
 Open access Journal Article DOI:10.1016/S0950-5849(03)00133-2

Bridging the gap between business models and system models. — Source link

Mohammed Odeh, Richard Kamm

Institutions: University of the West of England, University of Bath

Published on: 01 Dec 2003 - Information & Software Technology (Elsevier)

Topics: Applications of UML, Use Case Points, Business process modeling, Use case and
Software requirements specification

Related papers:

 Business process modelling: Review and framework

 Business Processes : Modelling and Analysis for Re-Engineering and Improvement

 Business Modeling With UML: Business Patterns at Work

 Business Modeling with UML

 Reengineering the corporation: a manifesto for business revolution

Share this paper:

View more about this paper here: https://typeset.io/papers/bridging-the-gap-between-business-models-and-system-models-
38o0iqc0u4

https://typeset.io/
https://www.doi.org/10.1016/S0950-5849(03)00133-2
https://typeset.io/papers/bridging-the-gap-between-business-models-and-system-models-38o0iqc0u4
https://typeset.io/authors/mohammed-odeh-30cr1mjg0h
https://typeset.io/authors/richard-kamm-4t4gjc3p0n
https://typeset.io/institutions/university-of-the-west-of-england-1cu533sy
https://typeset.io/institutions/university-of-bath-3fmnj2r1
https://typeset.io/journals/information-software-technology-24m4f1hn
https://typeset.io/topics/applications-of-uml-3mbnqd2b
https://typeset.io/topics/use-case-points-r5o3uoyn
https://typeset.io/topics/business-process-modeling-1y6l20ks
https://typeset.io/topics/use-case-ieutthli
https://typeset.io/topics/software-requirements-specification-24vhgux1
https://typeset.io/papers/business-process-modelling-review-and-framework-5dwbg314qx
https://typeset.io/papers/business-processes-modelling-and-analysis-for-re-engineering-45c8give3p
https://typeset.io/papers/business-modeling-with-uml-business-patterns-at-work-3bhqfrurqd
https://typeset.io/papers/business-modeling-with-uml-sxjvamtyut
https://typeset.io/papers/reengineering-the-corporation-a-manifesto-for-business-jjmudr8y4f
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/bridging-the-gap-between-business-models-and-system-models-38o0iqc0u4
https://twitter.com/intent/tweet?text=Bridging%20the%20gap%20between%20business%20models%20and%20system%20models.&url=https://typeset.io/papers/bridging-the-gap-between-business-models-and-system-models-38o0iqc0u4
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/bridging-the-gap-between-business-models-and-system-models-38o0iqc0u4
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/bridging-the-gap-between-business-models-and-system-models-38o0iqc0u4
https://typeset.io/papers/bridging-the-gap-between-business-models-and-system-models-38o0iqc0u4

Bridging the Gap between Business Models and System Models

Mohammed Odeh* and Richard Kamm§

Systems Modelling Research Group

* Faculty of Computing, Engineering

& Mathematical Sciences

University of the West of England

Coldharbour Lane

BRISTOL BS16 1QY

tel: +44 (0)117 965 6261

fax: +44 (0)117 344 3155

email: mohammed.odeh@uwe.ac.uk

§ School of Management

University of Bath

Claverton Down

BATH

BA2 7AY

tel: +44 (0)1225 386909

fax: +44 (0)1225 386473

email: R.M.Kamm@bath.ac.uk

Abstract

This paper discusses links that may be made between process models and UML

software specification techniques, working from an argument that the whole

complexity of organisational activity cannot be captured by UML alone. The

approach taken is to develop a set of use cases which would be capable of providing

information support to a pre-defined organisational process. The nature of the

thinking which is necessary to derive the use cases is outlined, using the pre-defined

process as a case study. The grouping of transactions and state changes into Use

Cases is shown to require design choices which may vary between particular

organisational contexts. Conclusions are drawn about the direction of further

investigation of links between process modelling and UML.

Keywords: Process Modelling; UML; Use Cases; Business Modelling.

