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ABSTRACT

Motivation: Despite much dynamical cellular behaviour being

achieved by accurate regulation of protein concentrations, messenger

RNA abundances, measured by microarray technology, and more

recently by deep sequencing techniques, are widely used as proxies

for protein measurements. Although for some species and under some

conditions, there is good correlation between transcriptome and prote-

ome level measurements, such correlation is by no means universal

due to post-transcriptional and post-translational regulation, both of

which are highly prevalent in cells. Here, we seek to develop a data-

driven machine learning approach to bridging the gap between these

two levels of high-throughput omic measurements on Saccharomyces

cerevisiae and deploy the model in a novel way to uncover mRNA-

protein pairs that are candidates for post-translational regulation.

Results: The application of feature selection by sparsity inducing

regression (l1 norm regularization) leads to a stable set of features:

i.e. mRNA, ribosomal occupancy, ribosome density, tRNA adaptation

index and codon bias while achieving a feature reduction from 37 to 5.

A linear predictor used with these features is capable of predicting

protein concentrations fairly accurately (R2 ¼ 0:86). Proteins whose

concentration cannot be predicted accurately, taken as outliers with

respect to the predictor, are shown to have annotation evidence

of post-translational modification, significantly more than random

subsets of similar size P50:02. In a data mining sense, this work

also shows a wider point that outliers with respect to a learning

method can carry meaningful information about a problem domain.
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1 INTRODUCTION

The analysis of high-throughput experimental data has played a

dominant role in biological research over the last decade or so.

Advances in instrumentation, coupled with our ability to archive

and share data, have revolutionized the way one approaches

biological problems, more at a systems level than at the individ-

ual component level. Terabytes of data from thousands of

experiments at the transcriptome, proteome and metabolome

levels are now available along with metadata corresponding to

the primary scientific question. There is, however, a massive

skew in the amount of interest shown across the above omic

scales, gene expression measurements made with microarray

technology being highly dominant with respect to the other

two. The rapid take-up of this technology by the experimental

community, the monotonic reduction in cost of arrays and the

early establishment of data archiving initiatives (Brazma et al.,

2001) have led to a large community-wide focus on the transcrip-

tome. Functional inference about co-regulated genes or genes

along a signalling pathway (Brown et al., 2000), disease state

classification focusing at the molecular level subtypes (Golub

et al., 1999), subspace projections (Zheng-Bradley et al., 2010)

and the reconstruction of regulatory networks (Liao et al., 2003;

Sanguinetti et al., 2006) have been a number of notable success

stories with transcriptome-level studies.
However, the transcriptome itself can, at best, give an approxi-

mate picture of cellular state and function. Useful biological

phenomena such as dynamic cellular function and differential

spatio–temporal behaviours arise from quantitatively and pre-

cisely regulating protein levels. Such behaviours arising from

protein-level regulations have been modelled extensively by

mathematical and computational models. Examples include con-

trolled progression through the cell cycle (Chen et al., 2004),

transcription delay-driven oscillations (Monk, 2003) and spatial

selectivity in morphogenesis (Houchmandzadeh et al., 2002; Liu

and Niranjan, 2011).
Several authors have evaluated the correlation between

mRNA measurements and the corresponding protein measure-

ments (Beyer et al., 2004; Futcher et al., 1999; Gygi et al., 1999;

Wu et al., 2008) and report varying levels of correlation. Tuller

et al. (2007) have developed a machine learning-based predictor

of protein concentrations, which takes a different approach to

previous research. In addition to mRNA levels, they construct a

dataset with several properties of mRNA–protein pairs and train

a linear predictor to predict protein levels. They carry out a

greedy feature selection procedure to select a subset of relevant

features. By this process, Tuller et al. (2007) achieved a correl-

ation of 0.76 between the true concentrations and the corres-

ponding linear predictions. Their greedy feature selection

approach selects three input features as relevant predictors:

(i) mRNA levels; (ii) tRNA adaptation index (tAI); and (iii) evo-

lutionary rate (ER), determined by rate of evolution of a gene by

comparison with orthologous in other organisms.

