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Abstract. As scientists continue to migrate their work to computa-
tional methods, it is important to track not only the steps involved in
the computation but also the data consumed and produced. While this
provenance information can be captured, in existing approaches, it often
contains only weak references between data and provenance. When data
files or provenance are moved or modified, it can be difficult to find the
data associated with the provenance or to find the provenance associated
with the data. We propose a persistent storage mechanism that manages
input, intermediate, and output data files, strengthening the links be-
tween provenance and data. This mechanism provides better support
for reproducibility because it ensures the data referenced in provenance
information can be readily located. Another important benefit of such
management is that it allows caching of intermediate data which can
then be shared with other users. We present an implemented infrastruc-
ture for managing data in a provenance-aware manner and demonstrate
its application in scientific projects.

1 Introduction

As the volume of data generated by scientific experiments and analyses grows,
it has become increasingly important to capture the connection between the
derived data and the processes as well as parameters used to derive the data.
Not surprisingly, the ability to capture the provenance of data products has
been a major drive for a wide adoption of scientific workflow systems [1–3]. By
tracking workflow execution, it is possible to determine how an output is derived,
be it a data file, an image, or an interactive visualization.

However, the common practice of connecting workflows and data products
through file names has important limitations. Consider, for example, a workflow
that runs a simulation and outputs a file with a visualization of the simulation
results. If the workflow outputs an image file to the filesystem, any future run
will overwrite that image file. If different parameters are used, or the simulation
code is improved and the updated workflow is run, the original image is lost.
If that image file were managed with a version control system, the user could
retrieve the old version from the repository. However, if the user reverts the
output image to the original version, how does she know how it was created?



Since there is no explicit link between the workflow instance (i.e., the workflow
specification, parameters and input files) and the different versions of its output,
determining their provenance is challenging. If we examine the provenance logs
for the workflow runs, we will see that there are two runs that create the specified
image file, one with the older simulation routine and the second with the newer
one. We may be able to check timestamps in order to guess, but this is far from
ideal. This problem is compounded when computations take place in multiple
systems, and recording the complete provenance requires tying together multiple
workflows through their outputs and inputs. As files are overwritten, renamed,
or moved, provenance information may be lost or become invalid. As a result,
maintaining an accurate provenance graph which ties processes and the data
they manipulate requires a time-consuming and error-prone process.

While version control systems effectively track changes to files, such sys-
tems can only determine that changes have occurred, not how they came about.
Provenance-enabled workflow systems, on the other hand, are able to capture
how changes came about but do not provide a systematic mechanism for main-
taining data provenance in a persistent fashion, i.e., given a file it may not
be possible to determine which workflow instance generated it. We posit that a
tighter integration between scientific workflows and file management is necessary

to enable the systematic maintenance of data provenance.

Contributions. In this paper, we propose a new framework which, by coupling
workflow provenance with the versioning of data produced and consumed by
workflows, captures the actual changes to data as well as detailed information
about how those changes came about. A persistent store for the data ensures that
old inputs and results can be retrieved, and we can tie each version of a result
to the provenance that details how the result was generated. We introduce the
notion of a strong link which reliably captures the connection between a workflow
instance and data it derives, and describe an algorithm for generating these links.
Instead of relying on the user or ad-hoc approaches to automatically derive file
names, strong links are identifiers derived from the file content, the workflow
specification, and any parameters. As a result, they accurately and reliably tie
a given workflow instance and its input and derived data.

Besides simplifying the process of maintaining data provenance, this ap-
proach has several benefits. By automatically capturing versions of data, it
seamlessly supports exploratory tasks without requiring users to curate the data
(e.g., managing the file names). It also provides a general mechanism for the
persistent caching of both intermediate and final results—this is in contrast to
previous approaches which supported only in-memory caching [4, 5]. The caching
mechanism can be used not only to speed up workflow execution, but also to
support check-pointing for long-running computations. In addition, the use of
a managed data repository allows the creation of workflows that are location
agnostic: unlike workflows that point to files in the filesystem, workflows can
be shared and run in multiple environments unchanged. Last but not least, our
approach is general and can be combined with existing workflow systems. We
describe our implementation in the VisTrails system and present a case-study,
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Fig. 1. When provenance information references file-system paths, there is no guarantee
those files will not be moved or modified. We propose references that are linked to a
persistent repository which maintains that data and with hashing and versioning allows
for querying, reuse, and data lineage.

