
 Open access Proceedings Article DOI:10.1145/1180337.1180344

Bridging the gap between web application firewalls and web applications
— Source link

Lieven Desmet, Frank Piessens, Wouter Joosen, Pierre Verbaeten

Institutions: Katholieke Universiteit Leuven

Published on: 03 Nov 2006 - Formal Methods

Topics: Web application security, Web modeling, Web service, Data Web and Web development

Related papers:

 Bridging the gap between web application firewalls and web applications: extended abstract

 Securing web application code by static analysis and runtime protection

 A Review on 0-day Vulnerability Testing in Web Application

 Position paper: why are there so many vulnerabilities in web applications?

 Web Application Security Tools Analysis

Share this paper:

View more about this paper here: https://typeset.io/papers/bridging-the-gap-between-web-application-firewalls-and-web-
5gap25hvdj

https://typeset.io/
https://www.doi.org/10.1145/1180337.1180344
https://typeset.io/papers/bridging-the-gap-between-web-application-firewalls-and-web-5gap25hvdj
https://typeset.io/authors/lieven-desmet-3j2g2ffm20
https://typeset.io/authors/frank-piessens-3rj1ml972p
https://typeset.io/authors/wouter-joosen-3x6lkan676
https://typeset.io/authors/pierre-verbaeten-1yns0vlegg
https://typeset.io/institutions/katholieke-universiteit-leuven-j400mi90
https://typeset.io/conferences/formal-methods-1wyj191i
https://typeset.io/topics/web-application-security-9289rr7z
https://typeset.io/topics/web-modeling-l5k1w77n
https://typeset.io/topics/web-service-5jsci0pw
https://typeset.io/topics/data-web-fgiyyrb2
https://typeset.io/topics/web-development-3074x563
https://typeset.io/papers/bridging-the-gap-between-web-application-firewalls-and-web-ify5fwy4t2
https://typeset.io/papers/securing-web-application-code-by-static-analysis-and-runtime-3407usw3c4
https://typeset.io/papers/a-review-on-0-day-vulnerability-testing-in-web-application-43uyca47pf
https://typeset.io/papers/position-paper-why-are-there-so-many-vulnerabilities-in-web-136q7q4ndl
https://typeset.io/papers/web-application-security-tools-analysis-woedl1ko40
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/bridging-the-gap-between-web-application-firewalls-and-web-5gap25hvdj
https://twitter.com/intent/tweet?text=Bridging%20the%20gap%20between%20web%20application%20firewalls%20and%20web%20applications&url=https://typeset.io/papers/bridging-the-gap-between-web-application-firewalls-and-web-5gap25hvdj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/bridging-the-gap-between-web-application-firewalls-and-web-5gap25hvdj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/bridging-the-gap-between-web-application-firewalls-and-web-5gap25hvdj
https://typeset.io/papers/bridging-the-gap-between-web-application-firewalls-and-web-5gap25hvdj

Bridging the Gap Between Web Application Firewalls and
Web Applications

Lieven Desmet, Frank Piessens, Wouter Joosen, and Pierre Verbaeten
DistriNet Research Group, Department of Computer Science

Katholieke Universiteit Leuven, Celestijnenlaan 200A, B3001 Leuven, Belgium

Lieven.Desmet@cs.kuleuven.be

ABSTRACT

Web applications are the Achilles heel of our current ICT in-
frastructure. NIST’s national vulnerability database clearly
shows that the percentage of vulnerabilities located in the
application layer increases steadily. Web Application Fire-
walls (WAFs) play an important role in preventing exploita-
tion of vulnerabilities in web applications. However, WAFs
are very pragmatic and ad hoc, and it is very hard to state
precisely what security guarantees they offer.

The main contribution of this paper is that it shows how,
through a combination of static and dynamic verification,
WAFs can formally guarantee the absence of certain kinds
of erroneous behaviour in web applications. We have done
a prototype implementation of our approach building on an
existing static verification tool for Java, and we have applied
our approach to a medium-sized J2EE based web applica-
tion.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs

General Terms

Security, verification.

Keywords

Web Application Firewall, shared data repository, static ver-
ification, run-time enforcement.

1. INTRODUCTION
Nowadays web applications are wide-spread and more and

more companies incorporate e-commerce in their business
model to increase their revenues. But web applications tend
to be error-prone, and these bugs are a welcome target for
attackers due to their high accessibility and possible profit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE’06, November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1595935509/06/0011 ...$5.00.

gain. Therefore, the number of security incidents with web
applications is rapidly increasing [7, 20].

A wide range of countermeasures exists and more recently
Web Application Firewalls (WAFs) are added to the net-
work infrastructure to counter the shortcomings of tradi-
tional network firewalls. WAFs may among others prevent
broken access control vulnerabilities such as vulnerabilities
leading to forceful browsing by enforcing a strict request
flow. One of the problems with using WAFs for the strict
request flow enforcement is the fact that they tend to have
a loose coupling between their configuration and the appli-
cation implementation. In that way, they can protect appli-
cations against quite general attacks, but there is no direct
relationship to the bugs that actually reside in the appli-
cation they want to protect. Thus, there is no guarantee
that an enforced WAF policy on incoming requests protects
application-specific implementation bugs.

