
Brief Announcement: Low Depth Cache-Oblivious Sorting

Guy E. Blelloch
Carnegie Mellon University

Pittsburgh, PA USA
guyb@cs.cmu.edu

Phillip B. Gibbons
Intel Reseach Pittsburgh

Pittsburgh, PA USA
phillip.b.gibbons@intel.com

Harsha Vardhan Simhadri
Carnegie Mellon University

Pittsburgh, PA USA
harshas@cs.cmu.edu

ABSTRACT
Cache-oblivious algorithms have the advantage of achieving good
sequential cache complexity acrossall levels of a multi-level cache
hierarchy, regardless of the specifics (cache size and cacheline
size) of each level. In this paper, we describe cache-oblivious sort-
ing algorithms with optimal work, optimal cache complexityand
polylogarithmic depth. Using known mappings, these lead tolow
cache complexities on shared-memory multiprocessors witha sin-
gle level of private caches or a single shared cache. Moreover, the
low cache complexities extend to shared-memory multiprocessors
with common configurations of multi-level caches. The key factor
in the low cache complexity on multiprocessors is the low depth of
the algorithms we propose.

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems –Sorting and Searching. F.1.2 [Computation by ab-
stract devices]: Modes of Computation –Parallelism and Con-
currency. D.1.3 [Programming Techniques]: Concurrent Program-
ming –Parallel programming.

General Terms: Algorithms, Performance, Theory

Keywords: Cache-oblivious algorithms, sorting, parallel algorithms,
multiprocessors, schedulers

1. INTRODUCTION
The cache-oblivious model (ideal-cache model) [12] is a two-

level model of computation composed of an unbounded memory
and a cache of sizeZ. Data are transferred between the two levels
using cache lines of sizeL; all computation occurs on data in the
cache. BothZ andL are unknown to the algorithm, and the goal is
to minimize an algorithm’swork (number of operations) andcache
complexity (number of cache lines transferred). Sequential algo-
rithms designed for this model have the advantage of achieving
good sequential cache complexity acrossall levels of a multi-level
cache hierarchy, regardless of the values ofZi andLi at each level
i [12]. Researchers have developed cache-oblivious algorithms for
a variety of problems [10].

The cache complexityQ1(Z, L) for a natural sequential execu-
tion of a parallel program can also be used to bound the cache com-
plexity QP (Z, L) for the same program on certainP -processor
parallel machines with a single level of cache(s) [1, 5]. In par-
ticular, for a shared-memory parallel machine with privatecaches
(each processor has its own cache) using a work-stealing scheduler,
QP (Z, L) < Q1(Z, L) + O(ZPD/L) with high probability [1],

Copyright is held by the author/owner(s).
SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.
ACM 978-1-60558-606-9/09/08.

and for a shared cache using a PDF scheduler,QP (Z +PD, L) ≤
Q1(Z, L) [5], whereD is the depth of the computation. These re-
sults apply to nested-parallel computations—computations starting
with a single thread and using (nested) fork-join parallelism—that
use binary forking (spawning) of threads. The “natural” sequential
execution is simply one that runs each call in a fork to completion
before starting the next. The depth of a fork-join constructis deter-
mined by taking the maximum of the depths of the forked threads.

These results suggest a simple approach for developing cache-
efficient parallel algorithms: Develop a nested-parallel algorithm
with (1) low cache-oblivious complexity for the sequentialorder-
ing, and (2) low depth; then use the results above to bound the
cache complexity on a parallel machine. Low depth is important
becauseD shows up in the term for additional misses for private
caches, and additional cache size for a shared cache. Moreover, we
show that algorithms designed with this approach can also achieve
good parallel cache complexity on parallel machines with common
configurations ofmulti-level cache hierarchies.

As an example of the approach consider Strassen’s matrix multi-
ply. It is nested-parallel since the seven recursive calls can be made
in parallel and the matrix addition can be implemented by fork-
ing off a tree of parallel calls. Forn × n matrices the total depth
is O(log2 n)—O(log n) levels of recursion, each withO(log n)
depth for the additions. As shown in the original paper on cache-
oblivious algorithms [12]Q1(n; Z, L) = nlg 7/(L

√
Z). Therefore

we have thatQP (n; Z, L) < nlg 7/(L
√

Z) + O(ZP log2(n)/L)

for private caches andQP (Z +P log2 n, L) ≤ nlg 7/(L
√

Z) for a
shared cache. For practical parameters these bounds indicate either
only marginally more total misses than the sequential version (pri-
vate caches) or only marginally larger cache size (shared cache).

