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Bridging the gap between marker-assisted and genomic
selection of heading time and plant height in hybrid wheat

Y Zhao1,3, MF Mette1,3, M Gowda2,4, CFH Longin2 and JC Reif1

Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from
them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the
model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with
marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased
prediction) and BayesCp, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and
BayesCp. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers
relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of
prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects
of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes
the gap between marker-assisted and genomic selection.
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INTRODUCTION

Functional markers linked to quantitative trait loci (QTLs) are
routinely used to predict the performance of important traits in
domestic animals (Goddard and Hayes, 2009) and crop plants
(Bernardo, 2008). Nevertheless, marker-assisted selection has its
limitations (Heffner et al., 2009), as it is efficient only if the trait
under consideration is controlled by a limited number of QTLs with
large contributions to phenotypic variation, but is inferior to
traditional phenotypic selection in dealing with complex agronomic
traits controlled by many QTLs with small effects (Bernardo, 2001).
One major reason is that estimates of QTL effects for minor QTLs are
often biased.
As a solution for the prediction of performance in complex traits,

genomic selection has been suggested (Meuwissen et al., 2001). In
genomic selection, large numbers of markers are included and their
effects are estimated in populations that have been genotyped and
phenotyped. The estimated marker effects are then applied to predict
the breeding value of nonphenotyped individuals based on their
molecular marker profiles. The great potential of genomic selection
for complex traits has been demonstrated in several experimental
studies in plant and animal breeding populations (Bernardo, 2008;
Heffner et al., 2009; Heslot et al., 2012; Massman et al., 2013).
One crucial challenge in genomic selection is to choose the

appropriate biometrical model (Heffner et al., 2009; Heslot et al.,
2012). The relative performance of biometrical models is expected to
depend on the genetic architecture of the traits under scrutiny. In a
recent simulation study, Clark et al. (2011) observed substantial

higher accuracies of prediction for BayesB in comparison with RR-
BLUP (ridge regression best linear unbiased prediction) in a scenario
assuming 100 QTLs underlying the trait under consideration.
Whereas RR-BLUP is based on the infinitesimal model, BayesB
implies that only a defined fraction of single-nucleotide polymorph-
isms (SNPs) contributes to the genotypic variation of the trait under
consideration. The reported superiority of BayesB is challenged by a
study based on experimental data in maize that described only
marginal differences in accuracies between biometrical models
and did not observe an association with genetic architecture
(Riedelsheimer et al., 2013). One explanation for the deviation
observed between prediction accuracies based on simulation versus
experimental data could be the presence of linkage disequilibrium
(LD) in experimental setups that would also enable infinitesimal
model-based approaches to appropriately portray a genetic architec-
ture with large effect QTLs. Besides the superiority of specific genomic
selection models, comparison of the accuracy of marker-assisted
versus genomic selection is of interest for those traits with QTLs
exhibiting large effects on the genotypic variation. To the best of our
knowledge, however, such a comparison based on experimental data
sets for traits with known large effects is lacking.
Wheat is an important crop in which extensive studies of genetic

architecture have been performed (Le Couviour et al., 2011;
Würschum et al., 2013). Heading time and plant height are important
traits for wheat production (Borlaug, 1983; Worland et al., 1998;
Distelfeld et al., 2009) and key genes such as Ppd-D1, Rht-B1 and
Rht-D1 controlling these traits have been characterized at the
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molecular level. Ppd-D1 encoding a pseudo-response regulator family
member (Turner et al., 2005; Beales et al., 2007) is a major regulator
of photoperiod response in wheat with also some effect on plant
height (Worland et al., 1998), whereas Rht-B1 and Rht-D1 encoding
gibberellin response modulators are major regulators of plant height
(Peng et al., 1999). The photoperiod-insensitive allele Ppd-D1a pro-
moting early flowering and short growth as well as the gibberellin-
insensitive alleles Rht-B1b or Rht-D1b promoting semi-dwarf stature
are well represented in wheat adapted to temperate zones (Guo et al.,
2010; Le Couviour et al., 2011; Seki et al., 2011; Wilhelm et al.,
2013a,b). Nevertheless, there is room for additional QTLs, making
heading time and in particular plant height interesting model traits
for a comparative study of the predictability of combined known
major and unknown minor effects.
Based on phenotypic data obtained in four environments (Longin

et al., 2013) and genotypic data generated using a wheat 9k SNP array
(Akhunov et al., 2009; Cavanagh et al., 2013) and functional markers
at gene loci Ppd-D1, Rht-B1 and Rht-D1 (Ellis et al., 2002; Beales
et al., 2007) for a large collection of 135 elite winter wheat inbred lines
and 1604 F1 hybrids derived from them, we compared the accuracy of
prediction of marker-assisted selection and current genomic selection
approaches for the model traits heading time and plant height in a
cross-validation approach. For heading time, accuracy was high for
marker-assisted selection and low for genomic selection using RR-
BLUP and BayesCp, whereas for plant height, accuracy was low for
marker-assisted selection as well as for RR-BLUP and BayesCp. As a
likely explanation for the different accuracies of prediction achieved
for the two traits, differences in the LD structure of related functional
and SNP markers were identified in a simulation study. We developed
a weighted best linear unbiased prediction (W-BLUP) approach as a
new genomic selection model with improved accuracy because of a
more appropriate treatment of known functional markers. The
W-BLUP approach efficiently bridges the gap between marker-assisted
and genomic selection.

