Brief Announcement: Low Depth Cache-Oblivious Sorting

Guy E. Blelloch

Carnegie Mellon University
Pittsburgh, PA USA

guyb@cs.cmu.edu

ABSTRACT

Cache-oblivious algorithms have the advantage of achiegood
sequential cache complexity acra@klevels of a multi-level cache
hierarchy, regardless of the specifics (cache size and dawhe
size) of each level. In this paper, we describe cache-ahi#/sort-
ing algorithms with optimal work, optimal cache complexépd
polylogarithmic depth. Using known mappings, these lealdbwo
cache complexities on shared-memory multiprocessors aviim-
gle level of private caches or a single shared cache. Morgthe
low cache complexities extend to shared-memory multigsoes
with common configurations of multi-level caches. The kegtda
in the low cache complexity on multiprocessors is the lowtdeyh
the algorithms we propose.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithmsda
Problems —Sorting and Searching. F.1.2 [Computation by ab-
stract devices]: Modes of ComputationRarallelism and Con-
currency. D.1.3 [Programming Techniques]: Concurrent Program-
ming —Parallel programming.

General Terms. Algorithms, Performance, Theory

Keywords: Cache-oblivious algorithms, sorting, parallel algoritym
multiprocessors, schedulers

1. INTRODUCTION

The cache-oblivious model (ideal-cache model) [12] is a two-
level model of computation composed of an unbounded memory
and a cache of siz&. Data are transferred between the two levels
using cache lines of sizg; all computation occurs on data in the
cache. BothZ and L are unknown to the algorithm, and the goal is
to minimize an algorithm’svork (number of operations) arwhche
complexity (number of cache lines transferred). Sequential algo-
rithms designed for this model have the advantage of acigevi
good sequential cache complexity acreldevels of a multi-level
cache hierarchy, regardless of the valuegpand L, at each level
1 [12]. Researchers have developed cache-oblivious afgositor
a variety of problems [10].

The cache complexity) (Z, L) for a natural sequential execu-
tion of a parallel program can also be used to bound the cawhe ¢
plexity Qp(Z, L) for the same program on certaif-processor
parallel machines with a single level of cache(s) [1, 5]. &r-p
ticular, for a shared-memory parallel machine with priveséehes
(each processor has its own cache) using a work-stealirgglatgr,
Qr(Z,L) < Q1(Z,L) + O(ZPD/L) with high probability [1],

Copyright is held by the author/owner(s).
SPAA' 09, August 11-13, 2009, Calgary, Alberta, Canada.
ACM 978-1-60558-606-9/09/08.

121

Phillip B. Gibbons

Intel Reseach Pittsburgh
Pittsburgh, PA USA

phillip.b.gibbons@intel.com harshas@cs.cmu.edu

Harsha Vardhan Simhadri

Carnegie Mellon University
Pittsburgh, PA USA

and for a shared cache using a PDF sched@er,Z + PD, L) <
Q1(Z, L) [5], where D is the depth of the computation. These re-
sults apply to nested-parallel computations—computatgiarting
with a single thread and using (nested) fork-join paratali—that
use binary forking (spawning) of threads. The “natural”semutial
execution is simply one that runs each call in a fork to conighe
before starting the next. The depth of a fork-join constisicteter-
mined by taking the maximum of the depths of the forked thsead

These results suggest a simple approach for developingeeach
efficient parallel algorithms: Develop a nested-parallgbgthm
with (1) low cache-oblivious complexity for the sequentiatier-
ing, and (2) low depth; then use the results above to bound the
cache complexity on a parallel machine. Low depth is impurta
becauseD shows up in the term for additional misses for private
caches, and additional cache size for a shared cache. Moreo
show that algorithms designed with this approach can alk®ee
good parallel cache complexity on parallel machines witinicmn
configurations ofmulti-level cache hierarchies.

As an example of the approach consider Strassen’s matriti-mul
ply. Itis nested-parallel since the seven recursive caltslie made
in parallel and the matrix addition can be implemented bk-for
ing off a tree of parallel calls. Fat x n matrices the total depth
is O(log? n)—O(logn) levels of recursion, each witB(logn)
depth for the additions. As shown in the original paper orheac
oblivious algorithms [12101 (n; Z, L) = n'¢7 /(L\/Z). Therefore
we have thap(n; Z, L) < n'87/(LVZ) + O(ZPlog?(n)/L)
for private caches an@p(Z + Plog® n, L) < n'87/(L\/Z) for a
shared cache. For practical parameters these boundstimditiaer
only marginally more total misses than the sequential ver§pri-
vate caches) or only marginally larger cache size (shareldeja

Although several known cache-oblivious algorithms areunat
rally parallel and have low depthe.f., matrix multiply, matrix
transpose, FFT), others are not. In particular the cacligials
algorithms for sorting [12] are not parallel. This paperg@ets a
low-depth cache-oblivious sorting algorithm. It has cacheplex-
ity Qi1(n; Z,L) = O((n/L)log, n) and workW = O(nlogn),
which are optimal, and dept® = O(log®n). The depth can be
improved using randomization.

