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Abstract. Web Services is an increasingly used instantiation of Service-Oriented
Architectures (SOA) that relies on standard Internet protocols to produce services
that are highly interoperable. Other types of services, relying on legacy applica-
tion layer protocols, however, cannot be composed directly. A promising solution
is to implement wrappers to translate between the application layer protocols and
the WS protocol. Doing so manually, however, requires a high level of exper-
tise, in the relevant application layer protocols, in low-level network and system
programming, and in the Web Service paradigm itself.

In this paper, we introduce a generative language based approach for con-
structing wrappers to facilitate the migration of legacy service functionalities
to Web Services. To this end, we have designed the Janus domain-specific lan-
guage, which provides developers with a high-level way to describe the oper-
ations that are required to encapsulate legacy service functionalities. We have
successfully used Janus to develop a number of wrappers, including wrappers
for IMAP and SMTP servers, for a RTSP-compliant media server and for UPnP
service discovery. Preliminary experiments show that Janus-based WS wrappers
have performance comparable to manually written wrappers.

1 Introduction

The Web Services (WS) instantiation of Service-Oriented Architectures has progres-
sively been adopted as a practical means to implement distributed applications [18]. WS
exploit the pervasive infrastructure of the World Wide Web to set up loosely coupled
software systems composed of a collection of services. Services rely on a set of stan-
dards and specifications1 to make their functionalities available according to platform-
independent interfaces, facilitating the construction of heterogeneous compositions.

Many services, however, continue to rely on legacy application layer protocols
(ALPs). Examples of such protocols include IMAP for retrieving mail, SMTP for send-
ing mail, RTSP for controlling media streaming, and UPnP for discovering networked
home appliances. These protocols are considered to be reliable and effective, but com-
plicate service composition. While WS can easily and safely be combined using widely
used standards, such as WS-BPEL [16] and WS-CDL [23], composing ALP-based ser-
vices requires integrating a protocol stack for each ALP in the client application.

1 A specification is a potential standard that has not yet been approved.
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To provide ALP-based services with a uniform interface, to allow them to be more
easily combined to provide rich functionalities, one solution is to use wrappers to con-
vert them to Web Services. A wrapper is essentially a gateway that provides a WS inter-
face to the existing capabilities of an ALP-based service. It makes accessible, through
appropriate operations, the independent functionalities that the service provides, with-
out the complexity of reimplementing the service as a WS. Nevertheless, this approach
requires translating WS requests into ALP requests and ALP responses into WS res-
ponses. Implementing these translations safely and efficiently involves challenging pro-
gramming at both the network and systems level.

At the network level, the wrapper programmer must take into account the variety of
ALP definitions. For example, some ALPs are symmetric, relying on request-response
communication, while others are asymmetric, relying on message-based communica-
tion. An ALP may also support sessions or reliability, which must then be accounted
for at the WS level. WS are normally unicast; wrapping an ALP-based service relying
on a multicast ALP requires using UDP rather than HTTP, and a specific set of WS
standards. Finally, in practice, to ease the development of a WS client and improve effi-
ciency, it may be desirable to create a single WS operation that corresponds to a series
of ALP requests and responses.

At the systems level, expertise in thread, memory and socket management is nec-
essary to efficiently handle simultaneous requests, to dispatch responses to appropriate
endpoints and to keep track of established sessions. Furthermore, in order to avoid re-
quiring a wrapper to actively wait for asynchronous responses, the execution of a re-
quest handler must be stopped until corresponding responses arrive, then restarted to
process results. These processing tasks must not prevent the wrapper from handling
other synchronous and asynchronous requests. The complexity of such programming
tasks makes manual wrapper construction laborious and error prone. Naive implemen-
tations of such code can introduce severe performance bottlenecks.

This Paper. In this paper we propose a generative language-based approach for
constructing wrappers to enable the migration of legacy service functionalities to Web
Services. This approach involves two domain-specific languages: z2z, which was de-
veloped in our previous work [2] for describing ALP message structures and behaviors,
and Janus, which is the main contribution of this work and targets the specific needs of
WS. Our approach targets programmers who are familiar with an ALP and with basic
Java programming. Its main benefit is to allow such developers to quickly and easily
develop efficient and safe WS wrappers. Our contributions are:

– We define the Janus domain-specific language that allows describing the interface
of a legacy service and its representation as a WS. A Janus description is expressed
at a high level that hides the low-level details of the WS paradigm and of the ALPs.

– We describe the translation of a Janus description into a wrapper implementation
compatible with a WS environment, and the Janus runtime system that supports the
execution of this wrapper. The translation and the runtime system together address
various network and systems programming issues, hiding this complexity from the
programmer.

– We show that the expressiveness of Janus is sufficient to describe the interface of a
number of ALP-based services and to generate the appropriate WS wrappers. Our
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case studies include well-known legacy services relying on ALPs such as IMAP,
SMTP, RTSP and UPnP.

– The experiments that we have carried out show that our approach produces wrap-
pers that have performance comparable to manually developed wrappers based on
existing WS and ALP stacks.

The rest of this paper is organized as follows. Section 2 introduces the case studies
that we use to present the details of our approach and the issues that these case studies
entail. Section 3 presents the Janus language and Section 4 describes the generated
code. Section 5 demonstrates the efficiency of our approach. Section 6 discusses related
work. Finally, Section 7 concludes the paper.