The main contribution of this paper is that it shows how,
through a combination of static and dynamic verification,
WAFs can formally guarantee the absence of certain kinds
of erroneous behaviour in web applications. We have done
a prototype implementation of our approach building on an
existing static verification tool for Java, and we have applied
our approach to a medium-sized J2EE based web applica-
tion. In particular, we guarantee that if the combination of
a web application and a WAF policy passes our verification
process, no client/server interaction will break the data de-
pendencies on the shared session state between server-side
components.

The research presented in this paper is based upon previ-
ous work [8], in which formal contracts specify interactions
with a shared data repository and static verification is used
to guarantee that no data dependencies are broken within
a given software composition. In the previous work, we in-
vestigated applications with a deterministic, sequential pro-
gram execution, whereas in this paper we model reactive,
indeterministic program execution, combine static and dy-
namic verification, and use semantically richer component
contracts.

The rest of this paper is structured as follows. Section 2
provides some background information on web applications,
web vulnerabilities and Web Application Firewalls. Next,
the problem statement is elaborated in section 3 and our so-
lution to guarantee that no client/server interaction leads
to unintended repository interactions is proposed in sec-
tion 4. Section 5 applies the proposed solution to a small
e-commerce site and section 6 discusses some identified prob-
lems with ESC/Java2, the verification tool that we build

on. In section 7, the presented work is related to existing
research and, finally, section 8 summarises the contributions
of this paper.

2. BACKGROUND

2.1 Web applications
Web applications are server-side applications that are in-

voked by thin web clients (browsers), typically using the
HyperText Transport Protocol (HTTP). A user can navi-
gate through a web application by clicking links or URLs in
his browser, and he is also able to supply input parameters
by completing web forms. A URL maps to a server-resident
program that is executed with the user’s supplied input pa-
rameters. The result of the program execution (often ex-
pressed in the HyperText Markup Language (HTML)) is
then sent back to the browser where it is rendered for fur-
ther user interaction.

HTTP is a stateless, application-level request/response
protocol and has been in use on the World Wide Web since
1990 [9]. Since the protocol is stateless, each request is pro-
cessed independently, without any knowledge of previous
requests. To enable the typical user’s session concept in a
web application, the web application needs to add session
management on top of the stateless HTTP layer. Different
techniques exist to embed web requests within a user ses-
sion such as the use of cookies, URL rewriting or hidden
form fields [28].

Nowadays, most web applications use an underlying frame-
work or web technology to facilitate the development and
the deployment of the web application. Widespread tech-
nologies such as PHP, ASP.NET, JSP/Servlets incorporate
among others the management of user sessions. Next to
tracking to which user session a web request belongs, these
technologies also provide server-side state for each user ses-
sion. While processing a web request, server-side web com-
ponents can store non-persistent, user-specific data (e.g. a
shopping cart in an e-commerce-site) in a data container
bound to the user session. Other web components can then
retrieve this data while processing future requests in the
same user session.

2.2 Servletbased web applications
The Java Servlet technology is part of the J2EE specifi-

cation [14] and provides mechanisms for extending the func-
tionality of a web server and for accessing existing business
systems [32]. A J2EE web application is typically a collec-
tion of Java Servlets, deployed in a servlet-based web con-
tainer such as Tomcat, JBoss or WebSphere. Java Servlets
are functional units of the web tier and extra-functional
properties such as load-balancing and security are added to
the webcontainer rather than to the servlets themselves.

The core functionality of the container is to handle in-
coming web requests and to use servlets for processing the
requests. A container casts incoming HTTP requests into
an object-oriented form (i.e. a HTTPServletRequest object)
and checks to see if there is a servlet registered for process-
ing that request. If there is a match, the request is processed
by the corresponding servlet.

In addition, the J2EE specification also defines filters [31].
A filter operates as a wrapper around the processing servlet
and dynamically intercepts the request and response object
before or after the servlet processes the request. Filters are

used to transform or process information contained in the
requests or responses. Popular examples are filters for acc-
ces control, for output transformations (such as XSLT), for
logging and auditing.

Servlets and filters are typically stateless components and
operate on a per-request basis. In order to save non-persistent,
session-relevant state, servlets can store and retrieve data
from a shared data repository (HttpSession) that is uniquely
bound to a user’s session.

2.3 Web vulnerabilities and Web Application
Firewalls (WAFs)

Existing network security fails to effectively protect web
applications against attackers [16]. Network firewalls such
as stateful packet filters typically operate on the network
or transport layer (e.g. granting access to a complete web
application by allowing TCP port 80 traffic), whereas web
applications are typically attacked on the application layer.
For example, attackers exploit among others design flaws in
the application logic and known weaknesses in the HTTP
protocol, the browser or the web server technology. Hence,
a network firewall only addresses network access control in
order to control whether or not a web server can be reached,
irrespective of the kind of web requests and associated data
that is sent to the server.

The Open Web Application Security Project (OWASP)
documented the ten most critical web applications vulner-
abilities in their OWASP Top Ten [23]. In this paper, we
mainly focus on broken access control vulnerabilities, in par-
ticular on vulnerabilities leading to forceful browsing [25].
Forceful browsing is the act of directly accessing web pages
(URLs) without consideration for their context within an ap-
plication session. Bypassing intended application flow can
lead to unauthorised access to resources or unexpected ap-
plication behaviour [35].