Other work on parallel cache-oblivious algorithms has emc
trated on bounding cache misses for particular classegofiims.
This includes results by Friget al. [13] for a class of algorithms
with a regularity condition, by Blellockt al. [4] for a class of bi-
nary divide-and-conquer algorithms, and by Chowdhury aad R
machandran [8, 9] for a class of dynamic programming and Gaus
sian elimination-style problems. Our design motive is teeha
generic approach that works for a wide-class of algorithmd a
variety of parallel machine configurations; we study sartas a
specific instance of our approach. Our work may also be cstetta



Table 1. Algorithmic complexity (assuming Z = Q(L?)). All
algorithms are work optimal. (*new algorithms)

[ Problem | Depth | Cache-complexity |
Matrix Transpose | O(log (n + m)) O([nm/L])
Prefix Sum O(log n) O([n/L])
Merge O(logn) O([n/LY)

Sort (randomized) O(log®?n) | O([n/L][log,n])
Sort (deterministic) O(log® n) O([n/L][log, n])

with that of [3], which demonstrates cache-efficient altjoris for
private caches, the major difference being that their dlgms are
not cache-oblivious and are tuned specifically for one lef¢he
cache.

2. SORTING

We use known algorithms for matrix transpose, prefix sumd, an

merging as subroutines. The costs are summarized in Table 1.15:

The standard divide-and-conquer matrix-transpose dtguar{12]

is work optimal, has logarithmic depth and has optimal camire-
plexity whenZ = Q(L?). A simple variant of the standard parallel
prefix-sums algorithm has logarithmic depth and cache cerxityl
O(n/L) even with only a single cache blocke, L = 7).

To merge two arraysl and B of sizesia andig (Ia + 15 = n),
conduct a dual binary search of the arrays to find the keys with
ranks{n?/3,2n%/% 3n?/% ...} among the set of keys from both
arrays. Each dual binary search tal®@glogn) work and depth
and incursO(log[n/L]) cache misses. Once the locations of piv-
ots have been identified, the subarrays which are ofisizé each
can be recursively merged and appended. When Q(L?), this
algorithm can be shown to ha¥([n/L]) cache complexity, and
it hasO(log n) depth (see the full version of the paper [6]). Using
this merge in a mergesort in which the two recursive callgaral-
lel gives an algorithm with dept® (log? n) and cache complexity
O((n/L)log (n/Z)), which is not optimal. Blelloctet al. [4] an-
alyze similar merge and mergesort algorithms with the saache
complexities but with larger depth.

Our parallel sorting algorithm is based on a version of sampl
sort[11, 15], and has optimal cache complexity. Samplessme a
sample to select a set of pivots that partition the keys inttkbts,
then route all the keys to their appropriate buckets, and tbaort
within the buckets. Kumar [14] presents a version of sampté s
in which this key distribution is done sequentially (witharost
analysis). Our algorithm is also similar to that of [2].

The algorithm (Algorithm 1) first splits the set of elememoi
\/n subarrays of size/n and recursively sorts each of the subar-
rays. Then, we deterministically choose samples to detexiv-
ots: we choose everfog n)-th element from each of the subarrays
as a sample. The sample set, which is smaller than the givan da
set by a factor ofog n, is then sorted using mergesort. Because
mergesort is reasonably cache-efficient, using it on a ggtthf
smaller than the input set is not too costly in terms of cadma-c
plexity. More precisely, this mergesort does not incur mibran
O([n/L]) cache misses. We can then pigh evenly spaced keys
from the sample set as pivots to determine bucket boundafies
determine the bucket boundaries, the pivots are used toeslh
subarray using the cache-oblivious merge procedure. Tioisep
dure also takes no more théi([n/L]) cache misses.