2 Case Studies

A developer creating a WS wrapper for an ALP-based service by hand must first select
the functionalities that should be made available as WS operations and then describe
for each operation the corresponding WS interface and the structure of the operation’s
parameters and results. We present some of the issues confronting the developer in
creating such wrappers, and illustrate these issues using wrappers for IMAP and SMTP
mail services, for an RTSP-compliant media service and for UPnP service discovery.

Message granularity. ALPs are generally implemented directly on top of TCP, result-
ing in lightweight messages, and thus are able to provide fine-grained functionalities.
WS, on the other hand, are built on top of SOAP and either HTTP or UDP, resulting
in messages that are complex and verbose. Thus, in a WS environment, to reduce the
bandwidth consumption and to simplify the client implementation, it is often desirable
to provide higher-level operations. As an example of this granularity mismatch, we
consider a WS wrapper for an IMAP server, illustrated in Figure 1. The IMAP server
shown inside the oval on the right side of the figure allows a client to retrieve mail using
a sequence of synchronous exchanges of messages, for authentication, folder selection,
message listing, message fetching, etc. The WS wrapper, however, encapsulates this se-
quence of low-level IMAP requests and responses as a single WS operation, pullMails.
A WS wrapper for an SMTP server could be constructed similarly.



276 T.F. Bissyandé et al.

Message transmission synchrony. In the implementation of our IMAP wrapper, we have
chosen to make the WS operation asynchronous, even though the protocol used by the
service is synchronous. The management of this asynchrony must be implemented by
the wrapper developer.

Message return values. The result of the WS operation is the list of mails retrieved from
the server in case of success, or an error message otherwise. The wrapper programmer
has to be aware of the specific data types to be used in constructing WS error messages.

Session management. Our second case study involves the construction of a session-
based WS wrapper to remotely control a RTSP-compliant media server. Although RTSP
requests flow within different TCP streams, some requests need to be associated to
the same session. For instance, the play and stop requests include session information.
The wrapper developer must thus translate RTSP session management into WS session
management, through the use, for instance, of the WS-reliability specification.

Multiple ALPs. The media server case study also illustrates the case of a wrapper that
needs to process messages from several different ALPs. For instance, the media service
wrapper may need to process SDP messages describing multimedia session information
that are encapsulated in the body of RTSP responses.

Multicast. In a networked environment, UPnP-enabled clients discover the services
provided by available UPnP-compliant devices. To successfully discover existing ser-
vices, clients have to send UPnP search requests to a multicast group address. However,
supporting the multicast communication paradigm in the WS realm requires the use of
several WS specifications that are not part of the basic WS standards. Our implemen-
tation of the WS wrapper for UPnP relies on the specifications SOAP-Over-UDP [17]
and WS-Addressing [22]. The development of this wrapper is significantly different
from other traditional wrappers because SOAP messages are not encapsulated inside
HTTP messages but flow directly over UDP. Therefore, constructing such multicast
wrappers significantly raises the level of expertise required by the wrapper developer.

3 Wrapper Development

A WS wrapper converts a WS invocation into a sequence of ALP interactions, and then
converts the information collected by these ALP interactions into a WS result. Con-
structing such a wrapper requires information about the ALP behavior (e.g., whether
messages are transmitted by unicast or multicast, synchronously or asynchronously,
etc.), the structure of the WS and ALP messages, and the logic for translating between
them.

In previous work, we have developed the z2z language for constructing network pro-
tocol gateways [2]. A WS wrapper can be seen as a particular kind of gateway, dedicated
to the specific needs of WS. Z2z provides facilities for describing network protocol be-
haviors, message structures, and translation logics, and an optimized run-time system.
It is suitable for expressing the behaviors and message structures of protocols that are
built directly on the transport protocols TCP and UDP, which is typically the case of
ALPs. WS, however, are at a higher level, being built on SOAP [24], which in turn is
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Fig. 2. Scenario for constructing wrappers with z2z and Janus

built on HTTP or directly on top of UDP in the multicast case. Defining WS messages
and the WS-ALP translation logic using z2z would require expressing these features
in terms of SOAP/HTTP or SOAP/UDP messages, which would be extremely tedious
and require a high degree of WS expertise. We have thus developed a new language,
Janus, for describing WS messages and the translation between WS and ALP messages
directly, and a supporting runtime system that translates WS interactions to the lower
level SOAP and HTTP protocols. To fit with the expertise of the expected developer
community, Janus uses a Java-like syntax.

Based on z2z and Janus, we propose a generative language-based approach to WS
wrapper construction that relies on z2z for describing ALP behaviors and message
structures, and Janus for describing WS message structures and the translation between
WS messages and ALPs. Fig. 2 gives an overview of this approach. For each ALP
relevant to the functionalities that the developer has chosen to expose as WS opera-
tions, the developer provides a z2z specification, consisting of a protocol specification,
describing how the ALP interacts with the network, and a message specification, de-
scribing the structure of ALP requests and responses.2 The developer then uses Janus
to describe the desired WS interface to these functionalities, including the structure of
the WS operation arguments and return values and the translation of each WS oper-
ation to the corresponding ALP messages. The Janus compiler translates the z2z and
Janus specifications to an executable wrapper and a WSDL document that describes the
generated WS. The wrapper is then linked with a runtime system that provides various
optimized systems functionalities.