1. Introduction

Is it feasible to make a productive and intelligible bridge between a model of a

business and a model of an IT system meant in some way to mirror, support, or

perhaps automate the business? The challenge is at least in part to find methods for

modelling businesses on the one hand and IT systems on the other, between which a

regular form of translation or conversion is possible. In recent years, the debate round

these issues has received a significant stimulus from the achievements and claims of

proponents of the Unified Modelling Language (UML), and of a unified software

development process - particularly in the shape of the Rational Unified Process (RUP)

[5, 8, 11, 12].

An earlier study by members of this research group used Role Activity Diagramming

to investigate the processes linking strategic decision making with information

systems provision in an insurance company [1]. The argument in that paper was that

the interconnection between the general business and IT/IS units in the company, and

between strategic and operational levels, was being achieved more by dynamic and

continuous processes of negotiation and communication than by any straightforward

realization, or downward translation, of an overarching business model, strategy or

architecture. The impression gained from that study was that business models - which

may only be partly articulated and partially unified in a particular company - cannot

be routinely translated into system models, but can be expressed to good effect in

negotiations about projects, priorities, and resource allocation. This leads to the

further supposition that, although business modelling tools can be useful

representational and analytical devices, and although it may well be possible to

achieve some degree of translation between a model of part of the business and a

model of a related IT system, the activities of representing, analyzing and translating

are themselves conducted against an organizational background characterized by

shifting interests, interpretations, and power relations. We look therefore, for a way of

understanding modelling, and the contribution that modelling can make to the

effective design of systems, within a wider framework of organizational meaning and

decision making.

Given the wide range of interests and expertise in any sizeable or complex company,

and given that IT, however important it is for an organization’s success, is not the

only thing that matters in an organization, it seems important to achieve an autonomy

between business modelling and system modelling activities. The proponents of UML

and RUP, however, do not recommend such autonomy, but assert rather that the

concepts and frameworks underlying the software development process will serve

adequately for representing business processes, and recommend therefore that those

concepts and frameworks be extended to cover the business as a whole. Kruchten and

Ericsson, for example, in their chapter on the business modelling workflow in RUP,

assert categorically that ‘software engineering techniques can be translated and used

for business modelling’ [11, p.154]. In a more extended treatment, Eriksson and

Penker, in their proposals for ‘business extensions’ to UML, describe a set of 13

diagrams and models for business modelling, but aim expressly to represent as many

as these as possible using one of the 9 standard UML diagrams, and manage to

achieve that for all but two of their own set [5]. One can see the logic in their taking a

parsimonious approach here, to avoid a proliferation of diagram types, but must

question the wholesale importation into business modelling of the ontology and

epistemology which underlie UML. One senses a missionary quality in the

UML/OMG movement, which ought to be tempered by independent consideration of

good methods for business modelling - given that a business is not a software process.

In the remainder of the present paper we focus on, and give an example of, translation

from a business model to a system model. From the above discussion, we adopt a

position which expects that such translation is possible and worthwhile, while

recognising at the same time that it takes place in an organizational context from

which it must derive its significance and validation. Also arising from the above

discussion, we look for autonomy between the business modelling and system

modelling sides of the translation process. We choose UML on the system side, but

Ould’s RAD method on the business side - rather than UML again - on the grounds

that we see RAD as being an authentic attempt to model the business per se rather

than to superimpose a software engineering framework on to the business. This paper

extends previous work we have done on this topic [13], and relates it to the argument

of the earlier paper discussed above.

2. Process Modelling and UML: distinctions and points of contact between Use

Cases and RADs

It is widely accepted that UML is a collection of techniques, with no in-built rules

laying out an order in which they are to be used. [6, 8] However, the links between

Use Cases and process models are particularly worth exploring because of the

importance commonly given to the former in the UML literature as a scoping device,

the process of developing them being important in establishing the overall

functionality of an application. The idea of use-case driven modelling is one which

has been applied to give some pattern or regularity to object-oriented development

[9]. More significantly for the purposes of this paper, the efforts to link UML directly

into process transformation have hinged on that particular modelling technique.