MATERIALS AND METHODS
Plant materials and field trials
Initially, we had sampled 68 potential male elite inbred lines with known good

pollination characters and 275 potential female elite lines adapted to Central

Europe and fingerprinted them with 24 simple sequence repeat (SSR) markers

(Longin et al., 2013). Eliminating close relatives and maximizing the allelic

diversity based on the simple sequence repeat marker profiles (while retaining

477% of simple sequence repeat alleles present in the starting set of 343 lines),

15 male and 120 female parental lines were selected for hybrid production in a

15 times 120 factorial mating design using chemical hybridization agents

(Longin et al., 2013). Sufficient F1 hybrid seeds were obtained for 1604 out of

the 1800 potential single-cross hybrid combinations (Zhao et al., 2013b). All

lines and hybrids were evaluated in 4 environments in 2012 together with 10

commercial checks (Longin et al., 2013). The environments were Böhnshausen

(latitude 511510N, longitude 101570E, 146m above sea level (asl), sandy loam

soil texture), Hadmersleben (latitude 511590N, longitude 111180E, 88m asl, silt

loam soil texture), Harzhof (latitude 541240N, longitude 91510E, 25m asl,

sandy loam soil texture) and Hohenheim (latitude 481420N, longitude 91120E,
390m asl, sandy loam soil texture). The experimental designs were partially

replicated a-designs (Williams et al., 2011), where all parents, checks as well as

29% of the hybrids were used in both replications (for details, see Longin et al.,

2013). Sowing density ranged from 230 to 290 seeds per m2 and plot size

ranged from 7.5 to 9.7m2. The trials were treated with fertilizers, fungicides

and herbicides according to standard agronomic practices for intensive

wheat production. Heading time was recorded as the number of days from

1 January to the day when half of the heads had emerged from flag leaves;

plant height was measured in cm at one time point after heading in each

environment.

Phenotypic data analyses
Phenotypic data were analyzed in two steps. First, we estimated the adjusted

entry means for each location (for details, see Zhao et al., 2013b). In a second

step, adjusted entry means were used to estimate the genetic variance

components of hybrids and parental lines as well as the variance of genotype�
location interactions. We followed the suggestion of Möhring and Piepho

(2009) and weighted each observation with one divided by the squared

standard error. Significance of variance component estimates were tested by

model comparison with likelihood ratio tests where the halved P-values were

used as an approximation (Stram and Lee, 1994). In addition, we assumed

fixed genetic effects and estimated the best linear unbiased estimates of the

1739 genotypes. The phenotypic data analyses were performed using the

software ASReml-R 3.0 (Butler et al., 2009).

Genotypic data analysis
Genotyping was done with a 9k SNP array based on the Illumina Infinium

assay (Cavanagh et al., 2013) (Illumina, San Diego, CA, USA). After excluding

SNP markers with (1) a rate of missing values above 5%, (2) a rate of

heterozygosity above 5% or (3) a minor allele frequency of o0.05 (Miedaner

et al., 2012), in total 1280 SNP markers were retained (Supplementary Table

S1). In addition, in genes Ppd-D1 (Beales et al., 2007), Rht-B1 and Rht-D1

(Ellis et al., 2002), one SNP each was analyzed as a functional marker using

LGC Genomics KASP assays (LGC Genomics, Berlin, Germany). Missing

genotypes were imputed following the approach suggested by Crossa et al.

(2010).

Marker-assisted selection
The functional marker for Ppd-D1 (Beales et al., 2007) is used as a standard

tool in European wheat breeding, explaining up to 30% of the genotypic

variation of heading time. In addition, the functional markers for Ppd-D1

(Beales et al., 2007) as well as Rht-B1 and Rht-D1 (Ellis et al., 2002) are used

routinely in wheat breeding in Europe, explaining up to 40% of the genotypic

variation for plant height. We defined the design matrices for the additive and

dominance effects of the three functional markers according to the FN metric

of Falconer and Mackay (1996) and used a standard multiple regression

approach to estimate their effects in the germplasm under consideration.

A general term was fitted to groups of females, males and hybrids for plant

height to take into account heterosis for this trait, whereas no such correction

was needed for heading time in the absence of heterosis (Longin et al., 2013).

Furthermore, we used a step-wise backward selection based on the Akaike

information criterion to test for relevant two-way epistatic interactions using

the step function (Venables and Ripley, 2002) implemented in the software

package R (R Core Team, 2012).

Genomic selection
Based on the adjusted entry means of the 1739 genotypes, we applied three

approaches for genomic selection considering additive and dominance effects:

RR-BLUP (Whittaker et al., 2000), BayesCp (Dekkers et al., 2009; Habier

et al., 2011) and a newly developed modification of RR-BLUP using

specific weights for the known functional markers denoted as W-BLUP.