Data-driven models have been used extensively in the analysis

of genomic data. Clustering, classification and time series ana-

lysis of microarray data have been carried out by several authors.

Probabilistic approaches such as coupled mixture model with

clustering (Rogers et al., 2008) and Bayesian model (Kannan

et al., 2007) on transcriptomic and proteomic expressions

investigate the relationship between these measurements. An

approach that has not attracted much usage in genomic data*To whom correspondence should be addressed.
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analysis is novelty detection, in which one builds a statistical
model of normal data and tests these against newly arriving
abnormal data. The basic premise in such an approach is

that when a data-driven model is applied to data, examples
(or subsets of data) on which the model fails will also be inform-
ative. We build on this notion and, by seeking to develop a

predictor of protein concentrations in the same spirit as in
previous work (Tuller et al., 2007), identify mRNA–protein
pairs that are novel with respect to the performance of such a

predictor.
We construct a data-driven linear predictor of protein concen-

trations, using as input mRNA concentrations and other proxy

variables that can potentially regulate protein levels. Once we
construct such a predictor, we look for systematic errors made
by the predictor; i.e. we hypothesize that those mRNA–protein

pairs for which construction of a data-driven predictor is difficult
and also predicted protein abundance is lower than the measured
abundance, are likely candidates for post-translational regula-

tion. This follows from the fact that the input features used
in constructing a regressor have no information pertaining to
post-translational modifications (PTMs).

Post-translational regulation of proteins is important in many
biological processes. For example, Tebaldi et al. (2012) demon-
strate significant response variations at the translational level,

decoupled from the transcriptional level, of mammalian cells
under various stimuli. O’Neill et al. (2011) show that animal
and plant cells have prominent post-translational contributions

to timekeeping with respect to biochemical oscillations. Further,
powerful computational models are also being applied to cor-
recting measurements of post-translationally modified proteins

(Chung et al., 2013).
PTMs are known to be triggers of intracellular proteolytic

degradation (Callis, 1995). In vivo stability of proteins can be

substantially influenced by specific amino acid substitutions.
PTMs such as phosphorylation and acetylation can act as
proxies for such mutations by attachments at specific local

sites, increasing the susceptibility of the protein to proteinase
action (Holzer and Heinrich, 1980; Hood et al., 1977).
Localized PTMs, such as methylation, can be equivalent to

site-specific amino acid substitutions, affecting the degradation
rate of proteins (Stadtman, 1990). Nalivaeva and Turner, (2001),
reviewing PTMs, suggest that glycosylation (glycoprotein)

and N-link acetylation influence protein stability. They also
claim modifications caused by isopeptide bond formations with
members of the ubiquitine family can be implicated in protein

turnover, post-translationally. Swaney et al.’s (2013) study
shows that phosphorylation machinery can be regulated by
ubiquitination.

Further, motif information on determinants of protein stabil-
ity and degradation under PTMs is often available. The presence
of PEST motif sequences located in flexible regions accelerates

degradation under phosphorylation (Garcı́a-Alai et al., 2006;
Marchal et al., 1998). N-terminus segments act as degradation
signals in cellular proteins. Thus, N-actelylation with N-acetyl-

transferase segments is directly involved in protein degradation
process (Hwang et al., 2010; Solomon and Goldberg, 1998).
D and KEN Box motifs signal the anaphase promoting complex

machinery that leads to ubiquitination and subsequent protein
degradation (Burton and Solomon, 2001; Pfleger and Kirschner,

2000). The previously mentioned are observations we will exploit

to confirm that proteins found by our novelty-detection frame-

work are likely candidates for post-translational regulation of

their concentrations (see Section 3).
This article makes two contributions to data-driven modelling

at the transcriptome–proteome interface. First, the linear regres-

sion with sparsity inducing regularization (LASSO) method can

identify features that are relevant to a prediction problem. This,

in the context of computational biology problems, is an alternate

approach to the often used greedy forward selection of features.

The accuracy of prediction of protein concentrations shows

improvement over previous efforts at this problem. Second,

model failures carry useful information, and this is demonstrated

by identifying genes whose predicted protein concentrations are

outliers (Li and Niranjan, 2006) with respect to predictions

obtained by a global regression. These are confirmed by checking

functional annotations.