Jacobson et. al. have developed a form of “business engineering” in which the starting

point is the modelling of a business through the identification of processes and their

mapping directly on to use cases: one process per use case [10].

In principle, this is appropriate to a process view of organisations in that it

concentrates on the work that is done, the production of value for a customer, rather

than the structures and hierarchies within which tasks are divided. The processes

represent activity and the actors will represent the beneficiaries or customers.

However, this representation of processes will omit elements of a process which have

been identified as essential by Ould and others [15], notably the interactions between

the participants in the activities that comprise the process. More generally, the idea of

a process as a flow of activities performed upon a unit of work does not translate well

to a use case model in which the use cases are distinct from each other and the main

linkage is the interaction with the external actor.

The reason for this is Jacobson scales up a modelling approach that is conventionally

used to depict the usage of an information system that may support a process, with the

user being depicted as the actor who is directly interacts with the interface of the

application. The difference between this and a whole process is that the customer will

often interact with one or more human participants in the process, so that it could not

continue without communications between those participants. Jacobson appears to

recognise this by not including participants as actors on his business use cases. He

suggests instead that they play the same role as interface objects within an

information system [10], but this removes the sense of their being human operatives

who will may take unstructured decisions or communicate with each other in informal

as well as formal ways: a concept for a programmable aspect of an organisational

system which may never need to be programmed. Just as evident is that, even if the

same technique is used for documenting business processes and the supporting

information system, the problem of extracting requirements for the latter from the

former remains difficult. [3]

Use cases, then, are more suitable for modelling the information systems that will be

used to support human activity within processes than they are for modelling entire

processes in themselves. The essence of the communications and tasks within a

process can be developed through a form of process modelling which does take into

account those aspects of communication and collaboration between humans which use

cases in themselves do not address. We take here the Role Activity Diagram,

developed by Ould, as a representative example of such a technique. This would then

leave open the possibility of employing UML methods to develop the software

support which will enable the process to be improved, but would require some point

of contact between the process modelling and the software definition to be identified.

The approach adopted here is to partition the process up into areas for which the

required support can be easily identified and deriving use cases for each of these, and

the main outcome of this paper is a commentary on that activity.

However, there are difficulties in making a direct transfer from RAD to Use Cases.

Process models of the RAD type concentrate on a dynamic depiction of activities,

decisions and their outputs. They illustrate an organisational process as a dynamic set

of activities involving interactions and decisions. Use Cases, while also regarded as

illustrating the dynamic or “behavioural” [1] aspects of an information system,

compared to the relatively static class diagram, are concerned with functionality. This

makes sense at the level of a system but, as noted above, will not cover all types of

organisational activities, with their interactions between interested parties. The

different form of thinking is illustrated in the problems that students often have to

overcome when learning the principles of use cases: it takes time to appreciate that,

although there are ovals with arrows entering them and leaving them, this does not

depict a flow of data and that the connections between actors and use cases are of a

different nature to those linking, say, external entities and processes on data flow

diagrams.

The tendency to regard use cases as the initial driving force of many object-oriented

design projects leads to their being used as the initial focus of the effort needed to

derive the classes and objects that will form the basis of the new application. What

follows, then, is an illustration of the thinking that needs to be gone through in

connecting a RAD and a set of Use Cases, accompanied by some guidelines which

have resulted.

3. The Case Study

The case study used in the work presented in this paper is part of a real life process in

the administration of research degrees in the Faculty of Computing, Engineering and

Mathematical Sciences (CEMS) at UWE Bristol. It has been used before within the

Systems Modelling Group’s work on the links between process and software

specification models [13] and so constitutes a well-understood set of activities

covering the selection and initial enrolment of research students through to the formal

authorisation by the Research Degrees Board of particular research projects by those

same research students.