All statistical procedures for the genomic selection approaches were

executed using R (R Core Team, 2012). Details of the implementation

of the RR-BLUP and BayesCp models have been described in Zhao et al.

(2013a). Briefly, the general form of the three models is defined as the

following:

Y ¼ 1nmþZAaþZDdþ e; ðModel 1Þ

where Y are the adjusted entry means of the 1739 genotypes across the

four locations, 1n is a vector of ones and n is the number of genotypes;

m refers to the overall mean across all four locations; a is the additive

marker effect and d is the dominance marker effect. ZA and ZD are design

matrices for the additive and dominance effects of the markers specified

according to the FN metric of Falconer and Mackay (1996) and e is the

residual.

Hybrid wheat heading time and plant height
Y Zhao et al

639

Heredity



RR-BLUP. For the RR-BLUP model, we assume that additive and dominance

marker effects have normal distributions Nð0;s2aÞ and Nð0; s2dÞ with constant

variances of additive effects s2a and dominance effects s2d . The estimates of m,
a and d, which denote as m̂, â and d̂, were obtained from the following

mixed-model equation (Henderson, 1984):

m̂
â
d̂

24 35 ¼
1Tn 1n 1Tn ZA 1Tn ZD

ZT
A 1n ZT

AZA þ lAIm ZT
AZD

ZT
D1n ZT

DZA ZT
AZD þ lDIm

24 35� 1
1Tn Y
ZT
AY

ZT
DY

24 35:
Here, Im refers to an identity matrix with dimension of m, where m is the

number of markers. The shrinkage parameters lA and lD are defined as the

ratios between the variance of residuals and the variance of the marker effects

(Meuwissen et al., 2001). Required variance components were estimated based

on adjusted entry means of individual environments decomposing the variance

of hybrids into variance due to general and variance due to specific combining

ability effects (Hallauer and Miranda, 1988).

BayesCp. Whereas in RR-BLUP it is assumed that all markers contribute to

genetic variance, in BayesCp only a fraction 1–pg (g denotes either a or d) of

the used markers is considered to contribute to the genetic variance. Based on

this assumption, the model for BayesCp is:

Y ¼ 1nmþZAdaaþZDdddþ e

The additional parameter dg has a prior distribution:

dg � 0;with probability pg
1;with probability 1� pg

�

In BayesCp, a uniform (0, 1) prior was assumed for pg, resulting in a

b-distribution for the full-conditional posterior (Habier et al., 2011). For

BayesCp, all above outlined parameters have to be sampled from their full-

conditional posterior using a special Markov chain Monte Carlo method called

Gibbs sampling.

The overall mean m is sampled from a normal distribution:

m � N
1Tn ðy�ZAdaa�ZDdddÞ

n ;
s2e
n

� �
The variance of residual and additive effects

are sampled from the inverted w2 distribution:
s2e � eTe þ neS2e

� �
w� 2
ne þ n, and s2a � aTa þ naS2a

� �
w� 2
na þmðtÞ. Here, m(t)

refers to the number of non-zero additive effects in t-th Markov chain Monte

Carlo iteration. The variance of dominance effects is sampled from the inverted

w2 square distribution: ðd�mdÞTðd� mdÞþ ndS2d
h i

w� 2
nd þmðtÞ where md is the

expected mean for di, and m(t) refers to the number of non-zero dominance

effects in t-th Markov chain Monte Carlo iteration. In the above, the fixed

parameters ne¼ na¼ nd¼ 4, whereas S2e , S
2
a and S2d were calculated by the

genetic variance approach we used in the above RR-BLUP model.

For i-th marker effects ai and di, we sampled new ai and di from a

full-conditional posterior ðaiÞnew � N
ZT
Ai
ðZAi

ai þ eÞ

ZT
Ai
ZAi

þ s2e
s2a

;
s2e

ZT
Ai
ZAi

þ s2e
s2a

 !
, and

ðdiÞnew � N
ZT
Di
ðZDi

di þ eÞþmd
s2e
s2
d

ZT

Di
Z
Di

þ s2e
s2
d

;
s2e

ZT

Di
Z
Di

þ s2e
s2
d

0@ 1A, where ZAi
;ZDi

refers to the i-th

column of ZA and ZD. Note that a new ai and di was only accepted with

probability 1�pa
1�pa þ pai pa

and 1�pd
1�pd þ pdi pd

, where pai was the ratio of likelihood with

dai ¼ 0 and dai ¼ 1, and pdi was the ratio of likelihood with ddi ¼ 0 and ddi ¼ 1.

After renewing all the parameters above, the pg(g¼ a or d) used

for the next iteration was updated with a b-distribution
pg � Betað1;m� dTg dg þ 1; dTg dg þ 1Þ.

The above Gibbs sampling was run for 10 000 times, and the first 1000

cycles were discarded as burn in.