Once the subarrays have been split, parallel prefix and xatri
transpose operations can be used to determine the prece@®lo

Algorithm 1 COSORTH, n)

»if n < 10 then
return SortA sequentially
end if
h«— [V/n]
(Vi€ [l:h], LetA; — A[h(i —1) 4+ 1 : hi]
Vi € [1: h], S; «— COSORTH;, h)
X « Pick every(log n)-th element of each of thd;s
Y +— MERGESORTX)
. Z «+ Pick every(y/n/ log n)-th element ofY”
: Vi € [1:h], M; — SPLIT(S;, Z)
{Each arrayM; contains for each bucketa start location in
S; for bucketj and a length of how many entries are in that
bucket, possibly 0.}
Let L be theh x h matrix formed by rowsM; with just the
lengths.
LT — TRANSPOSE()
Vi € [1 : h], O; «— PREFIX-SUMLT)
OT — TRANSPOSEQ)
Vi,j € [L:n], Tij — (Mi;(1),00;, Mi;(2))
{Each triple corresponds to an offset in ravior bucketj, an
offset in bucketj for row ¢ and the length to copy.}
16: LetB, B, ..., By be arrays (buckets) of siz#h each
17: B-TRANSPOSEY, B, T, 1,1, h)
18: Vi, SB; +— COSORT@;, length@B;))
19: return SB1||SB2||...||SBxn

COPXNDULWNEL

11:

12:
13:
14:

This mapping information is stored in a matfix of size \/n x
v/n. Note that none of the buckets will be loaded with more than
2/n log n keys because of the way we select pivots.

Algorithm 2 B-TRANSPOSES, B, T, is, is, 1)
Copy from arraysS;c(;, i, +n) t0 bucketsB;c;, i, +n) USing map
Tie[is:i3+n),j€[ib:ib+n)-

1: if (n =1) then
CopyS;, [Ti. i, (1) : Tio s, (1) + T 1, (3))
to By, [Ti..i, (2) : Ti iy (2) + Ti. i, (3))
: dse
B-TRANSPOSES, B, T, is, i, n/2)
B-TRANSPOSES, B, T, is, i + n/2, n/2)
B-TRANSPOSES, B, T', is + n/2, i, n/2)
B-TRANSPOSES, B, T, is + n/2, i + n/2, n/2)
:endif

N

NSO RW

Once the bucket boundaries have been determined, the keg's ne
to be transferred to the buckets. Although a naive algoritbro
this is not cache-efficient, we show that the bucket trares@ds
gorithm (Algorithm 2) algorithm is. The bucket transpose i®ur
way divide-and-conquer procedure on the (almost) squatexnia
which indicates a set of segments of subarrays (segmentoare
tiguous in each subarray) and their target locations in thekét.
The matrixT is cut in half vertically and horizontally and sepa-
rate recursive calls are assigned the responsibility ofsfierring
the keys specified in each of the four parts.

LEMMA 2.1. The algorithm B-TRANSPOSE transfers a matrix
of v/n x /n keys into bucket matrix B according to offset 7' in
O(n) work, O(log n) depth, and O([n/L]) sequential cache com-
plexity.

PROOF (outling): For each node in the recursion tree of bucket
transpose, we define the node’s siZe) to be the size of the ma-

in the buckets where each segment of the subarray is to be senttrix 7" and the node’s weight(n) to be the number of keys that

122



is responsible for transferring. We identify three classkaodes
in the recursion tree:

1. Lightnodes: Anode islightif s(n) < Z/100, andw(n) <
Z/10, and its parent node is of size greater tfaf100.

2. Heavy leaves: A leati is heavy ifw(n) > Z/10.
3. Heavy nodes: An interior nodeis heavy ifs(n) < Z/100,

w(n) < Z/10, and its parent node is of weight larger than

Z)10.

The union of these three sets covers the responsibilityrémster-
ring all the keys.

From the definition of a light node, it can be argued that al th
keys that a light node is responsible for fit inside a cache, im

plying that each light node cannot incur more th&jiL cache
misses. It can also be seen that light nodes can not be gthater

4n/(Z/100) in number leading to the fact that the sum of cache

complexities of all the light nodes is no more thag[n/L]).

Heavy nodes are similar to light nodes in that their targed da
fits into a cache. If we assume that they have combined wefght o

n—W , then there no more thatfn— W) /(Z/10) of them, putting
their aggregate cache complexity4ét(n — W)/ L.

A heavy leaf of sizav incurs[w/L] cache misses. There are no
more thariV’/(Z/10) of them, implying that their aggregate cache
complexity isW/L + 10W/Z. Therefore, the cache complexities

of heavy nodes and leaves adds up to anathgn/L1). [

THEOREM 2.2. On an input of size n, the algorithm COSORT
incurs O(nlog n) workand Q(n; Z, L) = O([n/L][log, n]) se-
quential cache complexity, and has O (log? n) depth.

ProoOF Allthe subroutines other than recursive calls to COSORT

have linear work and cache complexi®([n/L]). Also, the sub-

routine with the maximum depth is the mergesort used to fimd pi
ots; its depth isD(log? n). Therefore, the recurrence relations for

the work, depth, and cache complexity are as follows:

NG
W(n) = O<n>+ﬁW<ﬁ>+_ZW(m>
D(n) = O(log®n) +max/" {D(n:)}
vn
Qmiz.1) = O([}])+vrQWmZ.0)+) Qi Z,D),

where then;s are such that their sum is and none individually

excee2\/n log n. The base case for the recursion for cache com-

plexity isQ(n; Z, L) = O([n/L]) for n < ¢Z for some constant
c. Solving these recurrences proves the theorem.