To counter web application vulnerabilities, Web Applica-
tion Firewalls (WAFs) operate on the application layer (OSI
layer-7) and analyse web requests between a browser and the
web server [29, 2]. Often, WAFs are placed inline between
the browser and server (as displayed in figure 1), and enforce
real-time access control, based on application-level informa-
tion such as the requested URL, the supplied credentials and
input parameters and the user session’s history.

A WAF can either use a positive or negative security
model as basis for access decisions. In case of a positive
security model, access control is based upon known positive
behaviour; in case of a negative security model, access is
denied to requests that reflect known dangerous traffic. A
positive security model can be configured manually by the
administrator or can be built automatically by observing
legitimate network traffic.

In the remainder of this paper, we will focus on WAFs
with a positive security model that implement criterion 4.6
of the ”Web Application Firewall Evaluation Criteria” [34],
i.e. the strict request flow enforcement. This criterion refers
to the technique where a WAF monitors individual user ses-
sions and keeps track of the links already followed and of
the links that can be followed at any given time [34].

3. PROBLEM STATEMENT
Without strict request flow enforcement, forceful brows-

ing attacks can compromise the correct functioning of a web
application in various ways. Depending on the application,

Figure 1: Web Application Firewall infrastructure

these attacks can among others circumvent access control or
input validation, can corrupt server-side state or can bring
the server in an inconsistent state and thus result in unex-
pected behaviour. More generally, the outcome of tamper-
ing with the client/server protocol can break the application
logic or trigger server-side bugs.

WAFs with strict request flow enforcement are accepted
as an effective countermeasure for forceful browsing attacks.
However, since WAFs are mainly configured in a heuris-
tic way, either manually or by observing legitimate network
traffic, they tend to have a loose coupling between their con-
figuration and the application implementation. Therefore,
no formal guarantees can be given about the effectiveness of
applying a WAF policy to protect against certain types of
implementation bugs.

In section 4, we propose our solution to formally bridge
the gap between the WAF enforcement policy and the web
application. By combining static verification and dynamic
enforcement, we are able to guarantee that the enforcement
engine used protects the application against certain types of
application-specific implementation bugs. Although we re-
strict our focus in this paper to errors that can occur on the
non-persistent, server-side session state, we strongly believe
that our approach is also applicable to other types of imple-
mentation bugs or infringements of the application logic.

In the next paragraph, a simple servlet-based web appli-
cation illustrates the kind of errors that can occur on the
server-side session state due to forceful browsing. We will
then retake this application in sections 4 and 5 to clarify
parts of our solution. Although we mainly use servlets in
this paper as an illustration, the problem is as well valid in
other web technologies such as ASP.NET or PHP, and our
solution could be applied there as well.

The Duke’s BookStore web application.

The Duke’s BookStore web application is an exemplary Java
Servlet application that is bundled together with the J2EE
1.4 Tutorial [1]. This small e-commerce application consists
of about 4000 lines of code, and implements the basic func-
tionality of a web shop by using Java Servlets. The core
application logic is supplied by 6 servlets and 1 filter:

BookStoreServlet The BookStore servlet returns the main
web page for the Duke’s Bookstore. From this start
page, links are provided to browse the book catalog,
or jump to the bookdetails of a particular book (e.g.
a book in promotion).

BookDetailsServlet The BookDetail servlet returns in-
formation about any book that is available from the

bookstore. A user can either add the book to the shop-
ping cart, or look further into the book catalog.

CashierServlet The Cashier servlet asks for the user’s name
and credit card number so that the user can buy the
books in his shopping cart. Payment information is
sent to the Receipt servlet.

CatalogServlet The Catalog servlet displays the book cat-
alog, and provides the possibility to add books to the
user’s shopping cart or to buy the books in the shop-
ping cart by redirecting to the cashier servlet.

ReceiptServlet The Receipt servlet processes the order by
updating the book database inventory. Afterwards the
servlet invalidates the user session.

ShowCartServlet The ShowCart servlet returns informa-
tion about the books in the user’s shopping cart.

OrderFilter The Order filter provides server-side logging
of shopping orders, whenever the ReceiptServlet is called.

These components interact with the shared session repos-
itory as listed in table 1. The interactions are specified by
a type (e.g. ResourceBundle), a string identifier (e.g. mes-
sages) and the type of interaction. The interaction types
used in table 1 are more fine-grained that just simple read
and write operations. The type def. read/write stands for a
defensive read/write operation as shown in listing 1, i.e. the
application can handle a null pointer as result of the read op-
eration, and in that case the servlet stores a not null object
of the expected type to the shared session repository. The
label cond. means that the operation possibly occurs, de-
pending on an unspecified condition such as run-time state
of the book database inventory.

Listing 1: Example of a defensive read/write oper-
ation in BookDetailsServlet

Currency c = (Currency) session.getAttribute("currency");
if (c == null) {

c = new Currency();
session .setAttribute("currency", c);

}

Session repository interactions are typically not specified
in a Servlet-based application, and neither they are in this
J2EE tutorial application. Thus, the implicit assumptions of
the developer on how a servlet or filter should be used with
respect to its interactions with the shared session repository
are not shipped together with the source code. This makes
correct deployment or software evolution very hard without
reanalysing the complete source code.