W-BLUP. The model used in W-BLUP is similar to the BLUP model, but we

added an additional effect for the functional markers:

Y¼ 1nmþZAaþ FAafþZDdþ FDdfþ e, where af, df denote the additive

and dominance effects of the functional markers, and FA and FD are the design

matrices for them. Thus, the mixed model equation for this model will be:

m̂babaf
d̂bdf

266664
377775 ¼

1Tn 1n 1Tn ZA 1Tn FA 1Tn ZD 1Tn FD
ZT
A1n ZT

AZA þ lAIm ZT
AFA ZT

AZD ZT
AFD

FTA1n FT
AZA FTAFA þ lAf

Imf
FTAZD FT

AFD
ZT
D1n

FTD1n

ZT
DZA

FT
DZA

ZT
DFA

FTDFA

ZT
DZD þ lDIm

FTDZD

ZT
DFD

FTDFD þ lDf
Imf

266664
377775

� 1
1Tn y
ZT
A y

FT
Ay

ZT
Dy

FT
Dy

266664
377775

Here, Imf
refers to an identity matrix, whereas mf is the number of functional

markers. The shrinkage parameters lAf
and lDf

are now defined as the ratio

between the variance of residuals and the variance of the functional marker

effects estimated by using marker-assisted selection in each training set. In this

way, we give in particular a larger weight to the functional markers than to the

general markers.

Hybrid performance was predicted based on the estimated additive and

dominance effects (Zhao et al., 2013a). To study the influence of dominance

effects on the prediction accuracy, we estimated the hybrid performance based

solely on the additive or dominance effects.

Cross-validations
We evaluated the accuracy of prediction of heading time and plant height by

genomic selection with the two established approaches RR-BLUP and BayesCp
as well as the newly developed W-BLUP using cross-validation. As population

structure in factorial crosses strongly influences prediction accuracy, we used a

cross-validation strategy in which training and validation were performed in

sets that were not related via shared parental lines. We sampled 100 times

10 male and 80 female parental lines plus 610 hybrids derived from them as

training set and estimated the additive and dominance effects. Only hybrids

originating from the remaining 5 male and 40 female parental lines formed the

validation set in which predictions derived from the training set were tested for

their cross-validation accuracy. Prediction accuracy was estimated as Pearson’s

correlation coefficient between the observed and the predicted hybrid

performance.

Evaluation of accuracy with computer simulations
We investigated the accuracy to predict the phenotypic performance by

conducting computer simulations based on the marker data of our study.

We followed the suggestion of Perez et al. (2010) and performed calculations

based on the assumption that most markers have very small effects except for

one marker that exhibits large additive and one marker that exhibits large

dominance effects. We further assumed an average ratio of genetic variance

explained by additive and dominance effects of 0.42 and a heritability of 0.77.

Moreover, the influence of the LD pattern on the prediction accuracy was

approached by comparing simulations. Data set LE-QTL, in which the selected

marker of interest had no LD (r2 valueso0.1) with all other markers involved,

and data set LD-QTL, in which the selected marker was set to show strong

linkage disequilibrium with r2 values 40.7 with at least 10 further markers,

were designed based on representative SNPs from our study and employed in

marker-assisted and genomic selection.

RESULTS

Phenotyping revealed broad genotypic variation for heading time
and plant height
A set of 135 elite winter wheat inbred lines and 1604 F1 hybrids
derived from them, adding up to in total 1739 entries, was evaluated
for heading time and plant height in the field under natural settings
at four locations. This revealed substantial genetic variation within
the experimental population, and comparably high estimates of
heritability of above 0.82 for heading time and plant height (Table 1).
As a prerequisite for efficient hybrid seed production, the 135

inbred lines had to be split into a group of 15 later-heading, taller,
open-pollinating types to be used as male and a group of 120 earlier,
shorter types to be used as female parents. This grouping is well
apparent in the distribution of genotypic values among the male and
female inbred lines (Figure 1). Mean average heading time and plant
height, respectively, were 151 days and 86.6 cm for male and 149 days
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and 73.6 cm for female parental lines, in comparison with 149 days
and 75.0 cm for all inbred lines together.

Alleles of major gene loci controlling heading time and plant
height were distributed unevenly among male and female
parental lines
The allele status of major gene loci controlling heading time and plant
height was determined in parental inbred lines and hybrids. Locus
Ppd-D1 is a major determinant of heading time in wheat, with the
photoperiod-insensitive allele Ppd-D1a promoting early heading in
temperate zones (Beales et al., 2007). All 15 late-heading inbred lines

used as male parents were homozygous for the photoperiod-sensitive
allele Ppd-D1b, whereas among the earlier female parents, lines
homozygous for either Ppd-D1a or Ppd-D1b were present.
Plant height is mainly influenced by loci Rht-B1 and Rht-D1, with