For the purpose scope of this paper, its utility is that it contains the type of

unstructured decision and the communication between participants in the process that

require the type of modelling technique which is derived from analysis of

organisations rather than of software. To determine whether or not an applicant is a

suitable research student, for example, depends on a variety of factors, the candidate’s

ability and motivation, the ability of staff to supervise research in the proposed subject

area not just immediately but also over a period of years. Similarly a review process,

although it takes place within a formal timetable, will require qualitative judgements

which will not be reducible to predefined procedures.

4. RAD Description of the Selection, Enrolment and Registration Process

4.1 Role Activity Diagrams and Use Cases

We have chosen to use Ould’s Role Activity Diagrams (RADs) [14, 15] to model our

process initially. The basic concepts of RAD were first introduced by Holt et al [7],

and later enriched by Ould [14]. The models presented in this paper are defined using

Ould’s variant of RAD, called STRIM (Systematic Technique for Role and

Interaction Modelling’). Using STRIM, a process is modelled as a number of roles

that interact with one another. A role can be thought of as a set of related

responsibilities that can be carried out by a machine, a person, or a group of people.

Within each role there are a number of activities that take place in a certain order.

A RAD comprises a set of activities, decisions and transactions. The last of these are

essentially interactions between two “roles”, i.e. participants in the process. This gives

us a starting point for considering the derivation of use cases from the RAD. It makes

sense to consider the process modelled in the RAD as acquiring information through

the transactions in order to make the decisions which lead to changes of state. The use

of information would be illustrated as a set of use cases, each one supporting a

different aspect of the process.

A use case is itself defined as a provider of output of measurable value to an actor.

This gives us a point of contact with the philosophy that underpins process modelling,

which is to consider a process as something which produces an output of benefit to

some internal or external customer [4]. The use cases, then, support the provision of

information to actors in such a way that the overall benefits of the process are

realised, which implies the following with respect to the elements of a process defined

in a RAD:

i) each use case should embody at least one transaction – otherwise there is no

beneficiary of the activities that the information supports.

ii) each use case should support at least one activity leading to a change of state –

otherwise the beneficiary would not receive any information.

This still leaves the question of what is involved in identifying the relevant

transactions and the activities leading to state change and how they are to be grouped

together in order to produce a meaningful set of use cases. In practice, the grouping

tends to follow the path of establishing how particular customers within the overall

process are to be supported. For each use case, it ought to be possible, even at an early

stage, to envisage an implementation class which will form the basis for the interface

with which the actor interacts: a form or other type of screen layout.

What follows is an explanation of how the use cases were derived for the case study

process.

4.2 RAD model of the Selection, Enrolment and Registration Process

The RAD model in figure 1 illustrates the process from admission to registration after

a successful interview, where the proposed supervision team offers a place to the

candidate student through to the student’s formal registration on a PhD programme.

There are four roles in this process: Director of Studies (DoS), Student, Research

Administrator (RA) and the Research Degree Board (RDB). The early stages of the

process cover interview and the making of offers to candidate students: successful

candidates complete and RD0 form that leads to enrolment. The proposed DoS and

the proposed supervision team work together with the student to complete the RD1

form in order to make an application for registration. This form is created and

considered by periodic meetings of the RDB. Different activities then follow the

RDB’s decision, either continuation to registration if the project is approved or

revision of the RD1 if not. When the outcome is "approved", the registration process

is completed.

Figure 1 to go here.

5. The derivation of use cases from transactions and states

The use cases are developed from transactions and states derived from the RAD. A

systematic approach to this is as follows:

i) Start reading the RAD horizontally (flows of the RAD) visiting roles with

transactions stated as imperative verbs (e.g. interview, enrol, send, etc.).

ii) Record a transaction identifying its nature and initiator, for example Transaction 0:

Interview the Student by the DoS in the RAD Process Model in figure 1.

iii) Observe the effect of executing this transaction on a state change in the same

column of the role being visited or other roles in the same flow. For example, State 0:

Student RD0 Form Completed.

iv) Continue for the next transaction.