2 As shown in Fig. 2, a protocol specification is provided in a .psl file and a message specifi-
cation in a .msl file.
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1 protocol rtsp {
2 int cseq number;
3 attributes { transport = tcp/554; mode = sync; }
4 start { cseq number = 1; }
5 request req {
6 response DESCRIBE when req.method == "DESCRIBE";
7 response PLAY when req.method == "PLAY";
8 . . .
9 }

10 sending request req { req.cseq = cseq number++; }
11 flow = { cseq }
12 tcp { void tcp connect(); }
13 }

a) RTSP protocol specification

1 read {
2 mandatory public fragment code;
3 mandatory public fragment line;
4 }

b) IMAP request message view

1 request template response getMail {
2 magic = "SEP";
3 newline ="\r\n";
4 public int id;
5 private int tag;
6 −−SEP
7 <%tag%> fetch <%id%> body[text]
8 −−SEP
9 }

c) IMAP request template

Fig. 3. Z2z protocol behavior and message structure descriptions

In the rest of this section, we present the use of z2z for describing ALPs and the
Janus language for describing WS messages and operations.

3.1 Z2z Protocol Behavior and Message Structure Descriptions

The first step of our approach uses z2z to describe how the relevant ALPs interact with
the network, as illustrated for the RTSP protocol in Fig. 3a. A z2z protocol specification
first declares any needed local variables, such as cseq number in line 2, and then con-
tains a collection of blocks describing various properties of the interaction with the net-
work. The attributes block specifies the transport protocol used, whether requests
are sent in unicast or multicast, and whether ALP responses are received synchronously
or asynchronously (line 3). The start block initializes the local variables (line 4). The
request block specifies how to dispatch a received request to a specific handler for
processing (lines 5-9). The sending block specifies some default information for each
request or response, such as the cseq number for an RTSP message (line 10). The
flow block indicates the message information that a wrapper must use to match asyn-
chronous requests to their subsequent responses (line 11). A similar session flow
block is used to recognize messages that are associated with a particular session, when
the protocol supports sessions. Finally, the tcp block specifies a handler for opening
connections on a socket (line 12).

A WS wrapper must also be aware of the structure of ALP messages. These mes-
sages are also described using z2z. A z2z message view defines the information to be
extracted from incoming messages (Fig. 3b). Similarly, z2z templates (Fig. 3c) describe
the structure of new ALP messages to be created by the wrapper. Both message views
and templates may contain fields declared as private that are handled automatically
by the runtime system and fields declared as public that must be managed by the
Janus message translation logic. For example, the tag field is declared as private
in Figure 3c (line 5) because its value is automatically generated for each constructed
IMAP request message. This is also the case of the cseq field for RTSP, which, as
illustrated in Figure 3a (line 10), is filled in by the sending block of the RTSP
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protocol specification. Whenever a RTSP request is sent, the value of the cseq field is
automatically incremented by the runtime system.

3.2 Janus Service Operation Descriptions

The second step of our approach uses the Janus domain-specific language to describe
how to invoke the chosen functionalities of the ALP-based service. Janus has been
designed according to requirements that we have identified as critical to ease WS de-
velopment and to enforce good practices in WS design. For instance, Janus follows a
contract-first strategy in the implementation of a WS. That is, an abstract description
of a WS (e.g., WSDL) is made available before the actual production of the WS. By
design, Janus supports stateful Web Services by enabling side-effects. While present-
ing a Java-like syntax (see Fig. 4), with which programmers are familiar, Janus limits
the functionalities to what is needed for WS development. The only objects available
are data structures which only have a default constructor, for initializing their different
fields, and a default method (send), for forwarding them in the network. Finally, Janus
enables the creation of robust wrappers by encapsulating subtle and error-prone code
such as code for network message processing. For example, it provides the send op-
erator for sending messages on the network and the structure field notation for easily
accessing message fields. These features are provided within a language, rather than in a
library as done in Java, allowing the complete code to be checked for various coherence
properties. For example, the Janus compiler checks that the code is type safe, that all
variables are initialized before they are used, and that all message fields are initialized
before the message is sent.

program ::= external import∗ service def
external import ::= #import interface id ;

| #import protocol.protocol id ;
service def ::= [qualifier] service (service params) { datatype def ∗ operation+ }
service params ::= COMMA LIST(primitive type datatype id)
datatype def ::= class complex type id [extends complex type id] { nested data∗ }
nested data ::= primitive type COMMA LIST(var) ;
operation ::= datatype operation id ([operation params]) { statement+ }
datatype ::= primitive type | complex type

| List<datatype>
operation params ::= COMMA LIST(datatype datatype id)
primitive type ::= String | int
complex type ::= complex type id

qualifier ::= multicast
statement ::= decl stmt | affect stmt | if stmt | for stmt | except stmt | return stmt | {statement+}
decl stmt ::= datatype COMMA LIST(var) ;

| request<protocol id> COMMA LIST(var) ;
| response<protocol id> COMMA LIST(var) ;

affect stmt ::= var = data ; | datatype var = data ;
data ::= new complex type ([COMMA LIST(primitive type id)])

| data.field | data.send() | function(data)
if stmt ::= if (boolean expr) statement+

for stmt ::= for (datatype var : list var) { statement∗}
except stmt ::= throw data ;
return stmt ::= return data ;
boolean expr ::= data | boolean

COMMA LIST(elem) ::= elem (, elem)∗

Fig. 4. Janus language grammar
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1 import protocol.rtsp.*;
2
3 service mediaPlayer (String hostname, int port) {
4 /* Data type definitions */
5 class MediaRequest { String resource; }
6 class PlayRequest extends MediaRequest { . . . }
7 class PauseRequest extends MediaRequest { . . . }
8 class StopRequest extends MediaRequest { . . . }
9