alleles Rht-B1a and Rht-D1a promoting tall plant stature and alleles
Rht-B1b and Rht-D1b promoting dwarfing (Ellis et al., 2002). This is
also reflected in our data (Figure 2). Inbred lines with allelic setup
Rht-B1a/Rht-B1a;Rht-D1a/Rht-D1a were tallest with a median of
average plant height of 84.6 cm, followed by Rht-B1b/Rht-B1b;
Rht-D1a/Rht-D1a and Rht-B1a/Rht-B1a;Rht-D1b/Rht-D1b with 73.2
and 72.5 cm, respectively, and the only Rht-B1b/Rht-B1b; Rht-D1b/
Rht-D1b line included, with an average plant height of 60.7 cm
(Figure 2). Among the tall lines used as male parents in hybrid
production, 13 were of type Rht-B1a/Rht-B1a;Rht-D1a/Rht-D1a and
two were of type Rht-B1b/Rht-B1b;Rht-D1a/Rht-D1a, whereas among
inbred lines used as female parents, all four possible homozygous
Rht-B1;Rht-D1 allele combinations were present.

Table 1 Estimates of variance components (s2) and heritability (H2)

on entry mean basis for heading time (in days after 1 January) and

plant height (in cm) in 135 parental winter wheat inbred lines and

their 1604 factorial crosses

Source Heading time Plant height

Parents

s2
Genotype 3.58a 22.54b

s2
Genotype� environment 1.26a 6.58b

H2 0.87 0.85

F1 hybrids

s2
Genotype 2.04a 17.79b

s2
Genotype� environment 0.58a 5.39b

s2
Error

c 1.13 12.71

H2 0.85 0.82

aSignificantly different from zero at the 0.001 level of probability.
bSignificantly different from zero at the 0.01 level of probability.
cAssumed same error variance for parents and F1 hybrids.
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Figure 1 Box-and-whisker plots of the distribution of genotypic values for

heading time and plant height for the 15 male and 120 female lines, and
the resulting 1604 single-cross hybrids evaluated across four environments.
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Figure 2 Box-and-whisker plots of the distribution of the genotypic values

for plant height for different Rht-B1 and Rht-D1 allele setups among the

135 parent lines and 1604 single-cross hybrids. Whereas alleles Rht-B1a

and Rht-D1a promote tall plant stature, alleles Rht-B1b and RhtD1b

promote dwarfing. Numbers in parentheses indicate numbers of inbred lines

or hybrids with respective genotypes.
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Hybrids displayed heterosis for plant height but not for
heading time
We observed contrasting responses of the two traits of interest to
hybridization (Figure 1). The median of average heading time of
hybrids was more similar to that of the 120 earlier-heading inbred
lines used as female parents, and average relative midparent heterosis
of heading time was only 0.7%. This low average midparent heterosis
observed in our study can be explained by small dominance effects
and/or by a lack of genetic differentiation among the male and female
lines. In contrast, average relative midparent heterosis was substantial
for plant height, amounting to 9.2%. Thus, the median of average
plant height of hybrids was more similar to that of the tall 15 inbred
lines selected as male parents.
To further scrutinize the heterosis for plant height, hybrids were

also grouped according to their allelic setup at gene loci Rht-B1 and
Rht-D1 (Figure 2). As only two of the possible four homozygous Rht-
B1;Rht-D1 allele combinations had been employed as male parents,
only six of the possible nine Rht-B1;Rht-D1 allele combinations were
present among the hybrids, including only two allowing direct
comparison with parental inbred lines. For these two combinations,
Rht-B1a/Rht-B1a;Rht-D1a/Rht-D1a and Rht-B1b/Rht-B1b;Rht-D1a/
Rht-D1a, hybrids were taller than the respective inbred lines, with
medians of average plant height of 87.6 cm (þ 4% compared with
inbred lines) and 84.0 cm (þ 15%), respectively (Figure 2). Thus,
heterosis of plant height manifested between inbred lines and hybrids
carrying the same, homozygous Rht-B1;Rht-D1 allele setup.
As Ppd-D1 is also known to influence plant height (Worland et al.,

1998; Beales et al., 2007), its allele status was checked in the compared
plant groups. All Rht-B1a/Rht-B1a;Rht-D1a/Rht-D1a parental lines
and hybrids that were included in our study were at the same time
homozygous for the photoperiod-sensitive allele Ppd-D1b promoting
a tall plant stature that excluded differences at this locus as an
explanation for differences in plant height. Consistently, plant height
heterosis between Rht-B1b/Rht-B1b;Rht-D1a/Rht-D1a inbred lines
and hybrids persisted when subgroups containing only material
homozygous for Ppd-D1b were compared.