After this analysis of a RAD process model, we expect to have two sets:

i) Set of Transactions: T = {T0, T1, .. , Ti, … , Tm}, 0 ≤ i ≤ m

ii) Set of States: S = {S0, S1, …, Sj, …, Sn}, 0 ≤ j ≤ n

In the case study example, the outcomes are 18 Transactions and 16 States (see

Appendix 1 for the full derivation of transactions and states in the case study): for

example the transaction “Enrol Student” can be translated directly from the RAD and

it leads to a change of state for “Student”, i.e. the student becomes “enrolled”.

Grouping the transactions into subsets which will result in some measurable value for

a specific actor will allow us to represent use-cases. In the case study process, a first

analysis leads to the definition of two core use-case associated with {T0 .. T5} and

{T6 .. T18}. These may be thought of as:

i) UC1: Manage Research Development Stage 0 (handle application and enrolment)

ii) UC2: Manage Research Development Stage 1 (manage student record during

registration)

Between them, these two parts of the model cover the different stages in the “life” of

the customer of the overall process: the student. In the first use case, the student

moves from being an applicant to the university to embarking on a course of research

study. The second use case covers the student’s transition from fledgling to fully-

accepted researcher within the faculty. In other words, each core use case covers a

major state changes relating to the “customer” of the process as a whole. From here, it

is possible to further partition the activities within the process with a view to

supporting the information use and decision-making among the internal participants.

A good question to ask here is: which actors are associated with UC1 and UC2?

Clearly, the role RDB has no association with UC1, and hence our thoughts converge

on DoS and RA as the potential beneficiaries in the process model.

There are two options:

(1) associate a generic role (for example RD0 Operative) to UC1.

or

(2) partition UC1 into three use-cases:

(a) Actor: DoS, UC1.1: Perform_DoS_RD0_Activities: to include transactions

covering application and interview. (Transactions T0-T1)

(b) Actor: RA, UC1.2: Perform_RA_RD0_Activities: to include transactions

covering the creation of a student record and the student’s initial enrolment.

(Transactions T2, T4, T5)

(c) Actor: Student, UC1.3: Perform_Student_RD0_Activities: acceptance of an

offer. (Transaction T3)

The first approach is probably appropriate if one is trying to develop applications

which can be applied in a variety of similar situations in which the details of

implementation and allocation of roles will vary. In some universities, for example,

the data entry at enrolment is undertaken by the students themselves, while in others

an administrator performs this activity. It would then be possible to retain features of

the original situation through identifying roles such as “Student” or “Research

Administrator” as specialisations of the more general actor, RD0 Operative. Here, a

generic role for the actor will be suitable because of the variety of possible

implementation details and will meet the principles of reusability that underpin

object-oriented methods such as UML. The second, however, may be more helpful

when a specific situation in a particular organisation is being analysed: here,

reusability may not be as much of an issue because there is no intention to broaden the

application to other places. An illustration of the use case model that might result is

illustrated, using standard UML conventions [2] in Figure 2:

Figure 2 to go here

The same issue is raised in a more obvious form with the second use case, because

some activities are undertaken in parallel, through collaboration, even, by both the

Student and the Director of Studies. In order to maintain the conventions of UML, a

single generic actor should be conceived, with the roles of Student and the Director of

Studies being specialisations of it. Thus, the use case covering the management of the

student record during registration, can be broken down into more specific use cases as

follows:

(a) Actor: RD1 completer, UC2.1 Collect RD1 data: the initial process of

requesting the proposal details be collected. (Transactions T6-T8)

(b) Actor: RDB, UC2.2 Support RDB decision: provision of information for the

degree board meeting to take place and have its results recorded (transactions

T9-T11).

(c) Actor: RA, UC2.3 Administer RDB decision: actions that result from the

decision-making by the RDB (transactions T12-T14).

(d) Actor: RD1 completer, UC2.4 Request revision of RD1: an extension of

UC2.3 in the event of reworking of the research proposal being required.