2 METHODS

2.1 Data preparation

Several datasets were combined together using the open reading frame

(ORF) and gene names to generate our final dataset. mRNA abundance

data for Saccharomyces cerevisiae were downloaded from Greenbaum

et al. (2003). We used PaxDb (Wang et al., 2012) to find the relevant

protein abundance data, which was developed by integrating four data-

sets (de Godoy et al., 2008; Desiere et al., 2006; Ghaemmaghami et al.,

2003; Newman et al., 2006). Ribosome density was taken from Arava

et al. (2003). Gene length, ribosomal occupancy, proteins per second and

relative translation rate data were obtained from Greenbaum et al.

(2003). mRNA half-life data were downloaded from Miller et al.

(2011). Twenty-eight sequence-derived properties, also used by Tuller

et al. (2007), were obtained from Cherry et al. (2012). tAI data were

taken from Man and Pilpel (2007) and ERs of proteins were downloaded

fromWall et al. (2005). In all cases, experimental data used corresponded

to S.Cerevisiae cell cultures under exponential growth conditions.

Comparing with previous work (Tuller et al., 2007), gene length, riboso-

mal occupancy, proteins per second, ribosome density, relative transla-

tion rate and mRNA half-live are used as new features in our study.

When these different datasets are put together, and some data are filtered

for missing values and low mRNA abundances (log expression of�1), we

obtained feature values and protein concentrations for 1895 proteins,

which was the dataset we worked with.

2.2 Sparse regression

Feature selection is a key step in regression problems. For technical rea-

sons, it is usually beneficial to reduce the dimensionality of the space,

thereby avoiding the curse of dimensionality, which states that the amount

of data needed to reliably estimate probability densities grows exponen-

tially with dimensions. Further, by selecting a subset of features, we are

likely to improve our ability to explain useful aspects of the problem

domain. The search for a subset of features has combinatorial complexity

and greedy searches such as sequential forward selection and backward

deletion are commonly used (Lovell et al., 1998). For the protein concen-

tration prediction problem, Tuller et al. (2007) used greedy forward

selection. This approach is particularly weak when there are correlated

features in the input data. We chose the alternate approach of sparsity

inducing regularizers embedded within the estimation of linear regression,

also known as LASSO (Tibshirani, 1994), to achieve feature selection.

This l1-regularized regression has attracted much interest in recent litera-

ture and has the appealing property of easy implementation via convex
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programming (Lu et al., 2011; Park and Casella, 2008; Wu et al., 2009).

The objective function minimized is as follows:

min jjXw � yjj2 þ �jjwjj1
� �

ð1Þ

where X is the input matrix of covariates, y is the response vector and w is

the weight vector of unknowns. � controls the amount of regularization,

and with the l1 norm constraint determines the number of non-zero terms

in w, i.e. sparsity of the solution. We used the CVX package within a

MATLAB environment for optimization of the sparse regressor and,

after observing a histogram of the resulting weight values, centre clipped

the weights at 0.2 to arrive at the sparse solution.

To evaluate uncertainties in estimates, we constructed 1000 boot-

strapped samples of 500 genes each from the data and estimated the

sparse regressor over 20 values of � in the range 0–1000. Average

number of features selected (Fig. 1A) shows a stable region over several

orders of magnitude of �, from which a stable feature set is selected.

2.3 Development of protein abundance predictor

The protein abundance predictor is a linear predictor, based on the five

features selected by the LASSO method, obtained by minimizing the

following:

min jjXw � yjj2
� �

ð2Þ

Data were partitioned into five groups at random. With each of the

groups retained as test data, linear models were estimated from the

remaining four groups pooled together. Thus, all predicted values of pro-

tein concentrations from which outliers were detected (see Section 3) were

on out-of-sample predictions. Predictors were developed with the five

features selected by LASSO, the set of three features from previous

work (Tuller et al., 2007) and with all 37 features as input.

Neural net: We also implemented neural network predictors to confirm

any non-linear relationships between the variables and output protein

concentrations. For this the neural network toolbox in MATLAB

was used with stochastic gradient descent optimization of a multi-layer

perceptron neural network with 10 hidden units (Bishop, 1995).