Although several known cache-oblivious algorithms are natu-
rally parallel and have low depth (e.g., matrix multiply, matrix
transpose, FFT), others are not. In particular the cache-oblivious
algorithms for sorting [12] are not parallel. This paper presents a
low-depth cache-oblivious sorting algorithm. It has cachecomplex-
ity Q1(n; Z, L) = O((n/L) logZ n) and workW = O(n log n),
which are optimal, and depthD = O(log2 n). The depth can be
improved using randomization.

Other work on parallel cache-oblivious algorithms has concen-
trated on bounding cache misses for particular classes of algorithms.
This includes results by Frigoet al. [13] for a class of algorithms
with a regularity condition, by Blellochet al. [4] for a class of bi-
nary divide-and-conquer algorithms, and by Chowdhury and Ra-
machandran [8, 9] for a class of dynamic programming and Gaus-
sian elimination-style problems. Our design motive is to have a
generic approach that works for a wide-class of algorithms and a
variety of parallel machine configurations; we study sorting as a
specific instance of our approach. Our work may also be contrasted

121

Table 1: Algorithmic complexity (assuming Z = Ω(L2)). All
algorithms are work optimal. (∗new algorithms)

Problem Depth Cache-complexity

Matrix Transpose O(log (n + m)) O(⌈nm/L⌉)
Prefix Sum O(log n) O(⌈n/L⌉)
Merge O(log n) O(⌈n/L⌉)
Sort (randomized)∗ O(log3/2 n) O(⌈n/L⌉⌈logZ n⌉)
Sort (deterministic)∗ O(log2 n) O(⌈n/L⌉⌈logZ n⌉)

with that of [3], which demonstrates cache-efficient algorithms for
private caches, the major difference being that their algorithms are
not cache-oblivious and are tuned specifically for one levelof the
cache.

2. SORTING
We use known algorithms for matrix transpose, prefix sums, and

merging as subroutines. The costs are summarized in Table 1.
The standard divide-and-conquer matrix-transpose algorithm [12]
is work optimal, has logarithmic depth and has optimal cachecom-
plexity whenZ = Ω(L2). A simple variant of the standard parallel
prefix-sums algorithm has logarithmic depth and cache complexity
O(n/L) even with only a single cache block (i.e., L = Z).

To merge two arraysA andB of sizeslA andlB (lA + lB = n),
conduct a dual binary search of the arrays to find the keys with
ranks{n2/3, 2n2/3, 3n2/3, . . . } among the set of keys from both
arrays. Each dual binary search takesO(log n) work and depth
and incursO(log⌈n/L⌉) cache misses. Once the locations of piv-
ots have been identified, the subarrays which are of sizen2/3 each
can be recursively merged and appended. WhenZ = Ω(L2), this
algorithm can be shown to haveO(⌈n/L⌉) cache complexity, and
it hasO(log n) depth (see the full version of the paper [6]). Using
this merge in a mergesort in which the two recursive calls areparal-
lel gives an algorithm with depthO(log2 n) and cache complexity
O((n/L) log (n/Z)), which is not optimal. Blellochet al. [4] an-
alyze similar merge and mergesort algorithms with the same cache
complexities but with larger depth.

Our parallel sorting algorithm is based on a version of sample
sort [11, 15], and has optimal cache complexity. Sample sorts use a
sample to select a set of pivots that partition the keys into buckets,
then route all the keys to their appropriate buckets, and then to sort
within the buckets. Kumar [14] presents a version of sample sort
in which this key distribution is done sequentially (without cost
analysis). Our algorithm is also similar to that of [2].