10 . . .
11 /* Operation descriptions */
12 Media PLAY (PlayRequest req) { . . . }
13 . . .
14 }

Fig. 5. Janus service for RTSP Media service

In Janus, the wrapper functionalities are described in a service definition. As shown
in Fig. 5, a Janus service is defined by the keyword service (line 3), followed by the
name of the service being defined. The service is parametrized by the hostname and port
number of the machine that hosts the WS wrapper. These values are set when invoking
the Janus compiler. A Janus service defines data types to describe the parameters and
return value of a WS operation, and a set of methods to specify the series of ALP
messages that need to be exchanged with the service to define each WS operation.
The ALP attributes previously defined with z2z are imported through the #import
directive at the beginning of the file. Other utilities’ interfaces can also be referred to
using this directive.

Data types. A WS operation typically has some arguments and return values, of various
data types. The wrapper must know the structure of these data types so that it can extract
information from the arguments in order to construct the corresponding ALP requests,
and so that it can construct the return values from the ALP responses. Janus data types
are either primitive or complex. Primitive types are strings and integers. A complex
type is defined by a Java-like class containing only fields. Such a class also defines an
implicit constructor that takes as arguments the initial values of the fields in the order
in which they appear in the class definition. Janus provides an inheritance mechanism
that enables one data type to be defined as an extension of another. This is useful when
data types share a number of fields, as in the case of the invocation parameters of the
PLAY, PAUSE, and STOP operations defined by the media service wrapper (Fig. 5).
For each of these operations, the parameter includes a Resource field that defines the
URI of the media being served. Therefore, the corresponding Janus classes extend the
MediaRequest class that contains this Resource field.

Operation descriptions. A WS operation is described in Janus as a method whose
arguments and return values correspond to the input and output parameters of the WS
operation. The main function of such a method is to translate between WS and ALP
messages. Nevertheless, Janus also provides abstractions to support sessions and mul-
ticast services. Using the example of the pullMails operation defined in Fig. 6 for our
IMAP server case study, we illustrate how the interface to a functionality of an ALP-
based service is expressed using Janus.
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1 List<Mail> pullMails(String login, String passwd, String folder) {
2 /* operation pullMails retrieves unread mails from an IMAP server */
3 request<imap> req;
4 response<imap> resp;
5 List<Mail> mails = new List<Mail>();
6 List<int> ids = new List<int>();
7 Mail m;
8
9 req = new Login(login, passwd); resp = req.send();

10 if (resp.code == "error")
11 throw new ServiceFault("[login]", "server failed");
12
13 req = new selectFolder(folder); resp = req.send(); . . .
14 req = new listMessage(); resp = req.send(); . . .
15
16 ids = List.parse2int (resp.line, " ");
17 for (int id : ids) {
18 req = new getMail(id); resp = req.send(); . . .
19 m = new Mail(id, resp.line);
20 List.add (m, mails);
21 }
22
23 req = new Logout(); resp = req.send(); . . .
24 return mails;
25 }

Fig. 6. IMAP pullMails service operation

A Janus method exchanges a sequence of ALP messages with a service in order to
provide the requested functionality to the WS client. To create an ALP message, the
Janus code uses the constructor implicitly associated with the corresponding z2z tem-
plate (line 9). This constructor takes as arguments the values for the template’s public
fields in the order in which they appear in the template definition. A template also pro-
vides a method send for sending a created message into the network (line 9). The
Janus compiler translates a use of the send method into an invocation of the z2z send
operator. This operator transparently handles the difference between sends with syn-
chronous and asynchronous responses, freeing the developer from the need to manage
this complexity. To extract information from an ALP response, the Janus code uses the
standard field access notation (line 10), as in Java. Any field that is qualified as public
in the corresponding z2z message view is accessible in this manner.

As in Java, the return keyword indicates the value returned by a method to its
caller (line 24). In Janus, the returned value of a method is represented by a complex
data type and must be created by the Janus code using the data type’s associated con-
structor. To send the returned value back to the WS client, the Janus compiler generates
code to serialize and encapsulate this value as a WS compliant message.

Janus also supports a mechanism for error management. For example, if the login to
the IMAP server fails (line 10), a fault message has to be sent back to the WS client.
As in Java, a Janus exception is raised using the keyword throw (line 11), aborting the
method execution. Unlike in Java, Janus exceptions cannot be caught by the program-
mer and are only used to report unexpected situations to the WS client. A fault message
can be created using the constructor of the default ServiceFault data type (line 11)
or of a defined data type that extends this one.

When an ALP uses sessions and the requests within a session are associated with
different WS operations, then the WS wrapper must manage sessions as well. For
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1 import protocol.rtsp.*;
2
3 service mediaPlayer (String hostname, int port) {
4 String SESSION ID;
5 . . .
6 Media PLAY (PlayRequest preq) {
7 . . .
8 req = new Setup(. . .); resp = req.send(); . . .
9 /* Save the session ID returned by setup */

10 SESSION ID = resp.sessionId;
11 . . .
12 }
13 Media STOP (StopRequest sreq) {
14 . . .
15 /* Use the session ID previously saved */
16 req = new Teardown(hostname, sreq.resource,
17 SESSION ID);
18 . . .
19 }
20 . . .
21 }

a) Excerpt of the RTSP PLAY service operation

1 import protocol.ssdp.*;
2
3 multicast service controlPoint () {
4 class UPnPService { . . . }
5 . . .
6 List<UPnPService> SEARCH(SearchRequest sreq){
7 . . .
8 }
9 . . .