2.4 PTM annotation check

We looked for outliers being post-translationally regulated by observing

the functional annotations at two levels. At the first level, we used

UniProt database (Magrane and Consortium, 2011), which is cross-

referred by the PaXDb (Wang et al., 2012) where we obtained our initial

protein abundances. Several databases were used to carry out the finer

level annotation check. EMBOSS explorer epestfind database

(Rice et al., 2000) was used to detect PEST motifs of the proteins with

phosphorylation modification. N-termini segments of acetylation were

obtained by NetAcet 1.0 database (Kiemer et al., 2005). D and

KEN box motifs, which accelerate ubiquitination, were detected using

GPS-ARM 1.0 toolkit (Liu et al., 2012).

3 RESULTS

Sparse linear regression selects a compact set of features relevant
for predicting protein concentrations accurately. Further, out-
liers with respect to the predictor we constructed, for whom
the predicted protein concentration ðP̂Þ was greater than the

measurement (P), contained significant over-representation for
proteins annotated with keywords of PTMs.

3.1 Feature selection

In implementing l1-regularized regression, the choice of regular-
ization term � is crucial. Figure 1(A) shows the variation in aver-
age number of retained features, as a function of �. We note that
the number of features selected does not reduce linearly. Instead,

there is a stable region, over three orders of magnitude of �
(0.001 and 1) in which five features are selected, suggesting
that this dataset consist of five dominant features. To confirm

this, we constructed several datasets of similar size with uniform
random numbers and carried out such sparse regressions.
We found the monotonic reduction in the number of features

selected, also shown in Figure 1A (dashed line), on the random
regression problems had no stable region of a constant number
of features retained.

Across the 1000 bootstrap samples (see Section 2), six com-
binations of feature subsets (containing 6, 5, 5, 6, 4 and 4 fea-
tures) were frequently identified as relevant for the prediction.
The corresponding frequencies are shown in Figure 1B. We note

that feature set identified as set 3, consisting of five features,
appears significantly more number of times than any of the
others. This set consisted of the following features: mRNA,

ribosomal occupancy, ribosome density, tAI and codon bias.
This differs slightly from Tuller et al.’s (2007) study that identi-
fied mRNA, tAI and ER as relevant features. We find that in

addition to mRNA and sequence derived features, measurements
relating to translational efficiency (ribosomal density and occu-
pancy) are also significant. This is to be expected because trans-
lation efficiency directly influences the quantity of protein

synthesized (Greenbaum et al., 2003).

Fig. 1. Feature selection by l1 regularization. (A) Variation in the average

number of selected features as a function of the regularization parameter

�, which have a stable region over three orders of magnitude of � (0.001

and 1). (B) Identification of the best set of features (set 3) from the most

frequent six sets of features, which recognized from the stable � region
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Codon bias refers to differences in the frequency of occur-
rences of synonymous codons in coding DNA and evolutionary
origins of codon bias has been investigated by Wallace et al.

(2013). The role of such evolutionarily accrued biases in encod-
ing on protein concentrations has been noted previously

(Brockmann et al., 2007; Tuller et al., 2010). tAI might have a
similar role, being related to the codon adaption index for a gene

(Reis et al., 2004). In a study on the human proteome, Waldman
et al. (2010) directly associate tAI with translational efficiency.

3.2 Protein abundance predictor

With the five features we selected by l1-regularized regression,
protein abundances were predictable to a higher level of accuracy

by a linear predictor than either simply looking for correlation
with mRNA levels or by the features identified in Tuller et al.’s
(2007) work. Our best five features gave a correlation of

r2 ¼ 0:86 between predicted and true values, whereas the com-
bination of mRNA, tAI and ER, identified in Tuller et al.’s