where the persistent data provenance infrastructure was deployed in a real ap-
plication: managing data products in the context of the ALPS project [6].3

Outline. We begin by introducing our persistence scheme in Section 2, and
then show how it can be applied to support data provenance in Section 3. In
Section 4 we describe how our approach can be used to extend workflow caching
strategies and for publishing scientific results. In Section 5, we describe how
managed repositories can be shared among multiple users for both data access
and caching. We describe an implementation of our scheme in Section 6, and
describe its use in the ALPS project in Section 7. We highlight related work in
Section 8 before concluding with future directions in Section 9.

2 Persisting Data Provenance Links

By integrating file management and version control with workflows, we aim
to maintain stronger provenance by referencing data in a versioned, managed
repository instead of via file paths (see Figure 1). This repository stores input,
output, and intermediate data products, and can be used to facilitate caching
and data sharing.4 Similar to version control systems, this repository stores
multiple versions of files, but to connect to workflow provenance information, it
also contains metadata that represents identity and annotations.

Our approach to this problem is user-driven. As a user designs a workflow,
she can specify which results (or input data) should be persisted in the reposi-
tory. As we describe in Section 6, a possible implementation is to provide special
workflow modules that can be connected to the output ports of modules whose
results should be persisted (see the ManagedIntermediateDir module in Fig-
ure 6). When users run workflows using data from the repository, we can ensure
that future provenance queries can not only identify the data involved in the
computations but also retrieve the actual data. In addition, given provenance of
a workflow execution, we can reproduce it using the exact versions of the data

3 http://alps.comp-phys.org
4 In the remainder of the text, we use the terms “repository” and “managed store”

interchangeably.



used in the original execution. In these provenance applications, there is no need
to archive data according to specific path-name conventions or remember to
keep each separate version of the input data. Also, the automatic and transpar-
ent identification and versioning require little user involvement in maintaining
these stronger links.

In what follows, we start by describing a scheme to derive reliable and rep-
resentative ids for linking data products and their provenance. We also present
the file-management infrastructure and the attributes we maintain in the man-
aged repository, the differences in our storage depending on the role of the data,
and how data should be updated and stored. Note that while we discuss file

management, the techniques described can be easily extended to directories as
well.

2.1 Deriving Strong Links

Our approach to deriving strong links was inspired by the in-memory caching
mechanism proposed by Bavoil at al. [4] and the content hashing used in version
control systems including git [7]. We use the signatures of workflows to identify
intermediate and output data derived by the workflows, and content hashing to
identify input data.

The central idea of caching in workflow systems is that any self-contained
piece of a computation can be reused if the computation is deterministic and
its structure, input data, and parameters do not change. For dataflows, we can
formalize this concept by defining the upstream subworkflow of a module m in
a workflow W as the subgraph induced by all modules u P W for which there
exists a path from u to m in W (including m itself). Note that the existence of
such a path implies that the results of u may have an effect on the computation
of m. Then, if any module or connection in the upstream workflow of m changes,
we must recompute m. Conversely, if the upstream workflow does not change, we
need not recompute m, and can reuse results from a previous execution. Thus,
for any other workflow W ✶ that contains an upstream subworkflow U that also
exists in W , we can reuse the intermediate results of U from W in W ✶.

Caching thus requires the identification of equivalent subworkflows. This
would be expensive if we needed to perform graph matching, but we instead
use a recursive serialization of the upstream workflow that allows us to quickly
check the cache. We define the default label of a module m, ℓ♣mq, as the serial-
ization of its type and parameter values ordered by parameter name. Note that
individual module types can override this default label to better capture module
state; for example, a module linked to a specific file would define its label based
on the contents of the file—if that file changes, the label changes. Similarly, the
label of a connection c, ℓ♣cq, is the serialization of the types of the ports it con-
nects. Then, a canonical serialization of the upstream subworkflow of a module
m is defined recursively as

S♣mq ✏ ℓ♣mq �
➔

c P UC♣mq
S♣source♣cqq � ℓ♣cq
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Fig. 2. The upstream signature S(M) for a module is calculated recursively as the
signature of the module concatenated with the upstream signatures of the upstream
subworkflow for each port and the signature of the connection.

where UC♣mq is the set of upstream connections into m sorted by ℓ♣cq, source

returns the source (upstream) module of the given connection, and
➄

is con-
catenation. The upstream signature is the SHA1 hash of this serialization.