10 }

b) Excerpt of the UPnP control point
wrapper description

Fig. 7. Janus descriptions

example, as described in Section 2, the media service wrapper needs to manage a ses-
sion that has been set up by the media service. As shown in the Janus implementation
in Fig. 7a, to process a WS STOP operation, an ALP Teardown request must be sent
with the session information (line 16) that was previously returned by the ALP Setup
request (line 10). However, these ALP requests are sent within different WS operations.
Janus implements sessions using the WS-Reliability [15] specification. The Janus code
can then declare global variables that are visible within a session. For example, line 4 of
Fig. 7a declares a global variable SESSION ID that maintains the ALP session identi-
fier across multiple WS requests. Such a variable can be set (line 10) and read (line 16)
like a local variable. The Janus compiler automatically generates the code to manage
session information in the WS realm.

In the excerpt of Fig. 7b, the Janus description of the wrapper for UPnP service
discovery is declared with the keyword multicast (line 3), indicating that the implemen-
tation must be multicast-compliant. Janus then produces a wrapper that can process
SOAP messages carried by UDP instead of HTTP. All information that is carried by
HTTP in the unicast case, including the client endpoint reference to which WS res-
ponses must be returned, is now encapsulated in the SOAP message using the WS-
Addressing specification.

4 Code Generation

Based on the z2z descriptions of ALP behaviors and message structures and the Janus
descriptions of WS message structures and the translation between WS messages and
ALPs, the Janus compiler generates various documents, specifications and program
code, as shown in Fig. 8, to create a complete wrapper implementation. In this section
we describe the generation of these artifacts.
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Fig. 8. Overview of the generated code

4.1 WS Framework

From a WS wrapper specification written in Janus, the compiler generates code for
publishing the service operations in a WS framework and for processing WS messages.

Publishing the service operations. In the WS framework, a WS is accompanied by
a WSDL document that makes information about the operations provided by the WS
available in a machine-readable form. A WSDL document also specifies concrete bind-
ings that describe how the abstract service description is mapped to a specific service
access protocol. Nevertheless, WSDL, as a machine-readable format, is not well suited
to being written by hand, especially for a service that defines multiple operations.

Based on the Janus service operation descriptions and compiler arguments indicating
the endpoint where the service is to be deployed, the Janus compiler creates the WSDL
description of the wrapper. The generated WSDL document includes types, which are
data type definitions specified using the XML Schema language, messages, which are
typed definitions of the data to communicate, and operations, which are abstract de-
scriptions of the actions supported by the service. Furthermore, the WSDL document
specifies the endpoint address where the service is available as well as the protocol
(e.g., SOAP) to be used for invoking the service. The Janus compiler also includes
in the WSDL document the WS specifications that are required by the wrapper. Once
created, the WSDL document is made available via a web server, thus allowing client
programs to call any of the operations that are listed.

WS message structures and processors. Once the wrapper is exposed to potential WS
clients, it may begin to receive WS messages. It must parse these messages and may
need to construct WS messages to send in response. The structure of these messages is
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1 message soap {
2 read {
3 mandatory public fragment subject;
4 mandatory public fragment from;
5 . . .
6 mandatory public int smtpPort;
7 }
8 . . .
9 }

a) message view for a SMTP message

1 #include "msg_soap.h"
2 . . .
3 void xml data(void * d, const char * data, int l) {
4 struct IGDdatas * datas = (struct IGDdatas *)d;
5 char buf[l];
6 if ( !z2z strcmp(datas−>elt name, "subject") ){
7 sprintf(buf, "%.*s",l, data);
8 msg soap view set subject(datas−>view,
9 make string(buf));

10 }
11 . . .
12 }

b) Excerpt of the SOAP parser for SMTP

Fig. 9. Generation of a SOAP message view and the associated parser

1 import protocol.imap.*;
2 service ImapServer(String hostname, int port) {
3 . . .
4 serverResponse imapCreateFolder(String login,
5 String passwd, String folderName) {
6 response<imap> resp; request<imap> req;
7 . . .
8 req = new createFolder(folderName);
9 resp = req.send();

10 . . .
11 return new serverResponse(resp.line);
12 }
13 }

a) imapCreateFolder operation with Janus

1 template createFolderResponse {
2 magic = "SEP"; newline ="\r\n";
3 public fragment serverResponseLine;
4 −−SEP
5 <soapenv:Envelope . . .>
6 . . .
7 <cli:createFolderResponse>
8 <resp><%serverResponseLine%></resp>
9 </cli:createFolderResponse>

10 . . .
11 </soapenv:Envelope>
12 −−SEP
13 }

b) z2z generated template

Fig. 10. Message template generation

determined by the parameter and return type specifications in the signatures of the Janus
operation descriptions and the associated Janus data type specifications. To provide sup-
port for processing received WS messages, the Janus compiler generates a z2z message
view and a dedicated SOAP parser from the data types representing the parameters of
each WS operation. The message view contains all the fields of the data type, including
those of any data type it inherits. The SOAP parser is a C program that extracts invo-
cation parameter values from an XML document, embedded inside an incoming HTTP
message or on top of UDP, and uses these values to initialize the message view fields
listed in Fig. 9 (a). Fig. 9 (b) shows an excerpt of a generated parser that recovers the
subject to use in a sendMail operation from a WS message. For each data type that is
used to describe a WS operation return value, as in the example of Fig.10a (line 11),
the Janus compiler generates a z2z SOAP template whose public fields correspond to
the primitive types that compose the return data type (Fig.10b). This template is used to
create a SOAP message that carries the operation result.