BookDetailsServlet: CashierServlet:
ResourceBundle messages (read) ResourceBundle messages (read)
Currency currency (cond. def. read/write) ShoppingCart cart (def. read/write)

Currency currency (def. read/write)
BookStoreServlet :
ResourceBundle messages (def. read/write) CatalogServlet:

ResourceBundle messages (read)
ReceiptServlet: ShoppingCart cart (def. read/write)
ResourceBundle messages (read) Currency currency (def. read/write)
ShoppingCart cart (def. read/write)

ShowCartServlet:
OrderFilter: ResourceBundle messages (read)
ShoppingCart cart (read) ShoppingCart cart (def. read/write)
Currency currency (read) Currency currency (cond. def. read/write)

Table 1: Interactions with the shared session repository in the BookStore application

Even in this small e-commerce application, the interac-
tions with the shared session repository impose restrictions
on the allowed client/server interaction protocol. If for ex-
ample a user session starts with any URL path other than
the /bookstore starting point of the application (which is
a typical forceful browsing attack), the execution of any
servlet ends up with a NullPointerException: every servlet
retrieves the messages data item from the shared repository
and assumes in its execution that the retrieved Resource-
Bundle is not null. Another NullPointerException occurs
in this small application if the OrderFilter (applied on the
ReceiptServlet) is called in a user’s session before the cart
and currency data items are stored to the shared repository.
The problem does however not occur if the OrderFilter is
not applied to the ReceiptServlet, which may indicate that
this error was introduced to the application due to evolution.

The impact of a NullPointerException during execution
depends on the particular application. Possible consequences
include the execution of unexpected application logic, infor-
mation leakage due to bad error handling, broken data in-
tegrity by storing null strings to the database back-end, skip-
ping of clean-up code (such as the code that closes database
connections) which in turn may lead to a Denial-of-Service,
and many more. In the remainder of this paper we assume
that the occurrence of a NullPointerException due to data
repository interactions in a web application negatively af-
fects the security of the application and thus should be pre-
vented from happening. More precisely, we define the de-
sired application property as follows:

No broken data dependencies in the user’s session
shared data repository:

No client request causes a data item to be read from
the server-side, shared session repository before it is
actually written. For each shared data read interaction,
the shared data item that is already written to the shared
session repository is of the type expected by the read
operation.

4. SOLUTION
In this section we propose our solution: we specify a com-

ponent’s interactions with the shared session repository and
use static and dynamic verification to guarantee that no
client/server interactions leads to violation of the the de-

sired application property. Figure 2 depicts an overview
of our solution. At the left side of the figure the different
artifacts of our application are listed. Next to the imple-
mentation and the deployment information, also the WAF
strict flow enforcement policy and the run-time web traffic
are used as input for our verification process.

The verification process consists of three steps. Firstly,
the interactions with the shared session repository are ex-
plicitly specified in component contracts, and static verifica-
tion is used to verify that the component implementations
obey to the contract specification. Secondly, static verifica-
tion ensures that any client/server interaction protocol that
complies to the WAF enforcement policy actually satisfies
the component’s preconditions on the shared session reposi-
tory. Finally, run-time policy enforcement is used to guaran-
tee that only web requests that obey the WAF enforcement
policy are allowed to be processed by the web application.
By combining these three verification steps, our solution en-
sures the desired application property. Our solution is sound
(if the assumptions underlying our pragmatic framing hold
for the application being protected, see subsection 6.2). Our
solution is however not complete: to avoid undecidability is-
sues, the static verification is necessarily conservative.

Serverside specification and verification

In order to specify a component’s interactions with the shared
session repository, each web component is extended with an
appropriate component contract. The contract is expressed
in a problem-specific contract language, which is easy to
understand for application developers. Listing 2 for exam-
ple, shows such a problem-specific contract of the ShowCart-
Servlet, which is a straightforward mapping of the interac-
tions specified in table 1. Next, static verification is used
to verify that a component’s implementation obeys its con-
tract, i.e. that only the read and write interactions happen
that are specified in the contract.

Applicationspecific protocol verification

As the first input artifact for the application-specific proto-
col verification, the strict enforcement policy of the WAF is
required. This representation of the intended client/server
interaction protocol can be expressed in various ways such
as a regular expression, an EBNF notation or a labelled
state transition system. For example, listing 3 and figure 3

Figure 2: Solution overview

Listing 2: Problem-specific specification of ShowCartServlet

//spec: reads {ResourceBundle messages, Nullable<ShoppingCart> cart, Nullable<Currency> currency} from session;
//spec: writes {cart == null => ShoppingCart cart} on session;
//spec: possible writes {currency == null => Currency currency} on session;

are two different representations of the intended protocol for
the Duke’s BookStore application.

In order to statically verify that any client/server inter-
action (that conforms to the intended protocol) does not
violate the desired application property, the intended proto-
col is verified in combination with the component’s contracts
in a given deployment. In a J2EE web application for exam-
ple, the web deployment descriptor contains among others
the mapping between URLs and servlets, as well the servlets
on which filters are applied.

Runtime protocol enforcement

Finally, the verified client/server protocol needs to be en-
forced at run-time. This is done by loading the protocol
specification into a supporting WAF.

5. PROTOTYPE IMPLEMENTATION
In this section, we describe our prototype implementation

an discuss how it can be used to secure the Duke’s BookStore
application.

5.1 Serverside specification and verification
In order to use existing verifiers to check if the implemen-

tation of a component adheres to its contract, the problem-
specific contracts are translated into the Java Modeling Lan-
guage (JML) [18] which is a popular formal contract speci-
fication language for components written in Java.