Figure 2 shows an example workflow and the serialization of the upstream
subworkflow of the ReadCensusField module. Note that the upstream subwork-
flow will not always be a tree, but the recursive serialization always branches
like it is. This allows two topologically different upstream subworkflows to have
the same signature, but when this happens, the computations must be identi-
cal. For example, consider a subworkflow with a single module m that connects
upstream to two other modules. Whether those two modules connect upstream
to a single module n or to two identical modules that both do the same com-
putation as n will not affect the downstream computation of m. In addition,
by using memoization, we can keep this computation efficient despite the added
branching.

For input files, we define the signature as the hash of its contents. Then, if
the file’s contents changes, its signature changes even though its path or other
identifying information may not. Note that we store the content hash separately
as well so a file that is the output of one workflow and the input of another
can be identified in both ways. Thus, the signature provides a strong link that
contains a precise and accurate representation of the workflow fragment that
derived a given result. As we describe in Section 3, we use this signature as the
means to link a data product to the computation that derived it.

2.2 File Management

We are concerned with three roles for files in workflows: inputs, outputs, and
intermediate data. Note that a single file may fill different roles depending on
the workflow it is used in; an output from one workflow may be used as the input
to another. Thus, the distinction between roles does not affect the use of data



in any situation, but rather determines what metadata can be captured, stored,
and utilized. An output file can store information about the process that created
its contents but an input file selected from the filesystem cannot. Similarly, an
intermediate file need not be annotated at all if is used for caching, but files that
are to be used again should be named and tagged to allow users to query for
them.

Each file in the repository is uniquely identified by a combination of an id
and a version string, and annotated with user-defined and workflow-generated
information including its signature and content hash. By allowing a collection
of files to share the same id, a reference to that id can be configured to always
retrieve the latest version. This is helpful to a user who wishes to run a workflow
with the latest version of a data set but does not wish to manually configure
which is the latest version. On the other hand, reproducing a workflow execution
exactly requires a particular version of the data, and thus identifying data by
both the id and version guarantees that the exact data will be retrieved.

Input Files. An input file must reference an existing file, whether it is already
in the managed store or only in the local system. Upon selection, we either use
the existing identifier (from the store), or create a new unique identifier for the
data. Note that we can detect whether the contents of a file already exists in the
repository by computing the hash and checking for that hash in the repository.
By default, changing the contents of the file creates a new version while changing
the selected file creates a new id and version. Users can configure this behavior
if necessary.

Output Files. The main difference between output and input files is that input
files are not affected by changes in the rest of the workflow. For outputs, any
changes to the part of the workflow that is upstream of the output file may
affect its contents. In addition, it is less clear when an output is a new entity
and when it is a new version of an existing entity. When only parameters change,
the output is likely a tweaked version of the original, but when the input files
are switched, the output is more likely new. By default, we create new versions
for each execution but allow users to change this behavior in order to version the
outputs. Like inputs, output files can be both stored in the persistent store for
future reference and use and saved to a local file for immediate use or inspection.

Intermediate Files. An intermediate file is exactly the same as an output file
except that it is not a sink of the workflow; execution continues after the file is
serialized and the contents are used in further calculations. Such files can be used
as checkpoints for debugging, but they can also be used to cache computational
results in order to speed further analyses. Note that an intermediate file need not
be manually annotated or named; it is defined by its signature–the serialization
of the upstream subworkflow.

Customization. It may be necessary for users to configure the behavior of the
persistence of files in the store in order to link similar files or maintain separate
identities for data products. By selecting an existing reference and linking it to
a local file, a user can tie the reference to a new local file. In addition, users can
decide whether files are only persisted in the managed store or if they are also
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Fig. 3. Given a file which has been moved and renamed, we can use the managed file
store and provenance to first locate the managed copy, and we can locate the original
input files as well.

saved to local files. If they use a local file, they can configure whether the contents
of the file should take precedence or whether a new version should always be
obtained from the repository. Similarly, if the local file contents change, a user
can choose whether those changes should always be persisted to the managed
store.