(2007) work, gave only r2 ¼ 0:80. Using all 37 features also
achieved r2 ¼ 0:80 on unseen (cross-validated) data, which is

lower than our five feature accuracy. Thus, in various combin-
ations of tests the five features selected from regularization

turned out to be superior.
Performing prediction on neural net non-linear model gave

only r2 ¼ 0:82 for our feature set and r2 ¼ 0:79 for the three
feature combination from previous work. When the neural net
was trained on all 37 features, the accuracy of prediction

dropped drastically to r2 ¼ 0:69. Thus, similar to the observation
made by Tuller et al. (2007), there is no significant advantage in

using a non-linear model to this prediction task.
As ER was not selected as a dominant feature in our feature

selection model, we examined the prediction performances by
progressively adding our five features and then including ER

as a sixth feature. As shown in Figure 2, the inclusion of the
five features monotonically improved prediction results (this
happens to be true for any order in which they are taken), but

when ER was taken as an additional feature, the results dropped
to r2 ¼ 0:80. ER as the only feature achieves a correlation of

r2 ¼ �0:46 with protein concentrations. Similar to adaptation
indices, the role of ER as a predictor of protein concentration

is merely an empirical observation noted by researchers (e.g.
Moreira et al., 2002), but the precise molecular mechanism of

regulation remains unknown.

3.3 Post-translational regulations

Figure 3 shows a scatter plot of the predicted protein concentra-
tion ðP̂Þ against the true concentration (P) from which we

detected outliers, points that are furthest away from the regres-
sion line (shown as solid line). When we select the top 50 outliers,

48 of them were found to be in the upper half of the graph where

P5P̂, i.e. the measured concentration is smaller than what the
global regression predicts from mRNA level information.

To confirm that proteins for which P5P̂ are likely candidates
for post-translational regulation, we carried out an analysis using

functional annotations at two levels: (i) at a coarse level,
PTMs are a primary requirement for regulation and (ii) at a

finer level, PTMs coupled with information about protein
stability determinants (motifs) are stronger indicators of post-

translational regulation (i.e. PhosphorylationþPEST motifs,

AcetylationþN-termini segments and UbiquitinationþD or
KEN Box motifs). At both levels, we looked for over-represen-

tation of annotations within the outlier set when compared with
random subset of same size.

3.4 Level 1: coarse level PTM analysis

Forty-two proteins among the 48 outliers (upper half) were

recognized as being subject to PTMs and are shown in
Table 1. Neither of the proteins found as outliers in the lower

half of the scatter plot had this property.
To estimate a level of confidence in the PTM keyword over-

representation in the outlier set, we used 1000 random samples of
proteins of size 50 and constructed a Gaussian distribution of

the number of PTM proteins found in these sets. The resulting

distribution had mean and standard deviation of 34.286 and
3.576, respectively. From this the claim of over-representation

of PTM proteins among the outlier subset can be made at sig-
nificance of P ¼ 0:02. As is usual in biomedical research of this

kind (McDonald, 2009), if we take a P¼ 0.05 as a threshold of

Fig. 2. Performance of l1-regularized regressor, adding features one at

a time. Addition of our mRNA, codon bias, ribosomal occcupancy,

ribosome density and tAI, which identified by l1-regularization feature

selection process, monotonically increased the accuracy in each step.

However, addition of evolutionary rate reduced the overall accuracy of

the predictor

Fig. 3. Outlier detection on protein concentration prediction. In all,

2.5% of the least accurate predictions (a total of 50) were selected as

outliers
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accepting a hypothesis of interest, our suggestion that proteins in
P5P̂ outlier set are post-translationally modified is supported.

We also checked 50 outliers from the Tuller et al.’s (2007) three
feature set predictor for significance of over-representation of
PTM proteins. Thirty-seven proteins were identified with PTM

annotations, giving P¼ 0.22. When we took 50 outliers directly
from a scatter plot of mRNA and protein levels, the number of

PTMs detected was 35, corresponding to a P¼ 0.42.
We also looked at various cut-off levels at which an mRNA–

protein pair could be called an outlier with respect to the global

predictor. Setting cut-offs to extract 1, 2.5 and 5% of the data as
outliers, we repeated the above exercise and obtained P-values.
These are shown in Table 2.

With our five feature predictor, the top 100 outliers containing
over-represented post-translationally modified proteins are at a

higher level of significance than for the top 50 outliers detected
from Tuller et al.’s (2007) three feature predictor (P¼ 0.17 and
P¼ 0.22, respectively). This further confirms that the ranking of

data arising from our five input predictor is more informative.