The JML contract in listing 4 expresses interactions be-
tween actions and the shared data repository in terms of
pre- and post-state of the repository. For read interactions,
the component’s contract indicates that the component re-
quires that a non-null data item of the specified type can
be read from the shared repository. For write interactions,
the ensures pragma states which data items on the shared
repository will be non-null and of the specified type after
method execution. In Listing 4 for example, the JML con-

tract of the doGet method of the ShowCartServlet states
that among others the shared data item messages will be a
non-null ResourceBundle object before execution and after
execution that the data item cart is ensured to be a non-null
ShoppingCart. In addition, the modifies clause expresses the
frame condition, i.e. what part of the session state a method
is allowed to modify.

Finally, notice the use of the also keyword. The Show-
CartServlet extends the HttpServlet, and by doing so it in-
herits the public method specification of the doGet method.
To refine the specification of an overrided method (e.g. by
weakining preconditions or by strengthening postconditions),
the specification in JML starts with the also keyword, which
combines the specifications of the supertype and the sub-
type. Similarly, the also keyword can also be used in regular
specification to combine different specification blocks into a
nested specification. More information about the desugaring
of also combinations in JML can be found in [27, 6].

Since the doGet method of the HttpServlet does not pro-
vide common behavior for all the inheriting servlets, the
supertype method is annotated with the strongest possible
precondition, i.e. the requires false pragma. In this way,
all inheriting servlets are able to weaken this precondition
conform the Liskov principle.

One of the main advantages of JML is the large amount
of tool support that is available [5]. Tools are available for
run-time contract checking, test generation, static verifica-
tion and inference of specifications. A variety of static ver-
ification tools is available that make different trade-offs in
verification power and need for user interaction.

In our prototype, we chose to use the ESC/Java2 veri-
fier [17]. The main advantage of this verifier is that it re-
quires no user interaction. On the downside, the verifier
is far from complete, for instance reasoning about loops is
fairly weak. In addition, some known sources of unsound-
ness [19, 6] regarding to framing and reentrancy should be
avoided.

Figure 3: Client/server interaction protocol

Listing 3: EBNF notation of the client-server protocol

PROTOCOL := /bookstore + SERVLET A ∗ + RECEIPT
RECEIPT := (SERVLET B + SERVLET ∗ + orderfilter + /bookreceipt) | nil
SERVLET := SERVLET A | SERVLET B
SERVLET A := /bookstore | /bookdetails | /bookshowcart | /banner | nil
SERVLET B := /bookcatalog | /bookcashier

Listing 4: Contract for shared session repository interactions (ShowCartServlet.spec)

package servlets;

public class ShowCartServlet extends HttpServlet {
//@ also
//@ requires request != null ;
//@ requires response != null ;
//@ requires request .session .messages instanceof ResourceBundle;
//@ requires request .session . cart instanceof ShoppingCart || request . session . cart == null;
//@ requires request .session .currency instanceof Currency || request . session .currency == null;
//@ ensures request.session . cart instanceof ShoppingCart;
//@ ensures request.session .currency instanceof Currency || request .session .currency == null;
//@ ensures \old(request.session .currency) instanceof Currency ==> \old(request.session.currency) ==

request. session .currency;
//@ modifies request.session . cart ;
//@ modifies request.session .currency;
public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException;

}

To check the compliance of the component implementa-
tion with ESC/Java2, the specification of the shared repos-
itory is generated (listing 5). Hereby, explicit JML pragmas
provide a mapping between a ghost field and the state of a
specific data item in the hashtable since the current version
of the ESC/Java2 tool does not support reasoning about
hashtable indirections. This mapping allows us to express
the state of the data repository in a component’s contract in
terms of the object fields rather than hashtable indirections,
and allows us to still reason about this state without losing
the verification power of ESC/Java2.

Listing 5: JML contract of the session repository
(HttpSession.spec)

package javax.servlet.http;

public interface HttpSession {
//@ public ghost Object cart ;
//@ public ghost Object currency;
//@ public ghost Object messages;

//@ requires name == ”cart”;
//@ ensures this.cart == value;
//@ modifies this . cart ;
//@ also
//@ requires name == ”currency”;
//@ ensures this.currency == value;
//@ modifies this .currency;
//@ also
//@ requires name == ”messages”;
//@ ensures this.messages == value;
//@ modifies this .messages;
public void setAttribute(String name, Object value);

//@ requires name == ”messages”;
//@ ensures \result == this.messages;
//@ also
//@ requires name == ”currency”;
//@ ensures \result == this.currency;
//@ also
//@ requires name == ”cart”;
//@ ensures \result == this.cart;
public /∗@ pure @∗/ Object getAttribute(String name);

//@ requires false ;
public void removeAttribute(String name);

}

In verifying the compliance, we used a pragmatic framing
approach instead of verifying the JML modifies clauses with
ESC/Java2, as will be explained in subsection 6.2. Hereby,
we verify the specified frame conditions only with respect
to state changes in the shared repository, and ignore state
changes in other parts of the application. This pragmatic
framing is sufficient for our approach since we are only inter-
ested in the component’s interactions with the shared repos-
itory.