3 Linking Provenance

Below we discuss how we exploit the strong provenance links to answer impor-
tant queries. We also suggest how stronger links from data to provenance can
be accomplished. With the advent of extensible file formats (e.g., HDF55), it
is possible to include direct links to provenance or even the provenance itself
with the data. Finally, we present an application of the improved results from
provenance queries in publishing scientific results.

3.1 Algorithms for Querying Linked Provenance

Perhaps the most basic provenance query is one that retrieves the lineage of a
data product, specifically what input data and computations contributed to the
result [8]. With only the provenance of the execution, a user may find the path
to an input but even if a file still exists at that location, there is no guarantee it
has not been modified. To protect against such problems, users store the exact
data used with the provenance, manually archive all of the data, or add archival
as part of the workflow process [9]. With our file management scheme, we can
store the id, version, and content hash of any input as part of the provenance.
Then, for lineage queries, we can return references that can be accessed from the
provenance store using the id and version and verified using the content hash.
Most workflow systems that support provenance capture also provide support
for determining lineage queries [8].

Note that the content hash also gives us a way to locate the provenance of
files that are un-managed and may have been moved to a different location or
had their names changed. We begin by hashing the contents of the file, then

5 http://www.hdfgroup.org/HDF5
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query the managed store for this content hash. The resulting entries have ids
and versions for which we can then search our provenance for. Because the
provenance contains these stronger references, we can also identify and return
the input data via the managed store. An outline of this algorithm is shown in
Figure 3.

Because we abstract workflows from a specific filesystem, the provenance of
the workflow executions can be tied directly to the exact inputs and outputs.
This ensures better reproducibility because the exact content can be retrieved;
with links to the file names, we have no guarantee that the files at those locations
were unchanged. To reproduce a workflow execution, we retrieve the workflow
specification and execute it using the data pointed to by the managed file refer-
ences. Recall, however, that some workflow specifications may include only data
identifiers and not the versions of the data used. This allows a user to re-run
a workflow with the latest data which is not what we desire for reproduction.
Thus, we need to examine the provenance for the execution, retrieve the exact
version specified by the provenance and modify the specification.

Another provenance query that our strong links solves is the lineage of data
when the input of one workflow is the output of another. In the Second Prove-
nance Challenge [10], teams were asked to answer provenance queries from out-
puts that were the result of running data through three consecutive workflows.
One issue was the identification of data as it was transferred from the output of
one workflow to the input of another. With the managed store, we allow users to
designate inputs as the output of another workflow by assigning them the same
id. Thus, when the first workflow changes, the second workflow will incorporate
the changed results. Even if users do not use the same identifiers, we can per-
form provenance queries using the content hashes to link data across different
workflows.



3.2 Embedding Provenance with Data

We have demonstrated methods to find the provenance of data by searching a
provenance store for the hash of a given file. However, such methods depend on
access to the provenance store. An alternative approach is to embed provenance
with the data itself. With many file formats including HDF5 supporting anno-
tations, it is possible to embed provenance information or links to provenance
with the data. In directories of data, we can add an additional file that contains
the same information. Then, verifying data or regenerating a data product can
be accomplished by examining the provenance stored with the data.

We have developed a schema that allows a user to either link to or directly
encode provenance information in a file. Information represented in this schema
can be serialized to XML and embedded in an existing file or saved to a sep-
arate file. Figure 4 shows an example of a workflow using this schema. While
a provenance link can refer to a local file, we provide support for accessing a
central repository of provenance information. With a central repository, if the
file is transferred to a different user or machine, the link remains valid. With a
local reference, it will be more difficult to link back to provenance information.

4 Using Strong Links

4.1 Caching

Caching the intermediate results of workflow computations is useful to avoid
redundant computations. If a user executes a workflow, we can reuse any inter-
mediate results from that first execution in future executions [4]. Using our file
management for intermediate files, we are able to add support for caching files

to existing in-memory caching which means that cached data can be persisted
across sessions. With this extension, we can also consider how to share cached
data between different users as well. We begin by reviewing the in-memory work-
flow caching algorithm and then introduce an extension for caching across ses-
sions using the managed file store.