(Transactions T15-T17)

The model would be illustrated as in Figure 3:

Figure 3 to go here.

What is noticeable is that this distinction illustrates the human choices that have to be

made is developing a use case, even where the derivation of transactions and state

changes has been begun in a relatively mechanical way.

6. Conclusion

The paper has illustrated the derivation of use cases from a process model, working

within the conventions of both techniques while remaining within the spirit of the

process approach to organisational analysis, the focus on defined outputs for the

benefit of customers. Moving forward would mean deriving classes, using the

preceding analysis as a starting point. Some progress on this can be seen at this stage,

the state change indicators giving an idea of attributes for objects which will be

present within the application. However, more investigation will be required in order

to determine whether the foundation of the analysis in process modelling affects the

development of further UML models. It is possible that further iteration between the

specifications of functionality and the existing RAD would produce a suitably rich

and well-informed basis for the development of software support.

But this paper has also highlighted difficulties in the derivation of use cases from

process models. The notion of an actor is not as clear as might be thought at first

sight. There is no simple mapping of Roles in process models on to Actors in use case

diagrams, since whether a role plays an active part in the final application is a

relatively specific implementation decision. This arises from the more general point

that RADs and use cases work on different principles as modelling techniques and

require different forms of thinking to make sense of them.

The application of an object-oriented approach to software development, then, is

appropriate to the application of a process approach to organisational analysis, but

one-to-one matching of elements between the two sets of conventions is not feasible.

What is involved is more of an activity of interpretation of the requirements of

support for the process, expressed in terms which are appropriate to UML modelling

techniques. This interpretation requires design choices on the part of the developers

which will be related to not only the expressed needs of the potential user community

but also derived from an awareness of the wider organisational context in which the

process takes place and how it may be developed (even re-engineered) in the future.

Acknowledgements. The authors would like to acknowledge the contributions of

other members of the Systems Modelling Research Group at UWE, namely Ian

Beeson, Stewart Green and Jin Sa, to the discussions of the material and ideas in this

paper. They would also like to thank the anonymous reviewers for very helpful

comments.

7. References

[1] I. Beeson, S. Green, J. Sa, A Sully, Linking Business Processes and Information

Systems Provision in a Dynamic Environment, Information Systems Frontiers 4-3

(2002) 319-331.

[2] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User

Guide, Addison-Wesley Longman, Reading, MA, 1999.

[3] A. Cockburn, Writing Effective Use Cases, Addison-Wesley/Pearson Education,

Upper Saddle River NJ, 2001.

[4] T.H. Davenport, Process Innovation, Harvard Business School Press. Boston MA,

1993.

[5] H.E. Eriksson, M. Penker, Business Modelling with UML, John Wiley & Sons,

Inc., New York, 2000.

[6] M. Fowler with K. Scott, UML Distilled, 2nd ed., Addison-Wesley/Pearson

Education, Upper Saddle River NJ, 2000.

[7] A.W. Holt, H.R. Ramsey, J.D. Grimes, Coordination System Technology as the

basis for a programming environment, Electrical Communication 57-4 (1983), 308-

314.

[8] I. Jacobson, The Road to the Unified Software Development Process, Cambridge

University Press, Cambridge, 2000. Revised and updated by Stefan Bylund.

[9]I. Jacobson, M. Christerson, P. Jonsson, G. Overgaard, Object-Oriented Software

Engineering: a Use Case Driven Approach, Addison-Wesley / ACM Press, Reading

MA, 1992.

[10] I. Jacobson, M. Ericsson and A. Jacobson, The Object Advantage: Business

Process Reeingineering with Object Technology, Addison-Wesley / ACM Press,

Reading MA, 1994.

[11] P. Kruchten, The Rational Unified Process: an Introduction, 2nd ed. Addison

Wesley Longman, Reading, MA, 2000.

[12] C. Marshall, Enterprise Modelling with UML, Addison Wesley Longman,

Reading, MA, 2000.