Marker-assisted selection for heading time and plant height
The genotypic variation of heading time could be predicted by
marker-assisted selection based on the functional marker for Ppd-D1
(Beales et al., 2007) with an accuracy of 0.45 for the parental inbred

lines (data not shown) and with an accuracy of 0.53 for the hybrids
(Table 2). In the pooled populations of parental inbred lines and
hybrids, prediction accuracy of marker-assisted selection for heading
time amounted to a rather high 0.54 based only on the functional
marker for Ppd-D1. The degree of dominance was �0.72 in the
direction of the early-flowering homozygous Ppd-D1a class.
Prediction accuracy of marker-assisted selection for plant height

based on the functional markers for Rht-B1 and Rht-D1 (Ellis et al.,
2002) was much higher with 0.62 for the inbred lines as compared
with 0.29 for the hybrids (Figure 2). Adding the functional marker
information for Ppd-D1 (Beales et al., 2007) to the one for Rht-B1 and
Rht-D1 led to an increased prediction accuracy of 0.44 in the
population of the hybrids. In the pooled populations of inbred lines
and hybrids, the prediction accuracy amounted to 0.69 based on all
three functional markers for gene loci Ppd-D1, Rht-B1 and Rht-D1.
The degrees of dominance of the three functional marker loci for
plant height determined on the basis of combined inbred line and
hybrid data with fitting general terms to groups of female parents,
male parents and hybrids were 1.2 toward the tall allele Rht-B1a,
and 0.5 and 1.2 toward the short alleles Rht-D1b and Ppd-D1a,
respectively (Figure 3). The model selection revealed significant
digenic epistatic interactions involving additive and dominance effects
among gene loci Rht-B1 and Rht-D1.

Cross-validated accuracy of marker-assisted and genomic selection
The cross-validation of marker-assisted selection revealed no severe
drop in prediction accuracies (Table 2) compared with the non-cross-
validated accuracies (Figure 2) for both heading time and plant
height. This is not surprising as we considered the accuracy of
marker-assisted selection based on well-established functional markers
for plant height and heading time. The marginally higher accuracy for
cross-validated versus non-cross-validated values observed for head-
ing time resulted from the fact that the accuracies of prediction were
evaluated exclusively in the population of hybrids. For the non-cross-
validated values, this applies to the estimation and the test set, as both
are identical. In contrast, in the cross-validation study, we used

Table 2 Average prediction accuracy of MAS and three different

approaches of genomic selection for heading time and plant height

Method Heading time Plant height

Accuracy s.d. Accuracy s.d.

MAS-NCVa 0.526 — 0.444 —

MASb 0.535 0.091 0.378 0.101

RR-BLUPc 0.404 0.112 0.395 0.135

BayesCpc 0.442 0.114 0.422 0.125

W-BLUPc 0.576 0.110 0.502 0.115

Abbreviations: MAS, marker-assisted selection; RR-BLUP, ridge regression best linear unbiased
prediction; NCV, non-cross-validation; W-BLUP weighted best linear unbiased prediction; s.d.,
standard deviation.
aMAS-NCV indicates MAS prediction accuracy without cross-validation based on functional
marker Ppd-D1 for heading time and functional markers Ppd-D1, Rht-B1 and Rht-D1 for plant
height. As only one value is available, s.d. could not be determined.
bMAS prediction accuracy according to cross-validation.
cGenomic selection accuracies according to cross-validation for RR-BLUP, BayesCp and
W-BLUP based on 1280 markers plus the functional markers.
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parental inbred lines besides the hybrids to estimate the marker
effects. Obviously, this contributed to the precision to estimate
marker effects.
The genotypic variation of heading time and plant height was

further predicted based on 1280 SNP markers in combination with
functional markers by three different genomic selection approaches,
including the well-established RR-BLUP and BayesCp methods as well
as the newly developed W-BLUP. Cross-validation studies of predicted
values revealed that for most scenarios accuracies based on additive
and dominance effects were higher than that based on additive or
dominance effects alone for both traits (Figure 4). An interesting
exception is made by the very low accuracies based on dominance
effects observed for heading time and RR-BLUP that are in sharp

contrast to the results from BayesCp and W-BLUP. The differences in
accuracies can be explained by the large contribution to the
phenotypic variation of the dominance effect of Ppd-D1 that can
only be properly handled by low shrinkage parameters for this
marker. In the following, we will present only the prediction
accuracies for combined additive and dominance effects.
Accuracies of prediction from marker-assisted selection as well as

accuracies of prediction from all three genomic selection approaches
differed substantially between the two traits of interest (Table 2).
For heading time, prediction accuracy decreased from 0.54 with
marker-assisted selection to 0.40 with RR-BLUP (�25%), and 0.44
with BayesCp (�17%), and only improved to 0.58 with W-BLUP
(þ 7%). In contrast, for plant height, the low accuracy of 0.38 seen
for marker-assisted selection gradually improved over 0.39 with
RR-BLUP (þ 4%) and 0.42 with BayesCp (þ 10%) to 0.50 with
W-BLUP (þ 24%). However, even with W-BLUP, accuracy of
prediction stayed lower for plant height compared with heading time.

Comparison of marker-assisted and genomic selection based on
simulations
Although Ppd-D1 controlling heading date was found in LD
(r2¼ 0.15) with only one SNP marker, Rht-B1, Rht-D1 and Ppd-D1
relevant for plant height were found in total to be in LD with 16 SNP
markers. In order to test this as an explanation for the different
predictive powers of genomic selection based on combined genome-
wide and functional marker information for different traits, we
performed a simulation study contrasting a scenario in which
functional SNPs of interest were in linkage equilibrium with the
panel of markers (LE-QTL) with one in which functional SNPs were
in LD with several markers (LD-QTL). This simulation scenario
revealed that the pattern of LD between functional SNPs with a
substantial contribution to the genotypic variance is crucial for the
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Figure 4 Box-and-whisker plots of accuracy to predict heading time and plant height for the three genomic selection methods RR-BLUP, BayesCp and

W-BLUP based on 1280 SNPs and trait-specific functional markers.