In-memory Caching. Using the upstream signatures, we build a cache by label-
ing each intermediate result with its upstream signature. Dataflow computation
proceeds in a bottom-up fashion; a sink (a module with no outgoing connections)
requests data from all of its inputs which may in turn request data from their
inputs and so on. Our caching algorithm works by hijacking this request for data
and checking if the upstream subworkflow has already been calculated, returning
the result from the cache when it exists instead of doing the computations.

Before executing any workflow, we compute the upstream signatures for each
module in the workflow. Note that the recursive computation of all signatures is
easily memoized. During workflow execution, before a module is set to execute,
we check if that module’s upstream signature exists in the cache. If it does, we
return the result from the cache. If not, we proceed with the computation, and
after the module finishes executing, we store the results of the computation in
the cache labeled by the upstream signature.



There are some modules that may not perform deterministic calculations. We
allow the module developer to designate such modules as non-cacheable. After
a workflow with one or more such modules executes, we immediately remove all
modules downstream of such a module from the cache.

Persistent Caching. We can extend the in-memory caching techniques to per-
sist results to disk, allowing users to cache results across sessions or share inter-
mediate results. Note that we need a serialization of the results of any module
type in order to mirror the entire in-memory cache. In addition, saving every
intermediate result to disk can needlessly slow down computation. For these
reasons, we have developed persistent caching as a user-driven technique for in-
termediate files. We allow the user to connect a new module to the workflow that
designates that the upstream subworkflow of the module should be cached. For
non-cached computation, this module receives a file and passes it downstream.
However, when the module finds that the signature associated with needed file
exists in the cache, it retrieves the linked file without doing the upstream calcu-
lations.

This allows any module with serializable results to be persisted in a disk-
based cache, but we can improve this process using the file management scheme
described in Section 2.2. Using this scheme, additions to the cache are managed
as intermediate files and cache lookup is a simple query to the store. In addition,
users need not identify or in any way configure the intermediate files using for
caching; the store assigns identity and stores signature information automati-
cally. When the upstream workflow of the caching module changes, the cache
lookup fails, and the store adds a new version of the intermediate file. Thus, a
user does not lose any intermediate results when exploring different workflow
configurations.

4.2 Publishing

When publishing scientific results, it is important to describe the lineage of a
result. Providing data sets and computer code allows scientists to verify and re-
produce published results and to conduct alternate analyses. In the past years,
interest in this subject has increased in different communities which led to dif-
ferent approaches for publishing scientific results (see [11] for an overview). Our
schema for embedding provenance with data can be combined with these ap-
proaches. In particular, it simplifies the process of packaging workflows and re-
sults for publication. In addition, we have also implemented a solution that
allows users to create documents whose digital artifacts (e.g., figures) include a
deep caption: detailed provenance information which contains the specification
of the computational process (or workflow) and associated parameters used to
produce the artifact [12].

5 Sharing Data

We have shown that maintaining workflow data in a managed store allows us to
quickly locate existing data, store accurate provenance, and cache intermediate



results across sessions. Additional benefits can be gained from having multiple
users share the repository. For example, if one user has run a time-intensive
step of a calculation, making that result available to other users allows them to
proceed with later steps without each re-computing the same result. Similarly,
if one user has already added a specific file to the store, other users with access
to that store can access the data without locating and copying the same data.
Below, we describe both centralized and decentralized approaches for sharing
managed data across systems, and note that the advantages and disadvantages
mirror those encountered with version control systems.

Centralized Storage. With a central store, users may either read and write
directly to a common repository or transfer data between a local repository and
a central repository. If users have access to a common disk, it may be possible to
simply store all managed files and metadata in a single store on that disk. Then,
all users will access the same repository and automatically have access to each
other’s input, output, and intermediate files. However, this solution may become
impractical for large numbers of users. A second problem is that whenever users
do not have access to that disk, they are unable to access their managed data.

When a central store is added to individual local repositories, a user will
always have access to the local repository but can also retrieve from and add to
a central repository. This allows a set of geographically distant users to share
common data. In addition, it allows users to maintain and access local data even
when disconnected from the central store. However, we maintain an extra copy of
the data in this case, and there may be overhead in transferring files, especially
if the distance from the central store is far. In addition, it requires building and
maintaining infrastructure.