5.2 Applicationspecific protocol verification
To statically verify that any client/server interaction does

not violate the desired application property, a server-side
protocol check is automatically generated from the protocol
specification. This protocol check simulates the intended

Figure 4: Class diagram of the run-time enforcement
engine

protocol in a server-side method body, in which every web
interaction is translated into a method call to the appro-
priate request processing component (if needed preceded by
one or more filters). In addition, reactive or indeterministic
behaviour is translated by applying the java.util.Random
class, if-then-else branches, switch-cases and while-loops.
The protocol-simulating check method for the Duke’s Book-
Store application is listed in listing 6.

The application-specific protocol verification is then re-
duced to statically verifying the implementation of the check
method with ESC/Java2. Compliance to a component’s as-
sumption on the shared session state is verified implicitly
since ESC/Java2 checks that the preconditions are fulfilled
for each method that is called.

5.3 Runtime protocol enforcement
As a proof of concept, we embedded a lightweight WAF

in our web application container by installing a J2EE Filter.
Before a servlet is invoked by means of the service(Servlet-
Request request, ServletResponse response) method in a J2EE
web application, a chain of deployed filters is always applied
to the request.

At deployment time, our enforcement engine is loaded
with an object-oriented instantiation of the labelled state
transition system (figure 4). For each user session the cur-
rent state is stored, and for each incoming web request, the
enforcement engine verifies that the transition is allowed and
the current state is updated before the request is dispatched
to the servlet. In case of a protocol violation, a pluggable
strategy is consulted, defining the action that should be
taken ranging from blocking access to the originator’s IP
or invalidating the user’s session to just logging the access
violation.

6. DISCUSSION

6.1 Results of the BookStore experiment

Annotation overhead

As a quantification of annotation overhead, a specification
line count is performed on the annotated components. At
most 4 lines of specification are used to express the interac-
tions with the shared session repository. In addition, thanks
to the pragmatic framing (see subsection 6.2) almost no li-
brary calls need to be instrumented to verify the different
components.

Static verification performance

To evaluate the performance of the static verification pro-
cess, the verification time is measured. The performance

Listing 6: Protocol-simulating check method to be verified by ESC/Java2

//@ requires request != null ;
//@ requires request .session .messages == null && request.session.cart == null && request.session.currency == null;
public void protocolCheck(HttpServletRequest request, HttpServletResponse response){

try {
Random random = new Random();
bookstore.doGet(request,response);
while(random.nextBoolean()){

int randomInt = random.nextInt();
switch(randomInt){

case 0: showcart.doGet(request,response); break;
case 1: banner.doGet(request,response); break;
case 2: bookstore.doGet(request,response); break;
case 3: bookdetail.doGet(request,response); break;
default: break;

}
}
if (random.nextBoolean()){

switch(random.nextInt()){
case 0: cashier .doGet(request,response); break;
default: catalog.doGet(request,response); break;

}
while(random.nextBoolean()){

switch(random.nextInt()){
case 0: showcart.doGet(request,response); break;
case 1: catalog .doGet(request,response); break;
case 2: cashier .doGet(request,response); break;
case 3: bookstore.doGet(request,response); break;
case 4: bookdetail.doGet(request,response); break;
case 5: banner.doGet(request,response); break;
default: break;

}
}
orderFilter . doFilter(request,response,null);
receipt .doPost(request,response);

}
}
catch(Exception e) { e.printStackTrace(); }

}

tests were run on a Pentium Mobile (1.4GHz) with 512MB
RAM, running Debian Linux, while using Java 1.4.2 09,
ESC/Java2 2.0a9 and Simplify 1.5.4. Table 2 shows the
performance results of verifying the implementation com-
pliance. The verification of the protocol-simulating method
succeeded smoothly in about 11 seconds.

Runtime enforcement overhead

To estimate the overhead of the run-time flow enforcement,
we ran the following experiment on the BookStore applica-
tion with and without our enforcement filter. We sequen-
tially simulated 1000 different visitors, in which each user’s
protocol consisted of 6 web requests and 2 % of the visitors
applied forceful browsing. In this experiment, we measured
a run-time overhead of 1.3 %. The BookStore application
was deployed on the Sun Java System Application Server
Platform Edition 8.2.

6.2 Limitations

Sequential processing

In our solution, we assume that the web requests in a user’s
session are processed sequentially on the web server, in the
same order as they pass the WAF. In practice however web
servers tend to process incoming requests in a multithreaded
way (e.g. by using thread pools). At this moment our solu-
tion is only valid if our assumption on sequential execution
holds, and therefore, supporting concurrent request process-
ing is an important topic for future research.

Pragmatic framing

In order to reduce the verification complexity and the over-
head of instrumenting all library calls, we use a pragmatic
framing approach to verify if a component’s implementation
obeys to its contract. Instead of letting ESC/Java2 verify
the modifies clauses, we use a component-specific specifi-
cation of the session repository, in which we constrain the
allowed write operations to the actual write interactions that
the component claims to have in its modifies clauses.

Listing 7 is an example of such a component-specific an-
notation to use with the ShowCartServlet : the precondition
of the setAttribute method states that only write operations
are allowed for the cart and currency data item. In contrast
the the complete specification of the session repository (list-
ing 5), the messages data item may not be modified by the
ShowCartServlet.