The algorithm (Algorithm 1) first splits the set of elements into√
n subarrays of size

√
n and recursively sorts each of the subar-

rays. Then, we deterministically choose samples to determine piv-
ots: we choose every(log n)-th element from each of the subarrays
as a sample. The sample set, which is smaller than the given data
set by a factor oflog n, is then sorted using mergesort. Because
mergesort is reasonably cache-efficient, using it on a set slightly
smaller than the input set is not too costly in terms of cache com-
plexity. More precisely, this mergesort does not incur morethan
O(⌈n/L⌉) cache misses. We can then pick

√
n evenly spaced keys

from the sample set as pivots to determine bucket boundaries. To
determine the bucket boundaries, the pivots are used to split each
subarray using the cache-oblivious merge procedure. This proce-
dure also takes no more thanO(⌈n/L⌉) cache misses.

Once the subarrays have been split, parallel prefix and matrix
transpose operations can be used to determine the precise location
in the buckets where each segment of the subarray is to be sent.

Algorithm 1 COSORT(A, n)
1: if n < 10 then
2: return SortA sequentially
3: end if
4: h← ⌈√n⌉
5: ∀i ∈ [1 : h], Let Ai ← A[h(i− 1) + 1 : hi]
6: ∀i ∈ [1 : h], Si ← COSORT(Ai, h)
7: X ← Pick every(log n)-th element of each of theAis
8: Y ← MERGESORT(X)
9: Z ← Pick every(

√
n/ log n)-th element ofY

10: ∀i ∈ [1 : h], Mi ← SPLIT(Si, Z)
{Each arrayMi contains for each bucketj a start location in
Si for bucketj and a length of how many entries are in that
bucket, possibly 0.}

11: Let L be theh × h matrix formed by rowsMi with just the
lengths.

12: LT ← TRANSPOSE(L)
13: ∀i ∈ [1 : h], Oi ← PREFIX-SUM(LT

i)
14: OT ← TRANSPOSE(O)
15: ∀i, j ∈ [1 : n], Ti,j ← 〈Mi,j〈1〉, OT

i,j , Mi,j〈2〉〉
{Each triple corresponds to an offset in rowi for bucketj, an
offset in bucketj for row i and the length to copy.}

16: LetB1, B2, . . . , Bh be arrays (buckets) of size2h each
17: B-TRANSPOSE(S, B, T , 1, 1, h)
18: ∀i, SBi ← COSORT(Bi, length(Bi))
19: return SB1||SB2|| . . . ||SBh

This mapping information is stored in a matrixT of size
√

n ×√
n. Note that none of the buckets will be loaded with more than

2
√

n log n keys because of the way we select pivots.

Algorithm 2 B-TRANSPOSE(S, B, T , is, ib, n)
Copy from arraysSi∈[is:is+n) to bucketsBj∈[ib:ib+n) using map
Ti∈[is:is+n),j∈[ib:ib+n).
1: if (n = 1) then
2: CopySis

[Tis,ib
〈1〉 : Tis,ib

〈1〉+ Tis,ib
〈3〉)

to Bbs
[Tis,ib

〈2〉 : Tis,ib
〈2〉+ Tis,ib

〈3〉)
3: else
4: B-TRANSPOSE(S, B, T , is, ib, n/2)
5: B-TRANSPOSE(S, B, T , is, ib + n/2, n/2)
6: B-TRANSPOSE(S, B, T , is + n/2, ib, n/2)
7: B-TRANSPOSE(S, B, T , is + n/2, ib + n/2, n/2)
8: end if

Once the bucket boundaries have been determined, the keys need
to be transferred to the buckets. Although a naive algorithmto do
this is not cache-efficient, we show that the bucket transpose al-
gorithm (Algorithm 2) algorithm is. The bucket transpose isa four
way divide-and-conquer procedure on the (almost) square matrix T
which indicates a set of segments of subarrays (segments arecon-
tiguous in each subarray) and their target locations in the bucket.
The matrixT is cut in half vertically and horizontally and sepa-
rate recursive calls are assigned the responsibility of transferring
the keys specified in each of the four parts.

LEMMA 2.1. The algorithm B-TRANSPOSE transfers a matrix
of
√

n × √n keys into bucket matrix B according to offset T in
O(n) work, O(log n) depth, and O(⌈n/L⌉) sequential cache com-
plexity.