4.2 Wrapper Implementation

The wrapper implementation is based on the z2z specifications of protocol behaviors
and message structures, and the Janus operation descriptions. These are translated by
the Janus compiler into the corresponding lower level z2z message translation logic
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code, which is then translated into C code by the z2z compiler. Furthermore, the Janus
compiler adds into the translation logic of the operation descriptions the code necessary
for taking into account any WS specifications that are used to address issues that are
supported by Janus, but are not handled by the basic WS standards. Developers need
not be aware of the details of these specifications.

To support client sessions, Janus relies on the WS-Reliability [15] specification. Us-
ing this specification, a WS message is identified by a message ID, consisting of a group
ID and a sequence number. In our design, a WS wrapper recognizes messages from the
same session by the shared message group ID. Based on this information, the wrap-
per code has access to the values of the global variables corresponding to the session,
which it can then use to construct ALP messages containing appropriate session identi-
fiers. The Janus compiler automatically detects the use of ALP sessions in the operation
descriptions and generates the corresponding code to manage WS sessions.

When a Janus service is declared as multicast, the Janus compiler generates code
to parse and create SOAP messages directly over UDP. This generated wrapper code
uses the SOAP-over-UDP [17] and WS-Addressing [22] specifications. The wrapper
listens to a multicast group address and does not include HTTP processing capabilities.

The C code generated by the composition of the Janus and z2z compilers is supported
by a dedicated runtime system. Janus relies on a enhanced version of the z2z runtime
system that provides a framework for processing SOAP messages and currently sup-
ports the WS specifications WS-Reliability, SOAP-over-UDP and WS-Addressing.

5 Assessment

To assess our approach, we have implemented wrappers for the various ALP-based
service functionalities described in the case studies of Section 2. For each considered
case study, Figure 11 compares how many lines of source code the developer needs
to manually write against how many lines of source code are generated by the Janus
compiler. Among our examples, only 204 (SMTP) to 582 (RTSP) lines of source code,
including ALP specifications (z2z), operation descriptions (Janus) and ALP parsers (C),
need to be written by hand to implement the WS wrapper. Using only z2z, but not Janus,
the WS wrapper for SMTP requires 642 lines of source code, including SOAP parsers,
WSDL documents, and z2z specifications, and the WS wrapper for RTSP requires 882
lines of source code. This comparison of code size furthermore does not fully take
into account the amount of WS and network expertise that is required to implement a

Developer code (lines of code) Generated code
ALP Janus ALP z2z specifications SOAP parsers WSDL document Wrapper source code WS wrapper (size in KB)

specifications descriptions Parsers (lines of z2z code) (lines of C code) (lines of code) (lines of C code) Wrapper Runtime System Total
IMAP Server
wrapper

IMAP 161 79 102 370 208 102 1861 44 80 124

SMTP Server
wrapper

SMTP 129 48 27 216 222 75 918 24 80 104

Media Server RTSP 193
97

153
297 227 122 2488 48 80 128

wrapper SDP 41 98

UPnP
service
discovery

UPnP 58 13 304 115 312 113 1877 32 80 112

Fig. 11. The size of specifications and the generated WS wrapper
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wrapper without using Janus. Compared to the final generated C code, excluding the
runtime system, the Janus compiler provides around 77% of the code. Moreover, as
illustrated in Figure 11, the size of the wrappers does not exceed 128KB, including
80KB for the runtime system. Thus, Janus wrappers can be embedded in constrained
devices.

To fully evaluate the performance of Janus generated wrappers, we have carried out
three experiments involving an IMAP and an SMTP service, a UPnP service, and an
ALP-based echo protocol. Our experiments were carried out on a 2GHz Intel Core 2
duo with 4GB of RAM. In each case, to reduce the impact of the network latency on
the response time, the client, the wrapper, and the service are all collocated on the same
machine and interact using the loopback interface.

WS wrappers for IMAP and SMTP services. We evaluate the capacity of wrappers to
manage both WS to IMAP and WS to SMTP translations under stress tests. To this
end, several WS clients simultaneously invoke either a WS pullMails operation on a
user folder to retrieve two mails, or a WS sendMail operation to send five mails to a
remote mailbox. The IMAP wrapper translates WS invocations into IMAP messages,
that are sent to a Dovecot IMAP server (http://www.dovecot.org) The SMTP wrapper
similarly translates WS invocations into SMTP messages that are sent to a POSTFIX
SMTP server (http://www.postfix.org).

Figures 12 and 13 compare, respectively, the performance of the Janus IMAP wrap-
per with that of a manually developed IMAP wrapper, and the Janus SMTP wrapper
with that of a manually developed SMTP wrapper. The handmade wrappers, using nei-
ther Janus nor z2z, are implemented in Java with the JAX-WS Reference implemen-
tation and Tomcat. The execution time is measured from the time when the wrapper
receives a WS invocation to the time when the corresponding response is sent back to
the WS client. The performance is expressed in terms of CPU cycles, to be independent
of the CPU frequency.