Listing 7: Component-specific specification of the
repository (HttpSession.spec for ShowCartServlet)

package javax.servlet.http;

public interface HttpSession {
//@ public ghost Object cart ;
//@ public ghost Object currency;
//@ public ghost Object messages;

//@ requires name == ”cart”;
//@ ensures this.cart == value;
//@ modifies this . cart ;
//@ also
//@ requires name == ”currency”;
//@ ensures this.currency == value;

//@ modifies this .currency;
public void setAttribute(String name, Object value);

//@ requires name == ”messages”;
//@ ensures \result == this.messages;
//@ also
//@ requires name == ”currency”;
//@ ensures \result == this.currency;
//@ also
//@ requires name == ”cart”;
//@ ensures \result == this.cart;
public /∗@ pure @∗/ Object getAttribute(String name);

//@ requires false ;
public void removeAttribute(String name);

}

In case the component’s implementation triggers an un-
specified state change in the shared data repository, the ver-
ification of the component with ESC/Java2 will detect this
contract violation (even without checking the component’s
modifies clauses), since the state change will also violate the
precondition of the component-specific setAttribute annota-
tion of the shared repository.

Of course, our pragmatic framing approach only guaran-
tees correct framing regarding to state changes on the shared
session repository, since other state changes in the applica-
tion are neglected on purpose. Although such a pragmatic
framing is not applicable for general verification purposes,
this framing approach is sufficient for our verification process
since we are only interested in the component’s interactions
with the shared repository.

In fact, the pragmatic framing approach can also be seen
as an advantage rather than a limitation of our approach.
Thanks to the pragmatic framing, we are able to verify par-
tially specified components, i.e. we only specify the parts
of the contract that we are actually interested in (namely
the interactions with the shared repository). In case we ap-
ply traditional framing, we also have to specify every state
change that occurs in the application by executing a com-
ponent’s method, as well as to annotate every called library
method with its appropriate frame condition.

For the application-specific protocol verification, we let
ESC/Java2 verify the original modifies clauses of the differ-
ent components, in combination with the full specification
of the shared session repository from listing 5.

7. RELATED WORK
Several implementation-centric security countermeasures

for web applications have already been proposed [26, 11, 4,
21, 12], but most of them focus on injection attacks (SQL
injection, command injection, XSS, . . .) and use tainting
or data flow analysis. Our solution targets another set of
implementation bugs, namely bugs due to broken data de-
pendencies on the shared, server-side state and to do so we
rely on the verification of component contracts.

We combine in our solution static and dynamic verifica-
tion to reduce the run-time enforcement overhead. This idea
however is not new, and is for instance already adopted by
Yao-Wen Huang et al. in securing web application against
injection attacks [13].

In [22], Jeff Offutt et al. generate bypass tests which check
if an online web application is vulnerable to forceful brows-

Component Verif. Code Component Verif. Code Component Verif. Code
time lines time lines time lines

BookDetailsServlet 67.285 s 74 OrderFilter 31.632 s 61 CatalogServlet 225.866 s 123
BookStoreServlet 16.943 s 61 CashierServlet 62.742 s 60 ShowCartServlet 216.212 s 157
ReceiptServlet 5.433 s 65

Table 2: Verification performance

ing or parameter tampering attacks. They define three levels
of bypass testing: value level, parameter level and control
flow level bypass testing. At this moment, our approach
only counters the latter one, but in future work we want to
investigate how well our approach is suited to counter the
other two levels as well.

Firewall configuration analysis is proposed to manage com-
plex network infrastructures (such as networks with multi-
ple network firewalls and network intrusion detection sys-
tems) [33, 10]. Their approaches aim to achieve efficiency
and consistency between the different network-layer security
devices, whereas our approach focusses on the application-
layer consistency between the WAF and the web application.

The use of JML or related languages such as Spec# [3] for
verifying component properties is a very active research do-
main. For example, Smans et al. [30] specify and verify code
access security properties, Jacobs et al. [15] verify absence
of data races and Pavlova et al. [24] focus on security prop-
erties of applets. Other applications of JML are surveyed
in [5].

8. CONCLUSION
This paper has focussed on bridging the gap between

WAFs which enforce strict request flow, and some of the
implementation-specific bugs that these kind of firewalls try
to protect. We showed that through a combination of static
and dynamic verification, WAFs can formally guarantee the
absence of certain kinds of erroneous behaviour in web ap-
plications. In particular, we did guarantee that if the com-
bination of a web application and a WAF policy passes our
verification process, no client/server interaction will break
the data dependencies on the shared session state between
server-side components.

Although there are still some limitations with our pro-
posed solution (as discussed in subsection 6.2), the con-
ducted experiment shows that using existing verification tools
to improve web application security looks promising.

9. ACKNOWLEDGEMENTS
The authors would like to thank Wolfram Schulte (from

Microsoft Research), Bart Jacobs, Adriaan Moors and Jan
Smans (from the Katholieke Universiteit Leuven) for their
useful comments and insight in some interesting discussions
on this research.

10. REFERENCES

[1] E. Armstrong, J. Ball, S. Bodoff, D. B. Carson,
I. Evans, D. Green, K. Haase, and E. Jendrock. The
J2EE 1.4 Tutorial. Sun Microsystems, Inc., December
2005.

[2] I. Bar-Gad. Web application firewalls protect data.
http://www.networkworld.com/news/tech/2002/

0603tech.html, March 2002.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# Programming System: An Overview. Lecture
Notes in Computer Science, 3362, 2004.