3.5 Level 2: finer level PTM analysis

At this level of probing annotations of the outlier set of proteins,

37 of the 50 had PTM with motif information. The correspond-
ing confidence level, computed similarly to the level 1 check,
achieved P510�12.

For predictors with Tuller et al.’s (2007) feature set and for
simply considering mRNA–protein scatter plot to pick outliers,

the finer level annotation that gave higher levels of confidence in
over-representation (P¼ 0.0017 for 26 proteins and P¼ 0.042 for
22 proteins, respectively).

When we changed the cut-off levels to 1 (20 proteins) and 5%
(100 proteins) of the data defined as outliers, we obtained con-
fidence levels of P¼ 10�12 and P¼ 0.001, respectively.

We note that this level of checking annotations information,
i.e. incorporating PTMs with motif information that influence

protein stability, gives higher levels of confidence in support of
our hypothesis.
Thus, in all checks carried out comparing available annotation

information, we can conclude that the outlier set of proteins are
more likely to be regulated post-translationally. Further, PTM
detection ability of our predictor (by looking at the outliers)

outperformed in both annotation checks.
Gene Ontology (GO) enrichment analysis: We also subjected

the 50 outliers to GO enrichment analysis using Gene Ontology

Enrichment Analysis Software Toolkit (GOEAST) (Zheng

Table 1. PTMs identified in 50 outliers (cut-off at 2.5%)

ORF name Gene name PTMs

YJL129C TRK1 Glycoprotein, Phosphoprotein

YBR038W CHS2 Glycoprotein, Phosphoprotein

YDL093W PMT5 Glycoprotein

YDL217C TIM22 x

YFL029C CAK1 Phosphoprotein

YHR031C RRM3 Phosphoprotein

YJR124C YJR124C Phosphoprotein

YDL048C STP4 Phosphoprotein

YGL159W YGL159W x

YDR006C SOK1 Phosphoprotein

YIL169C YIL169C Glycoprotein

YDL222C FMP45 Glycoprotein, Phosphoprotein

YDL130W RPP1B Acetylation, Phosphoprotein

YCR010C ADY2 Phosphoprotein

YHR141C RPL42B Methylation

YBR106W PHO88 Phosphoprotein

YAR075W YAR075W Phosphoprotein

YHR094C HXT1 Glycoprotein, Phosphoprotein

YDR342C HXT7 Glycoprotein, Isopeptide b.,

Phosphoprotein, Ubl con.

YBR1317 RPS9B Phosphoprotein

YJL177W RPL17B Phosphoprotein

YGR282C BGL2 Glycoprotein

YBL0613 RPS8A Phosphoprotein

YDR225W HTA1 Acetylation, Isopeptide b.,

Phosphoprotein, Ubl conj.

YEL027W VMA3 x

YKR059W TIF1 Acetylation, Phosphoprotein

YGL030W YGL030W Phosphoprotein

YIL148W RPL40A Isopeptide b., Phosphoprotein,

Ubl con.

YBR010W HHT1 Acetylation, Methylation,

Phosphoprotein

YHR021C RPS27B Phosphoprotein

YGR034W RPL26B Phosphoprotein

YER102W RPS8B Phosphoprotein

YDL083C RPS16B Acetylation, Phosphoprotein

YDR064W RPS13 Phosphoprotein

YCR031C RPS14A Acetylation, Phosphoprotein

YDL081C RPP1A Acetylation, Phosphoprotein

YEL034W HYP2 Acetylation, Phosphoprotein

YDR447C RPS17B Phosphoprotein

YER117W RPL23B Acetylation, Methylation,

Phosphoprotein

YKL180W RPL17A Phosphoprotein

YKL056C TMA19 x

YKL152C GPM1 Phosphoprotein

YLR044C PDC1 Acetylation, Phosphoprotein

YCR012W PGK1 Acetylation, Phosphoprotein

YGL123W RPS2 Acetylation, Phosphoprotein

YDR382W RPP2B Phosphoprotein

YGR148C RPL24B Phosphoprotein

YDL014W NOP1 Methylation, Phosphoprotein

YDL080C THI3 x (lower outlier region)

YER070W RNR1 x (lower outlier region)

Note: Ubl con. stands for Ubl conjugation and Isopeptide b. stands for Isopeptide

bond.