In our experiments, two parameters may impact the performance: (i) the number
of simultaneous clients, and (ii) the number of simultaneous invocations performed by
each client. Consequently, our test procedure involves several simultaneous clients and
consists of a set of rounds, successively increasing the stress on the wrapper in each
round. In the first round each client fetches or sends all mails once, resulting in two
or five simultaneous requests per client for the IMAP or SMTP tests respectively. In
the second round each client fetches or sends all mails twice, resulting in four or ten
simultaneous requests per client. This pattern continues until the thirtieth round where
each client fetches or sends all mails 30 times, resulting in 60 or 150 simultaneous
requests per client. The test procedure is undertaken 30 times. Figures 12 and 13 show
only median values.

As expected, the graphs show that the higher the number of simultaneous clients
(i.e., 5 or 15 clients for IMAP and SMTP wrappers), the higher the response times.
Janus wrappers perform better than the wrappers developed by hand, because the Janus
wrappers can rely on a fine grained runtime support that includes generated code that is
dedicated to mapping IMAP and SMTP messages into SOAP messages and vice versa.
Specifically, Janus wrappers include a WS stack stripped down to the bare essentials
according to the Janus description given to the Janus compiler. In contrast, handmade
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Fig. 12. IMAP server wrapper
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wrappers use a general-purpose WS stack and runtime that offer no particular optimiza-
tions for wrappers.

WS wrapper for UPnP service. The Janus-generated wrapper for UPnP service relies on
multicast addressing both in the WS realm, requiring support of extra WS-* standards,
and in the UPnP native domain. We have therefore carried out an experiment to estimate
the overhead introduced by the wrapper processing layers. To evaluate the Janus UPnP
wrapper, we compare the response time required by a WS client to discover a UPnP
service with the time required for a UPnP client to discover a UPnP service. In both
cases, we measure, at the client side, the time taken between an initial discovery request
and the corresponding successful response. Any standard WS toolkit can be used to
generate the WS client from the WSDL Document published by with Janus wrapper.
We have chosen the gSOAP3 toolkit for its efficiency, as it is developed in C. The UPnP
client and the service are developed with the C implementation of the CyberLink4 stack.

In our experiment, the response time of the native UPnP client reaches 1220 mil-
lion CPU cycles whereas for the WS wrapper client it takes 1805 million CPU cycles,
amounting to a slowdown of 50%. This slowdown results from the cost of the various
steps of the translation logic. The Janus wrapper needs to: (i) listen on a multicast group
address, dedicated to the WS realm, to intercept incoming SOAP-over-UDP requests,
(ii) deserialize received SOAP requests to generate the corresponding UPnP requests,
(iii) forward the newly generated UPnP requests and listen for potential UPnP responses
from the multicast group address dedicated to UPnP, and (iv) transform UPnP responses
to SOAP messages to send them back to the WS client. In comparison, the UPnP client
interacts directly with the UPnP service, it does not need to listen on two different mul-
ticast group addresses, and it does not need to serialize and deserialize SOAP messages.

WS wrapper for an ALP-based echo service. We have implemented a micro bench-
mark to evaluate the performance of the SOAP serialization/deserialization performed
by Janus wrappers. The experiment involves a Janus wrapper for an ALP-based echo
service that echoes primitive data types such as integers and strings. In this case, a
WS client, generated by the gSOAP compiler from the Janus WSDL document, sends
SOAP primitive data types to a Janus wrapper that extracts the data value to forward it,
without any XML tags, to an echo service. Messages from the echo service are simi-
larly encapsulated into SOAP messages by the Janus wrapper and are sent back to the
WS client. The micro benchmark measures the execution time from when the wrapper
receives a WS invocation to when the corresponding response is sent back to the WS
client. We consider the median time over 50 executions. We find that with serialization
and deserialization, this takes around 1.1 million CPU cycles for an integer value, and
around 1.4 million CPU cycles for a string of 50 characters. Without serialization and
deserialization, we find that the time is around 0.3 million CPU cycles for an integer
value and around 0.5 million CPU cycles for a string of 50 characters. Although these
results show that the cost of serialization is high, they represent a worst case due to the
simplicity of the echo server. Normally the total treatment time would be dominated by
the server computations.

3 http://www.cs.fsu.edu/˜engelen/soap.html
4 http://www.cybergarage.org/cgi-bin/twiki/view/Main/CyberLinkForC
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6 Related Work

Alternative forms of Web Services. This paper has focused on the SOAP/WS-* stack
for Web Services. In the last decade, RESTful Web Services [8] have been increas-
ingly used. RESTful Web Services are praised for the simplicity of their design and
implementation, in comparison with WS-* standards which are increasingly complex
and often not implemented. Nevertheless, as extensively discussed by Pautasso et al [19],
SOAP/WS-* remains the most appropriate choice in many contexts. Our goal is to pro-
vide interoperability between existing services. The use of SOAP/WS-* allows these
services to remain outside the Web; the web is only used as a message enchange inter-
face. On the other hand, RESTful Web Services exist only within the Web, requiring
more reengineering and preventing other kinds of accesses. Furthermore, contrary to
REST, SOAP/WS-* technology comes with a fairly robust body of standards for QoS.
Thus, when advanced functionalities, such as multicast, are needed, existing WS-* stan-
dards can deliver the appropriate capabilities. RESTful WS would have to be extended
to support these capabilities in an ad hoc manner [19]. Finally, the variety of formats
that can be used to represent a RESTful WS can hinder interoperability, as WS clients
may not be able to process all types of payloads. In the rest of this section, WS refers to
web services constructed with the SOAP/WS-* stack.