Decentralized Storage. In a decentralized approach, users would advertise
their data and allow other users to transfer data directly from their repository.
A search for a particular piece of data by, for example, name or signature, would
query individual systems instead of one store. If the desired file is found, it is
transferred directly from the source location to the requesting user. Thus, unlike
with the central store, data is only transferred when it is needed. Combined
with P2P approaches, the transfer may be distributed over several machines.
However, if a particular machine is offline, the data generated on that machine
may not be available.

A hybrid approach that supports a central table of files but decentralized
storage would allow users to locate files even if they were not currently accessible.
Users would not push data to or pull files from the repository but rather register
the available files as they are added and whenever that data is requested, directly
transfer it to the requesting machine.

6 Implementation

We added file management to the VisTrails system [13] by introducing a new
package that included module types for input, output, and intermediate files and
directories. The package also includes code to set up the managed store as well



Fig. 5. The ManagedInputFile configuration allows the user to choose to create a new
reference from a file on his local filesystem or use an existing reference from the managed
store.

as navigate and update it through configuration dialogs. Our goal was to add
this support in a way that changes little in workflow structure while providing
ways for users to directly locate and identify data during workflow construction.
Thus, users that normally only configure the path of an input file can do exactly
the same for a managed input file module. In addition, adding an output file
has fewer requirements; a user only needs to connect the data to be persisted to
a managed output file module. The system generates unique ids and signatures
automatically. At the same time, we provide methods for annotating data and
configuring its storage and use.

The interface of our prototype implementation is shown in Figure 5. We define
three new module types for files: ManagedInputFile, ManagedOutputFile, and
ManagedIntermediateFile and their equivalents for directories. As described in
Section 2.2, all share a common set of attributes and options. The key difference
between inputs and outputs (or intermediates) is that outputs have a workflow-
dependent signature. Thus, an input file needs to be manually identified by the
user while an output file can be totally identified by its upstream signature.

A user can select a file by either referencing an existing identifier or by creat-
ing a new reference. When referencing a file that already exists in the managed
store, the user can search the repository for metadata including name, tags, user
id, date added, or a specific id or version. When creating a new reference, the
user may provide a name and tagging information, and for input files, the local
file that contains the data.



By default, an identifier for an input file changes when a new local path is
selected but does not change if the contents of the file changes. In the second case,
we maintain versions of the data, but update the “current version” whenever the
contents changes. Thus, any user that wishes to use this data in another workflow
will always get the latest data by referencing that identifier. Note that users may
choose to link data to an existing reference even if that reference was initially
linked to different data.

Storing Data. We use the git version control system [7] to manage files because
it stores content independent of filesystem structure, and an SQLite database6

to store its metadata. Thus, when the managed store is initialized for the first
time, we create a git repository along with a database to store file information.
While a reference is created and annotated during workflow design, the data is
not persisted until execution. Upon execution, we save the file in the repository
with its id (a UUID) as its name. We use git to add and commit the version
of the file, and retrieve the content hash (git uses SHA1) and the version id (a
SHA1 hash of the commit). Then, we update the database with the id, version,
content hash, signature (if applicable), name, tags, user, and modification date.

Finding Data. In order to locate existing data, we provide methods to match
content hashes and signatures as well as query the store for specific metadata like
name or tag information. When a user selects a file, we can check the repository
to see if that content has already been added by querying the database for the
selected file’s hash. If it does exist, we can prompt the user to reuse the existing
reference. Additionally, when we execute a workflow, we can check to see if an
intermediate file’s signature matches one that already exists; if so, we can reuse
that file instead of computing the upstream workflow. Finally, the configuration
for managed file selection includes a free-text query field for the managed file
database. A user can query for a specific name or tag to locate matching files
that can be used as references. This is accomplished by querying the SQLite

database and retrieving the matching id and, optionally, version.