The depth of the above algorithm can be slightly improved by

using a randomized method to select the pivots: we piekran-

dom keys fromA, and use a brute force sort to determine the rel-

ative order of the sample set. Because this procedure dded-no
ways yield balanced buckets, we need to repeat pivot seteuati-
til all buckets are of size less thapin log n. It can be argued that
each iteration of the loop exits successfully with probiabat least

1—1/n. This version of the algorithm can be shown to have a depth

of O(log®/2 n) with high probability (see [6]).

3. MULTI-LEVEL HIERARCHIES

We highlight one of our results for mapping low-depth cache-

oblivious algorithms to shared-memory parallel machingéh wulti-
level caches. Consider thearallel Tree-of-Caches (PToC) family

123

of parallel cache hierarchies, withtra-level regularity. Each of

P processors is connected to a private level-one cache of&ize
Disjoint, equal-sized groups dP, processors each share a level-
two cache of sizeZ> - P>, and so on, forming a tree of caches of
k levels. Cache lines (or blocks) are of sizeat level: in the hi-
erarchy, and/i, Z; > L2. The cache hierarchy is inclusive: each
cached word at level < k is also cached in its “parent” cache at
leveli 4+ 1. Moreover, each cache is fully associative and supports
a variant of thedag consistency cache consistency model [7] that
uses an optimal replacement policy. Theorem 3.1 genesalize
prior bound on the cache complexity for single level priveaehes
(recall Section 1).

THEOREM 3.1. When a computation with sequential cache com-
plexity Q1(Z, L), work W, and depth D is scheduled on a P-
processor PToC with intra-level regularity using work stealing, all
the caches at level  incur atotal of Q1(Z;, L;) + O(Z;PD/L;)
cache misses with high probability.

See [6] for other cache configurations and further detaitdyid-
ing bounds for PDF schedulers.

Acknowledgments. This work was funded in part by IBM, Intel,
and the Microsoft-sponsored Center for Computational Kihig

4. REFERENCES

[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data lbgaof
work stealing.Theory Comput. Syst., 35(3), Springer, 2002.

[2] A. Aggarwal, A. Chandra, and M. Snir. Hierarchical memavith
block transfer. INEEE FOCS 87, 1987.

[3] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava.

Fundamental parallel algorithms for private-cache chip

multiprocessors. IICM SPAA' 08, 2008.

G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramactian,

S. Chen, and M. Kozuch. Provably good multicore cache

performance for divide-and-conquer algorithms AGM-S AM

SODA 08, 2008.

G. E. Blelloch and P. B. Gibbons. Effectively sharing alta among

threads. IPACM SPAA' 04, 2004.

G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low dept

cache-oblivious algorithms. Tech. Rep. CMU-CS-09-134n€gie

Mellon University, 2009. http://reports-archive.admorsu.edu

/anon/2009/CMU-CS-09-134.pdf.

R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, andK

Randall. Dag-consistent distributed shared memoriEEE

IPPS 96, 1996.

[8] R.A. Chowdhury and V. Ramachandran. The cache-obliou
gaussian elimination paradigm: Theoretical framework,
parallelization and experimental evaluation AGM SPAA' 07, 2007.

[9] R. A. Chowdhury and V. Ramachandran. Cache-efficientadyic
programming algorithms for multicores. ACM SPAA' 08, 2008.

[10] E. D. Demaine. Cache-oblivious algorithms and datacstires. In
Lecture Notes from the EEF Summer School on Massive Data Sets,
LNCS. Springer-Verlag, 2002.

[11] W. D. Frazer and A. C. McKellar. Samplesort: A samplimpeoach
to minimal storage tree sortind. ACM, 17(3), 1970.

[12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandra
Cache-oblivious algorithms. IFEEE FOCS 99, 1999.

[13] M. Frigo and V. Strumpen. The cache complexity of mhtgaded
cache oblivious algorithms. IACM SPAA’ 06, 2006.

[14] P. Kumar. Cache oblivious algorithms. In U. Meyer, Pn&axs, and
J. Sibeyn, editorsAlgorithms for Memory Hierarchies. Springer,
2003.

[15] S. Rajasekaran and J. H. Reif. Optimal and sublogafithime
randomized parallel sorting algorithm&AM J. Comput., 18(3),
1989.

[4

[l

[5

—

6

—

[7

—