WS implementation. As WS technologies mature, many research projects [5,7,10] have
focused on devising methods and tools that help with WS development, testing and
deployment. Kelly et al. have analysed existing programming languages and devel-
opment environments used by SOA programmers and have identified a number of
limitations [10]. For instance, they point out that since object-oriented and scripting lan-
guages were originally designed for standalone environments, the extra functionalities
that have been added to them for network and distributed processing fail to provide a
simple means for designing and implementing services that are invoked remotely. They
stress that a good language for WS development should support static typing, so that
WSDL definitions can be automatically generated from function definitions. In addi-
tion, all data should be serializable so that it can be sent within SOAP messages. The
Janus language meets these requirements.

Kelly et al. also propose the GridXSLT execution engine for exposing programs as
WS. GridXSLT relies on a language that extends the XSLT programming language for
specifying WS operations. GridXSLT only supports functions that are side-effect free,
meaning that a service may not maintain state. This constraint makes impossible to im-
plement WS wrappers that involve sessions, such as our RTSP media service wrapper.
Janus does not place any restrictions on the type of applications that can be wrapped.

Legacy services migration. Several companies have succeeding in re-packaging their
legacy services as WS so as to enable better integration of Web information. For in-
stance, in 2002, Amazon.com released a WS interface (http://aws.amazon.com) linked
to their existing query engine to provide to computer programs the same service that
their primary keyword-based search interface has been offering to humans. Google Web
APIs are another example of the migration of human-oriented Web Site interfaces to
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web services. Lately, many researchers have proposed tools for extracting from web
documents information that can then be requested by WS clients [9,13].

The idea of migrating a legacy service to WS has been explored in the literature
[3,4,11,21]. Almoanaies et al. have recently published a survey of the various existing
approaches [1]. Attempts to move legacy services to the SOA environment have been
motivated by issues ranging from software reuse and maintenance to interoperability.
Our work is dedicated to migrating services built on top of incompatible ALPs to WS
so as to benefit from the many features provided by SOA.

Migration solutions that are close to our work have been proposed by Sneed [20] and
by Canfora et al. [3,4]. Sneed has designed a tool for extracting and wrapping individual
functions from legacy code. Canfora et al. have devised a method for constructing a
wrapper that interprets a Finite State Automaton that models the interaction between the
client and the legacy system. In our approach, a wrapper developer is allowed to adjust
the characteristics of this interaction so as to fulfill other requirements. For instance, in
the case of IMAP server case study, we have designed a WS wrapper with asynchronous
operations while messages are sent synchronously in IMAP. Thus the WS client is not
required to actively wait while all mail is collected from the server.

Other projects have re-designed and re-implemented ALP-based application func-
tionalities using WS standards. Though such re-engineering solutions can provide
flexibility in design and ensure performance, their invasive aspect prevents their wide
adoption. WSEmail [14] replaces the existing protocols for email (i.e., SMTP, POP,
IMAP, S/MIME) with protocols based on SOAP, WSDL, and other XML-based for-
mats. However, WSEmail does not fully exploit existing email infrastructures and thus
fails to recover the logic perfectly [25]. Similarly, Chou et al. [6] have proposed an
entirely WS-based protocol, WIP, to replace SIP in their WSIP [12] endpoint for con-
verged multimedia/multimodal communication over IP. All communicating entities,
however, must support the new protocol.

A compromise approach to legacy service migration is to provide wrappers that in-
terface different parts of a service. The legacy service is thus broken up to several parts,
each implementing one or more functionalities. This approach avoids reimplementing
these functionalities in the WS, and thus yields practical and less invasive solutions.
Zhang and Yang [25] have presented a service-oriented approach that uses a hierarchi-
cal algorithm to understand the legacy code and extract independent services from it.
Janus on the other hand lets the developer choose the granularity of the functionalities
to expose.

7 Conclusion

In this paper, we have introduced an approach for migrating ALP-based service func-
tionalities to Web Services using wrappers. To this end, we have designed the Janus
language, which provides dedicated constructions and operations to hide low-level ALP
and WS details from the wrapper programmer. We have also developed a compiler for
Janus that automatically generates the corresponding wrapper code in C and the wrap-
per’s associated WSDL service description. Finally, we provide a Janus runtime system
that is to be linked with the generated wrappers and that encapsulates the required low-
level networking and systems code.
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We have successfully used Janus to develop a number of wrappers, including wrap-
pers for IMAP and SMTP servers, for a RTSP-compliant media server and for UPnP
service discovery. Our experience in using Janus for wrapper construction shows that
our approach drastically reduces the level of expertise required. By freeing the wrapper
developer from manually managing both WS details and ALP-based communication
issues, Janus bridges the gap between the WS realm and ALP-based services.

Preliminary experiments show that Janus-based WS wrappers have performance
comparable to manually written wrappers. Furthermore, the size of the executable code
of our Janus-based wrappers, including the runtime system, is small, not exceeding
128KB, which is acceptable in contexts where code size must be minimized, as in some
embedded systems. We are currently extending the Janus approach to support WS spec-
ifications such as WS-Notification, WS-Eventing, and WS-Security. We are also devel-
oping Janus wrappers for other application domains such as network supervision.

Availability: The source code of z2z is available at http://www.labri.fr/perso/reveille/
projects/z2z/. The source code for Janus is available on request.
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