7 ALPS Case Study

We have used the file management solution implementation for VisTrails with
the ALPS project7 (Algorithms and Libraries for Physics Simulations) [6]. ALPS
is an open source software package that makes modern, high-performance algo-
rithms for the simulation of quantum systems available to experimental and the-
oretical condensed-matter physicists. Typically, a simulation with ALPS consists
of three steps:

✌Preparing the input files describing the model to be simulated.
✌ Simulating the model using one of the ALPS programs. Such a simulation can
take between minutes on a laptop for very small test cases and weeks on large
compute clusters or supercomputers for demanding applications.

6 http://www.sqlite.org
7 http://alps.comp-phys.org/



✌ Collaboratively evaluating the “raw” simulation output by exploring & analyz-
ing the data, comparing it to experimental data, and creating figures.

In one specific use case, we have simulated a quantum Heisenberg spin lad-
der, a model for quasi-one-dimensional copper oxide materials where magnetic
excitations are suppressed at low temperature by an energy gap ∆ [14]. The
purpose of the simulation is to determine this gap ∆ by calculating the mag-
netic susceptibility χ as a function of the temperature T and fitting it to the
expression χ♣T q ✒ 1❄

T
exp✁∆④T [15]. We first use the “looper” program [16] of

ALPS to calculate χ♣T q and then use the exploration features of VisTrails to
explore the data and find the optimal range rTmin, Tmaxs for the non-linear fit.
The results of this exploration are shown in Figure 6.

Persistent caching and provenance adds a number of important advantages
for the ALPS users:

✌ Caching persistent files on a shared filesystem means that after one physicist
runs the simulation, her colleague can modify the evaluation part of the workflow
and explore the data without having to redo the time-intensive simulation.

✌ Identifying the cached files with the workflow signature avoids potentially crit-
ical mistakes of using old simulation results when input parameters to the sim-
ulation change. In our experience, simulations have often been recomputed only
to ensure that the data has been produced with the latest version of codes and
input files.

✌ Embedding provenance information in the data and figures gives immediate
access to the provenance including any aspect of the simulation a physicist might
wish to know. Since most projects involve collaborations with other scientists—
often at different institutions—facilitating the exchange of data is very valuable.
A common source of confusion is incomplete documentation of data sent to
collaborators. Embedded provenance information has been invaluable in making
remote collaborations more efficient.

✌ Decoupling the executions of different parts of the workflows using persistent
data enables physicists to explore data without the need to always rerun the
entire workflow—while still having the workflow provenance accessible when
needed.

In Figure 6, we show one ALPS workflow along with plots resulting from an
exploration of the fitting range parameter. The modules colored in blue, includ-
ing the time-consuming simulation module “AppLoop”, were not run when this
workflow was executed to create the plots because the output of the simulation
had previously been persistently cached. Only the evaluation part of the work-
flow was re-executed when the fit range rTmin, Tmaxs was modified. Note that
the SimulationID module is striped blue and yellow; this is because it has two
outgoing connections, one used in a file stored in the persistent cache and the
other as part of a computation using the in-memory cache. Changing its value or
structure would thus invalidate both cached results and all others downstream.



AppLoop

SpinModelladder

LatticeModel

Parameter

LoopMonteCarloParameters

IterateValue

Temperature

MonteCarloSimulation

MakeParameterXMLFiles

SimulationID

EvaluateLoop

ManagedIntermediateDir

GetResultFiles

LoadAlpsHdf5

CollectXY

PlotDescriptor

MplXYPlot

MplFigure

MplFigureCell

CellLocation

SheetReference

LegendDescriptor

IterateValue

PythonSource

AxisDescriptor

NonlinearFit

ConcatenateDataSets

Transform

Float
Float

AxisDescriptor

TransformProperties

PythonSource

TransformProperties

Fig. 6. An ALPS workflow colored by execution information and the results of a pa-
rameter exploration (i.e., multiple runs of the same workflow with different parameter
values) of the fitting range. The colors of the modules indicate their status: blue mod-
ules were not executed because the data was found in a persistent directory on disk,
yellow modules were cached in memory and green modules were executed.

8 Related Work

Data provenance consists of the trail of processing steps and inputs that led to
the creations of a given data object. Tracking changes to files and entire direc-
tory structures is well-studied, and version control systems have been developed
exactly for this purpose [17, 18]. However, such systems can only determine that
changes have occurred, not how they came about. More recently, version control
systems that focus on tracking content and directory structure separately have
been developed (see e.g., [7]). Such systems identify files with hashing, and if
duplicate files exist, the content is stored only once in the repository.