[13] M. Odeh, I. Beeson, S. Green, J. Sa, Process Modelling Using RADs and UML

Activity Diagrams: An Exploratory Study, The 3rd International Arab Conference on

Information Technology, ACIT2002, December 16-19, 23, 2002, Doha, Qatar.

[14] M.A. Ould, Business Processes - modelling and analysis for re-engineering and

improvement, John Wiley & Sons, Chichester, 1995.

[15] M.A. Ould and T. Huckvale, Process Modelling: What, Why and How, K. Spurr,

P. Layzell, L. Jennison and N. Richards (eds), Software Assistance for Business Re-

Engineering, John Wiley, Chichester, 1993, pp. 81-98.

Appendix 1: Transformation of Process into Tasks and States

DoS RA RDB Student

Transaction 0:

Interview Student

 State0:

Student Interviewed

Transaction 1:

Send RD0 to RA

State 1:

 RD0 Received

 Transaction 2:

Send Offer Letter to

Student

 State 2:

Offer Letter Received

 State 3:

Acceptance Letter

Received

 Transaction 3:

Send Acceptance Letter

 Transaction 4:

Create Student

Record

 State 4:

Student Record Created

 Transaction 5:

Enrol Student

 State 5:

Student Enrolled

Transaction 6:

DoS to Complete

Student RD1 Form

 Transaction 7:

Student to Complete

RD1 Form

State 6:

Student RD1 Form

Completed

 State 6:

Student RD1 Form

Completed

Transaction7:

Send Completed

Student RD1 Form

State 7:

Completed Student

RD1 From Received

 Transaction 8:

Send RD1 to RDB

State 8:

Completed Student RD1

Form Received

 Transaction 9:

Evaluate Completed

Student RD1 Forms

 Transaction 10:

Completed Student RD1

Forms Evaluated

 State 11:

Outcomes of

Evaluation of

Completed Student

RD1 Forms Received

Transaction 11:

Send Outcomes of

Evaluation of

Completed Student

RD1 Forms

 Transaction 12:

Record Outcomes of

Evaluation of

Completed Student

RD1 Forms

 State 12:

Outcomes of

Completed RD1 Form

Recorded

State 13:

RD1 RDB Outcomes

Received by DoS

Approved, HALT

Transaction 13:

Send RDB Outcomes

to Student

Transaction 14:

Send RDB Outcomes

to DoS

 State 14:

RD1 RDB Outcomes

Received by Student

Approved, HALT

Transaction 15:

Revise RD1 Form

with Student

 Transaction 16:

Revise RD1 Form with

DoS

State 15:

Student RD1 Form

Revised

 State 16:

Student RD1 Form Revised

Transaction 17:

Send Revised RD1

Form to RA

 Continue from above:

(RA)

Transaction 18:

Send Student RD1

Form to RDB

Figure 1: RAD for the Admission, Enrolment and Registration process.

Research Admin

DoS
Student

send the offer letter to student

DoS and at lleast one other member of staff interview student

send the interview outcome form RD0

to Admin

supervisors and student complete

the registration form RD1

send RD1 to admin within 3

months of enrolment

resolve finanicial issues

note down the enrolment date

RD1 received

RDB

starting date

send the acceptance to admin

create student record

enrol the student

send RD1 to RDB

meeting time

consider RDs

send outcomes

approved? no yes
send RDB outcome

approved? no yes
send RDB outcome

revise RD1

send revised RD1

approved? no yes

record outcomes

Figure 2 Use Case View of the Manage Research Development Stage 0, T0 to T5

Dir of Studies
Record interview outcomes

Administrator

Register Student

Student

Register Acceptance

Request revis ion of RD1

Administer RD1 outcome

<<Extends>>

Administrator

Record RDB Decis ion

RDB

Student Director of Studies

RD1 Information
Provider

Collect RD1 data

Figure 3 Use Case View of the Manage Research Development Stage 1, T6 to T17