Table 3 Average prediction accuracies of MAS and three different

approaches of genomic selection for simulated data sets

Method LE-QTL LD-QTL

Total Additive Dominance Total Additive Dominance

MASa 0.55 0.46 0.31 0.66 0.61 0.35

RR-BLUPb 0.46 0.39 0.34 0.75 0.67 0.46

BayesCpb 0.58 0.47 0.36 0.76 0.66 0.43

W-BLUPb 0.74 0.63 0.45 0.77 0.69 0.43

Abbreviations: LD, linkage disequilibrium; LE, linkage equilibrium; MAS, marker-assisted
selection; QTL, quantitative trait locus; RR-BLUP, ridge regression best linear unbiased
prediction; W-BLUP weighted best linear unbiased prediction.
Based on representative single-nucleotide polymorphisms (SNPs) from our study, we assumed a
scenario LE-QTL, in which a selected marker was in no LD with all other markers involved, and
a scenario LD-QTL, in which a selected marker was in strong LD with at least 10 further
markers.
aMAS prediction accuracy according to cross-validation.
bGenomic selection accuracies according to cross-validation for RR-BLUP, BayesCp and
W-BLUP.
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accuracy of genomic selection approaches (Table 3). Looking at
prediction accuracies for combined additive and dominance effects,
we observed for the LE-QTL scenario a decrease in prediction
accuracy from 0.55 for marker-assisted selection to 0.46 for RR-BLUP
(�16%), but an increased accuracy with 0.58 for BayesCp (þ 5%)
and 0.78 for W-BLUP (þ 42%). Using the preknowledge on
important functional markers in the W-BLUP approach led to
considerably improved prediction accuracy as compared with
marker-assisted selection in this scenario. For the LD-QTL scenario,
we also observed, although less pronounced, an increase in prediction
accuracy when shifting from marker-assisted selection with 0.66 to
genomic selection with close to 0.76 for all three approaches (þ 15%)
irrespective of the method applied.

DISCUSSION

Development of hybrid breeding opens a new route to increase yield
potential in wheat, but it is also connected with new challenges, the
appropriate balancing of heading time and plant height being two of
them (Longin et al., 2012). Heading time and plant height are traits
important for performance of winter wheat and thus have received
substantial attention in line breeding. Key gene loci controlling
heading time (Ppd-D1) and plant height (Rht-B1, Rht-D1 and Ppd-
D1) are well known, and favorable alleles have been pivotal in shaping
current elite wheat (Worland et al., 1998; Peng et al., 1999; Beales
et al., 2007). However, more QTLs with small to medium effects are
to be expected to fine-tune these traits in both inbred lines and
hybrids. Thus, we obtained heading time and plant height phenotypic
data in field trials at four locations and generated genotyping data
using a 9k wheat SNP array and functional marker tests for Ppd-D1,
Rht-B1 and Rht-D1 for a population of 135 wheat inbred lines and
1604 hybrids derived from them.
Unexpectedly, marker-assisted selection as well as genomic selection

approaches RR-BLUP and BayesCp showed quite different accuracies
of prediction for the two traits of interest in cross-validation tests.
For heading time, prediction by marker-assisted selection based on
Ppd-D1 alone was already highly accurate for inbred lines, hybrids
and the combination of both. In contrast, for plant height, prediction
by marker-assisted selection based on Rht-B1, Rht-D1 and Ppd-D1
was accurate only for inbred lines alone, but not for hybrids alone or
the combination of inbred lines and hybrids. Cross-validation fully
confirmed the high accuracy of prediction by marker-assisted selec-
tion for heading time, but indicated that the already lower accuracy of
prediction for plant height was slightly overestimated. Genomic
selection also showed different accuracies of prediction for the two
traits in cross-validation. In comparison with marker-assisted selec-
tion, accuracy of prediction of heading time dwindled in genomic
selection with RR-BLUP and was still low with BayesCp for combined
inbred lines and hybrids, whereas for plant height, it improved with
RR-BLUP and even further with BayesCp. Consequently, the advan-
tage of marker-assisted versus genomic selection strongly depends on
the trait of interest and the genetic architecture underlying it.
One further explanation for the differences in prediction accuracies

of genomic selection for the two traits might be differences in the LD
structure. Whereas Ppd-D1 controlling heading date is in LD with
only one SNP marker, Rht-B1, Rht-D1 and Ppd-D1 relevant for plant
height are all together in LD with a total of 16 SNP markers. Such an
influence of LD was confirmed by our simulation studies. In a setup
assuming a functional marker without SNP markers in LD, accuracies
of prediction of marker-assisted selection, RR-BLUP and BayesCp
showed a drop with RR-BLUP similar to that seen for heading time,
whereas in a setup assuming a functional marker in LD with several

