world social network graphs
exhibit similar properties even when the graphs seemingly
represent very different relationships (e.g., blog posts, cam-
paign donations, and user ratings of movies). Academics in-
terested in understanding these graphs have begun compiling
”laws” that real-world graphs tend to follow [1], [9].

While the research community found our generated data
to demonstrate many important characteristics of realism,
in our early data sets they also found that the time-varying
social network extracted from our data sets lacked many of
these expected laws found in real social networks.

While the laws of real-world networks do seem to be
surprisingly consistent across real-world domains, the work
used to derive the laws did not study the kinds of network
we are simulating (i.e., a social network of friends within
an office environment). Consequently, it may not be the
case that our simulated networks should follow the laws of
other networks. However, the recurrence of these laws across
many different networks makes a compelling suggestion that

our social network would be more realistic if it also followed
these laws.

This shortcoming also illustrates another important benefit
of synthetic data for insider threat research: controllable
social network topology. With synthetic data, the social net-
work topology can be both controlled and perfectly known.
After further tuning, our later data sets were able to exhibit
three of the social graph power laws that one would expect
to find in a real social graph (Figure 2). As noted in Section
IV, we achieved this result only with the friendship graph in
isolation. In this network of friendships, we explicitly chose
node degrees that would result in the expected properties.
But the observed communication graph was composed of
both this friendship graph and a corporate organizational
graph, reflecting the corporate reporting structure and project
assignments. Imposing those additional constraints created a
composite graph that obscured the power law properties of
the friendship graph.

Where graph topology is important, future work in this
area should consider approaching the problem starting with
an unlabeled graph exhibiting the desired properties, such as
one produced by a Kronecker graph generator [8]. Semantics
such as friendships and project assignments would then be
assigned according to the topology, rather than attempting to
produce a macro-level topology based on agent-level effects.
While this approach presents its own difficulties, based on
our experience here, it is an avenue worth exploring.

E. Text Mining

We had hoped to provide email, file, and web page content
that would be valuable in some way to researchers devel-
oping topic and sentiment analysis algorithms. Achieving
that goal turned out to be even more difficult than initially
anticipated. To test simpler analysis algorithms, our LDA-
based bag of words, and later bag of sentences, approach
might have been sufficient. But the systems under test
wished to perform more sophisticated analyses and would
have benefited from more realistic content. Well-known
methods such as those built upon context free grammars
[16] and n-gram models [12] exist, but these may still
have been insufficiently realistic and language generation
systems are generally limited to specific problem domains.
We believe improved generalized artificial text generation is
an important area for future research if truly realistic insider
threat data is to be generated.

F. Data “Cleanliness”

Though some inconsistencies were deliberately intro-
duced, the synthetic data produced here turned out to be
far more consistent and “clean” than the real data that
the program eventually targeted. Our design choices about
where to intentionally introduce inconsistencies, not surpris-
ingly, failed to match the actual sources of inconsistency
in the real data. We do not, however, regret our choice to
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Figure 2: The friendship graph, in isolation only, conforms
to the (top to bottom) node degree, eigenvalue rank, and
triangle power law properties of social graphs.

insert intentional inconsistencies into the data, as it prepared
the data consumers for the class of problems they would
encounter with real data. Synthetic data can be unrealistic
because it presents states that would impossible in real life,
but it can also be unrealistic because it fails to take into
account the inevitable flaws in the sensors collecting the
data.

G. Inability to Verify Theories

Because we did not have access to analagous real, de-
identified, data, our choices for parameter values were
largely ad hoc rather than derived from such real data.
(One notable exception is the behavior surrounding file
decoys, which was based on statistics from a published user
study [2].) As a result, the detection research teams were
unable to use the data to confirm theories of how benign
and malicious users behave. Instead, the data provided a
plausible development and demonstration platform for the
operation of the detection systems as a whole. To improve
upon this clear deficiency in validity, future synthetic data
sets for insider threats should strive to include both: 1.
normal background data based on models and parameters
derived from real data, and 2. threat activity based on
technical logs of real insider threat activity. This goal is not
easily attainable. Sources of (2) are rare or non-existent, but
(1) combined with high confidence synthetic threat activity
can still provide value in proving certain theories of insider
threat detection.

VI. CONCLUSIONS AND FUTURE WORK

Access to data remains a significant impediment to ad-
vancing the science of insider threat research. Manually
created data sets don’t provide the coverage and consistency
needed to test complex systems and come with a very high
price and error rate. Production data sets can’t be dissem-
inated without jeopardizing personally identifiable, propri-
etary, or even classified information. They are static and
generally in limited supply, so it is very hard to get multiple
data sets with matching known characteristics. De-identified
data has elements masked that make it less effective for test-
ing while not fully eliminating privacy/confidentiality risks.
Random synthetic data generators create absurd data sets,
useless for the type of sophisticated systems we contemplate
here. Fully synthetic data can’t replace real data, but, along
with other benefits, it can significantly lower the barriers to
entry into research requiring such data and provide the type
of experimental control necessary to help establish a solid
scientific foundation for such research.

However, the user of synthetic data must keep its limi-
tations in mind. Though the data can be made quite com-
plex, as we have shown here, it will only be realistic in
those dimensions where realism is explicitly defined and
measured. Unless those dimensions of realism are made to
match rigorous models of the natural world, the ability of
researchers to use synthetic data to prove theories of human
behavior will be limited.

We see a number of areas for future research, some of
which we are already pursuing:

• Efficient Generation of Threat Scenarios. Since the
threat scenarios were authored individually, and the
generator manually extended for each one, a relatively
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small number of truly different threats were produced.
In ongoing work, we seek to automatically generate
threats to provide a greater number and variety of test
cases, as well as to implement an API to incorporate
these automatically authored scenarios into the gener-
ator.

• Better Models of Realism. Continued study of models
representing normal user behavior on computer systems
as well as collection of baseline parameters from real
users to drive and tune those models in synthetic
data generators. By improving the quality of the in-
nocuous background behavior, it becomes possible to
more effectively hide threat signals. Having more of
these formal models of realism also leads to metrics
for realism, and we believe measurability is key to
synthetic data progress and experimental validity.

• Model More End-User Applications. Enhance syn-
thetic data by injecting applications and their artifacts.
Allow malicious behavior to exploit the presence of
new applications.

• Improved Social Graph Generation. Further exposure
and tuning of the social graph generator to achieve
both micro- and macro-level realism, and exploring the
integration of other social graph generators (such as
[8]) to extend capabilities.

• Improved Content Creation. Further improvement of
natural language generation especially incorporating the
expression of sentiment as part of content.
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