A number of workflow systems have been developed to help automate and
manage complex calculations. The structure and abstraction provided by such
systems have made them appealing to wide assortment of scientific domains.
Many of these systems [19, 20, 13] have included provenance capture to docu-
ment the process and data used to derive data products [1, 3]. Standard prove-
nance captured by these systems, however, is not sufficient to identify exactly
which workflow generated a specific file. In fact, in recent exercises to investigate
requirements for querying and integrating provenance information, the lack of



effective means to identify intermediate and final results of workflows has been
identified as an important challenge in provenance management [10, 21, 22]

Techniques have been developed to track provenance in databases [23]. These
track fine-grained provenance, i.e., changes to individual data items. In contrast,
our approach is targeted to (whole) files. In future work, we plan to investigate
how we can adapt our system to utilize database provenance given encapsulated
changes.

There is a significant amount of work with workflows that access and main-
tain curated data. In these cases, the provided ids or URIs are usually guar-
anteed to exist, and thus provenance information with them. Plale et al. have
examined the issues involved in maintaining and cataloging large meteorologi-
cal data, and noted the importance of allowing users to search and access this
data [24]. Simmhan et al. have proposed data valets as a workflow-based method
for facilitating the management of stores on the Cloud [25]. Note that if data for
computations comes from or is persisted to a curated source, a separate managed
store is not required to ensure access to those files. However, maintaining local
copies of these files does allow users to run workflows even when they cannot
connect to the store.

For curated scientific data, the identification of that data is important. There
are standards for such identification including LSID [26] and DOI [27]. Our
primary goal is orthogonal to these: we aim to maintain strong links between
data and its provenance. We are not concerned with registering ids for our local
persistent stores and use UUIDs to identify data. Identifying data by content
hashes is has been accomplished using the MD5 and SHA1 hashes. Hashing has
also been used in the context of secure provenance to maintain the confidentiality
and integrity of provenance [28]. We use hashing to both identify and search for
content as well as compute signatures for upstream subworkflows.

The problem with maintaining the data with workflows has been examined
before. Some systems have provided specific modules for file management as
part of workflow execution [9]. For example, after generating a data product, the
result is not only displayed but also archived in a specific location or disk. This
approach works well for static workflows, but for exploratory tasks, archival is
not often included. The cacher package for R8 provides a way to export verifiable
statistical analysis and data in a tamper-proof scheme that utilizes hashing [29].

While we developed our store to aid users who use local files as data sources,
our discussion of sharing the data in these stores overlaps many issues that
have been considered. There already exist a number of solutions for managing
scientific data on the grid and in cloud environments. GridFTP [30] and storage
resource managers [31] have been developed to efficiently access data sets by
utilizing networked resources. Such solutions can help provide faster access to
data and infrastructure for transferring data across persistent stores.

8 http://www.r-project.org



9 Conclusion & Future Work

We have presented file management infrastructure that can be integrated with
workflow systems to provide strong links to data in provenance information. In
addition, we have discussed how such links can be used to solve provenance
queries, facilitate persistent caching, and impact scientific publishing. Finally,
we have described our implementation of this system in VisTrails and its use in
the ALPS project.

One important aspect that we have not addressed is how the persistent store
should be managed. In theory, keeping all of the data manipulated by workflows
would ensure full reproducibility, but this is impractical for large amounts of
data. In future work, we plan to investigate different strategies for determining
when data can be purged from the store; for example, cached data that has
not been annotated. While our current implementation supports a rich class
of queries over the information in the repository, we would also like to sup-
port queries that involve workflow specification and the data involved—for ex-
ample, finding a workflow with a ParseCensusData module that accesses the
census2010.dat file.

Another area for future study is the automatic identification of intermediate
files for caching. While users can identify important way points, it can be te-
dious to add such modules to a large collection of workflows. By examining the
timestamps of module execution in provenance, we may be able to determine
which steps are time-intensive and could benefit from caching. Also, the size of
the intermediate result may also be important; if a large file is generated by a
time-intensive step, but the next step strips unneeded information away, it may
be more efficient to store the file after the extra information has been removed.
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