Table 2. Confidence levels indicating how well the outlier

subset identifies post-translationally modified proteins, at

different numbers of chosen outliers

Percentage

outliers (%)

No of

outliers

No of PTMs

(P5P̂)

P-Value

1.0 20 19 0.01

2.5 50 42 0.02

5.0 100 73 0.17

Note: 1000 random trials were used in each case.
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and Wang, 2008). Thirty-seven GO annotations were found

in the outlier set, four of which were common to 430 genes

(GO:0044444, GO:0009058, GO:1901576 and GO:0032991),

and were found in cellular component and biological process

categories. We also observed that our outlier set is enriched for

ribosomal proteins with 14 GO terms relating to the ribosome.
Role of ribosomal proteins: Ribosomal genes are known to

undergo intense transcriptional activity coupled with efficient

translation (Warner, 1999), followed by several PTMs such as

methionine removal, N-terminal acetylation, N-terminal methy-

lation, lysine N-methylation and phosphorylation (Carroll et al.,

2008). As our outlier set of 50 proteins contained 23 ribosomal

proteins, we evaluated the effect of the dominance of ribosomal

proteins on out methodology. Though several of the ribosomal

proteins in the dataset had high expression levels, their distribu-

tion was not significantly different from the remainder. We

repeated the entire analysis after removing the 155 ribosomal

proteins from the dataset. With the reduced set, when we took

50 outliers (3%) 42 had PTM annotations at the level 1 of our

check P¼ 0.02 and P¼ 36 had PTM annotation at the level

of P510�12. This confirms that the dominance of ribosomal

proteins did not unduly influence the methodology.
Analysis of protein half-life: We checked if the prediction abil-

ity had any systematic variability that was influenced by protein

half-life, i.e. concentrations of rapidly degrading proteins likely

to be under-quantified. We compared absolute and squared

errors of our predictor against protein half-lives published by

Belle et al. (2006) and found no significant correlation. Of the

50 outliers we detected, protein half-life data were available for

only 26 proteins, and they showed no systematic behaviour.

3.6 Discussion and conclusion

In this work, we have shown that by constructing a machine

learning based predictor of cellular protein concentrations,

based on the corresponding mRNA levels and other features

pertaining to transcription regulation, we can identify, as out-

liers, proteins that are likely candidates for post-translational

regulation. Of the proteins we identify as outliers, proteins that

are annotated as being subject to PTMs are significantly over-

represented than in any random subsets of similar size. We will

not be able to get a perfect ranking in which all post-translation-

ally regulated genes come on top. This is because a gene being

annotated as being subjected to PTM, need not be modified

under all conditions, several such restrictions are condition

specific and for richer experimental data will be required to

give a complete picture.
Two generic points also need to be mentioned in closing.

First, when fitting a data-driven model in the analysis of high-

throughput data, outliers or model failures can carry useful

information. Unlike previous authors who focused on the cor-

relation between mRNA and protein levels, and on building

accurate protein concentration predictors, our method, by look-

ing at model failures, extracts potentially useful information

about how these proteins may be regulated. This is an example

of a wider point about the use of machine learning in computa-

tional biology; i.e. the purpose, unlike in building a voice recog-

nition or finger-print recognition system where performance is

measured in terms of accuracy of classification, in biology what

we require is to cut down the space over which experimental

work needs to be carried out to confirm biological function,

PTMs in our case. Ultimately though, proof of biological func-

tion is confirmed in wet-laboratory experimental findings. What

machine learning can offer is to find a reliable reduction in the

space over which such experimental explorations need to be

carried out.
Second, the dataset we put together is synthesized from several

different experiments carried out by different authors in different

laboratories. Though all the experiments correspond to a par-

ticular organism (S.cerevisiae) growing under well-defined

(exponential growth) conditions, there is bound to be variability

in the data resulting from the fact that the different measure-

ments were not taken from identical laboratory conditions. It is

difficult to quantify the effect of such variability in the results

we report.
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