[4] S. W. Boyd and A. D. Keromytis. Sqlrand: Preventing
sql injection attacks. In ACNS, pages 292–302, 2004.

[5] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer
(STTT), 7(3):212–232, June 2005.

[6] D. R. Cok. ESC/Java2 Implementation Notes. http:
//secure.ucd.ie/products/opensource/ESCJava2/

ESCTools/docs/Escjava2-ImplementationNotes/

Escjava2-ImplementationNotes.pdf.

[7] W. A. S. Consortium. The Web Hacking Incidents
Database.
http://www.webappsec.org/projects/whid/.

[8] L. Desmet, F. Piessens, W. Joosen, and P. Verbaeten.
Static Verification of Indirect Data Sharing in
Loosely-coupled Component Systems. In Software
Composition, volume 4089 of Lecture Notes in
Computer Science, pages 34–49. Springer Berlin /
Heidelberg, 2006.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt, 1999.
Request For Comments: 2616 (Category: Standards
Track).

[10] K. Golnabi, R. K. Min, L. Khan, and E. Al-Shaer.
Analysis of Firewall Policy Rules Using Data Mining
Techniques. In 10th IEEE/IFIP Network Operations
and Management Symposium (NOMS 2006), April
2006.

[11] V. Haldar, D. Chandra, and M. Franz. Dynamic taint
propagation for java. acsac, 0:303–311, 2005.

[12] W. G. J. Halfond and A. Orso. Amnesia: analysis and
monitoring for neutralizing sql-injection attacks. In
ASE ’05: Proceedings of the 20th IEEE/ACM
international Conference on Automated software
engineering, pages 174–183, New York, NY, USA,
2005. ACM Press.

[13] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee,
and S.-Y. Kuo. Securing web application code by
static analysis and runtime protection. In WWW ’04:
Proceedings of the 13th international conference on
World Wide Web, pages 40–52, New York, NY, USA,
2004. ACM Press.

[14] J2EE platform specification.
http://java.sun.com/j2ee/.

[15] B. Jacobs, K. R. M. Leino, F. Piessens, and
W. Schulte. Safe concurrency for aggregate objects
with invariants. In Proceedings of the Third IEEE

International Conference on Software Engineering and
Formal Methods, pages 137–146. IEEE Computer
Society, 2005.

[16] Karl Forster, Lockstep Systems, Inc. Why Firewalls
Fail to Protect Web Sites. http://www.lockstep.
com/products/webagain/why-firewalls-fail.pdf.

[17] KindSoftware. The Extended Static Checker for Java
version 2 (ESC/Java2). http:
//secure.ucd.ie/products/opensource/ESCJava2/.

[18] G. T. Leavens. The Java Modeling Language (JML).
http://www.jmlspecs.org/.

[19] K. R. M. Leino, G. Nelson, and J. B. Saxe. ESC/Java
User’s Manual.

[20] National Institute of Standards and Technology
(NIST). National vulnerability database.
http://nvd.nist.gov/statistics.cfm.

[21] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In SEC, pages
295–308, 2005.

[22] J. Offutt, Y. Wu, X. Du, and H. Huang. Bypass
testing of web applications. In ISSRE, pages 187–197,
2004.

[23] Open Web Application Security Project (OWASP).
Top ten most critical web application vulnerabilities.
http://www.owasp.org/documentation/topten.html,
2005.

[24] M. Pavlova, G. Barthe, L. Burdy, M. Huisman, and
J.-L. Lanet. Enforcing high-level security properties
for applets. In CARDIS, pages 1–16, 2004.

[25] S. Pettit. Anatomy of a web application: Security
considerations. Technical report, Sanctum, Inc., July
2001.

[26] T. Pietraszek and C. V. Berghe. Defending against
injection attacks through context-sensitive string
evaluation. In Proceedings of the 8th International
Symposium on Recent Advances in Intrusion Detection
(RAID2005), pages 124–145, 2005.

[27] A. D. Raghavan and G. T. Leavens. Desugaring JML
method specifications. Technical Report 00-03e, Iowa
State University, Department of Computer Science,
May 2005.

[28] V. Raghvendra. Session tracking on the web.
Internetworking, 3(1), March 2000.

[29] I. Ristic. Web application firewalls primer.
(IN)SECURE, 1(5):6–10, January 2006.

[30] J. Smans, B. Jacobs, and F. Piessens. Static
verification of code access security policy compliance
of .NET applications. Journal of Object Technology,
5(3), April 2006.

[31] Sun Microsystems, Inc. The essentials of filters. http:
//java.sun.com/products/servlet/Filters.html.

[32] Sun Microsystems, Inc. Java Servlet Technology.
http://java.sun.com/products/servlet/.

[33] T. E. Uribe and S. Cheung. Automatic analysis of
firewall and network intrusion detection system
configurations. In FMSE ’04: Proceedings of the 2004
ACM workshop on Formal methods in security
engineering, pages 66–74, New York, NY, USA, 2004.
ACM Press.

[34] Web Application Security Consortium. Web
Application Firewall Evaluation Criteria, version 1.0.
http://www.webappsec.org/projects/wafec/,
January 2006.

[35] webScurity, Inc. The Weakest Link: Mitigating Web
Application Vulnerabilities. http:
//www.webscurity.com/pdfs/webapp vuln wp.pdf.