SNP markers, increasing accuracies similar to that seen for plant
height were found.
Yet another reason for the differences in the accuracies of

prediction between the two traits might reside in hybrid-related
effects. For both heading time and plant height, additive as well as
dominance effects contributed to the accuracies of genomic selection,
but to different extents. Additive effects were found most important
for heading time, in particular in context with RR-BLUP, whereas for
plant height, additive and dominance effects contributed in a more
balanced way. This is consistent with the very low midparent heterosis
for heading time and the contrasting substantial midparent heterosis
for plant height observed in our study.
With regard to the control of heading time and plant height, partial

dominance of the Ppd-D1 allele promoting early heading (Ppd-D1a)
and of the Rht-D1 allele promoting short plant stature (Rht-D1b)
reported by Worland et al. (1998) and Beales et al. (2007) could
be confirmed. In contrast, the apparent overdominance of alleles
Ppd-D1a and Rht-B1a (the latter one even in the direction of tall plant
stature) in context with plant height found in our study is incon-
sistent with these publications. However, there are previous reports of
similar overdominance (Allan et al., 1968) and generally increased
plant height (Allan et al., 1968; Fick and Qualset, 1973) in wheat F1
hybrids. Furthermore, because of the need to use late-heading tall
inbred lines as male and early-heading shorter ones as female parents
in wheat hybrid production, Ppd-D1, Rht-B1 and Rht-D1 alleles
promoting early heading (Ppd-D1a) and short stature (Ppd-D1a,
Rht-B1b and Rht-D1b) were distributed nonrandomly among the
parental lines, and thus also among the hybrids.
The nonsatisfactory performance of RR-BLUP and also BayesCp in

the prediction of heading time and plant height is in part because of
inappropriate weighting of functional marker versus SNP marker
contributions. To resolve this limitation, we developed W-BLUP that
balances the contributions from random and functional markers by
including additional effect of the latter ones. Accordingly, W-BLUP
performed better than both RR-BLUP and BayesCp in prediction
based on experimental as well as simulated data. Thus, W-BLUP
provides a new robust tool to bridge the gap between marker-assisted
and genomic selection.
Heading time and plant height also differed in their levels of

heterosis, with heading time showing almost no response to hybri-
dization, whereas plant height was increased by 4 to 15%. The
difference in the response of the two traits to hybridization and the
substantial heterosis in plant height toward tall plant stature had
already shown up in the initial analysis of the data set (Longin et al.,
2013). As a short, sturdy plant stature is favorable in wheat cultivation
(Borlaug, 1983), a major challenge for future wheat hybrid breeding
will be to counterbalance the heterosis in plant height and to mobilize
the surplus in biomass into grain yield. In previous conventional
wheat line breeding, plant height has been traded for yield gain by
using dwarfing alleles Rht-B1b or Rht-D1b, usually either one or the
other, but rarely both in combination, as homozygosity for both
alleles leads to very small plants with diminished yield potential.
As the degree of heterosis in plant height seemed to be influenced

by the Rht-B1 and Rht-D1 alleles present, with the already tall
Rht-B1a; Rht-D1a homozygous setup allowing less heterosis than the
shorter Rht-B1b;Rht-D1a setup, plant height heterosis in hybrids
might actually be able to mend the drawbacks of even a Rht-B1b;
Rht-D1b double-homozygous setup. A respective tendency toward
increased plant height has been described for wheat hybrids obtained
from crosses of semi-dwarf (likely Rht-B1b;Rht-D1b) lines previously
(Allan et al., 1968). However, the single Rht-B1b; Rht-D1b double-

Hybrid wheat heading time and plant height
Y Zhao et al

644

Heredity



homozygous inbred line included as a female parent in our study had
the lowest grain yield of all inbred lines, ranking 135th among 135
lines, and it would be hard to produce Rht-B1b;Rht-D1b double-
homozygous wheat hybrids on a large scale in practical terms, as the
male parents need to be tall to be efficient as pollen donors. A
practicable solution might be the generation of hybrids homozygous
for Rht-B1b and heterozygous for Rht-D1b by crossing an
Rht-B1b;Rht-D1a father and an Rht-B1b;Rht-D1b mother. In the
one case available to us, the success of this approach was limited.
Although the semi-dwarf Rht-B1b;Rht-D1b homozygous inbred line
used as female parent had the lowest grain yield of all 135 lines in the
study and the tall Rht-B1b; Rht-D1a homozygous inbred line used as
male parent ranked 11th of all 135 lines with regard to grain yield,
the resulting hybrid homozygous for Rht-B1b and heterozygous for
Rht-D1b had a plant height within the appropriate range and ranked
1478th of 1604 hybrids with regard to grain yield, indicating a grain
yield midparent heterosis of 12.3% (data not shown). Thus, although
this one observation seems rather promising, the balancing of plant
height heterosis in hybrid wheat is still providing a substantial
challenge.
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