PROOF. (outline): For each noden in the recursion tree of bucket
transpose, we define the node’s sizes(n) to be the size of the ma-
trix T and the node’s weightw(n) to be the number of keys thatT

122

is responsible for transferring. We identify three classesof nodes
in the recursion tree:

1. Light nodes: A noden is light if s(n) < Z/100, andw(n) <
Z/10, and its parent node is of size greater thanZ/100.

2. Heavy leaves: A leafn is heavy ifw(n) ≥ Z/10.

3. Heavy nodes: An interior noden is heavy ifs(n) < Z/100,
w(n) < Z/10, and its parent node is of weight larger than
Z/10.

The union of these three sets covers the responsibility for transfer-
ring all the keys.

From the definition of a light node, it can be argued that all the
keys that a light node is responsible for fit inside a cache, im-
plying that each light node cannot incur more thanZ/L cache
misses. It can also be seen that light nodes can not be greaterthan
4n/(Z/100) in number leading to the fact that the sum of cache
complexities of all the light nodes is no more thanO(⌈n/L⌉).

Heavy nodes are similar to light nodes in that their target data
fits into a cache. If we assume that they have combined weight of
n−W , then there no more than4(n−W)/(Z/10) of them, putting
their aggregate cache complexity at40(n−W)/L.

A heavy leaf of sizew incurs⌈w/L⌉ cache misses. There are no
more thanW/(Z/10) of them, implying that their aggregate cache
complexity isW/L + 10W/Z. Therefore, the cache complexities
of heavy nodes and leaves adds up to anotherO(⌈n/L⌉).

THEOREM 2.2. On an input of size n, the algorithm COSORT
incurs O(n log n) work and Q(n; Z, L) = O(⌈n/L⌉⌈logZ n⌉) se-
quential cache complexity, and has O(log2 n) depth.

PROOF. All the subroutines other than recursive calls to COSORT
have linear work and cache complexityO(⌈n/L⌉). Also, the sub-
routine with the maximum depth is the mergesort used to find piv-
ots; its depth isO(log2 n). Therefore, the recurrence relations for
the work, depth, and cache complexity are as follows:

W (n) = O(n) +
√

nW (
√

n) +

√
n

X

i=1

W (ni)

D(n) = O(log2 n) + max
√

n
i=1{D(ni)}

Q(n; Z, L) = O
“l n

L

m”

+
√

nQ(
√

n; Z, L) +

√
n

X

i=1

Q(ni; Z, L),

where thenis are such that their sum isn and none individually
exceed2

√
n log n. The base case for the recursion for cache com-

plexity isQ(n; Z, L) = O(⌈n/L⌉) for n < cZ for some constant
c. Solving these recurrences proves the theorem.

The depth of the above algorithm can be slightly improved by
using a randomized method to select the pivots: we pick

√
n ran-

dom keys fromA, and use a brute force sort to determine the rel-
ative order of the sample set. Because this procedure does not al-
ways yield balanced buckets, we need to repeat pivot selection un-
til all buckets are of size less than

√
n log n. It can be argued that

each iteration of the loop exits successfully with probability at least
1−1/n. This version of the algorithm can be shown to have a depth
of O(log3/2 n) with high probability (see [6]).

3. MULTI-LEVEL HIERARCHIES
We highlight one of our results for mapping low-depth cache-

oblivious algorithms to shared-memory parallel machines with multi-
level caches. Consider theParallel Tree-of-Caches (PToC) family

of parallel cache hierarchies, withintra-level regularity. Each of
P processors is connected to a private level-one cache of sizeZ1.
Disjoint, equal-sized groups ofP2 processors each share a level-
two cache of sizeZ2 · P2, and so on, forming a tree of caches of
k levels. Cache lines (or blocks) are of sizeLi at leveli in the hi-
erarchy, and∀i, Zi ≥ L2

i . The cache hierarchy is inclusive: each
cached word at leveli < k is also cached in its “parent” cache at
level i + 1. Moreover, each cache is fully associative and supports
a variant of thedag consistency cache consistency model [7] that
uses an optimal replacement policy. Theorem 3.1 generalizes the
prior bound on the cache complexity for single level privatecaches
(recall Section 1).

THEOREM 3.1. When a computation with sequential cache com-
plexity Q1(Z, L), work W , and depth D is scheduled on a P -
processor PToC with intra-level regularity using work stealing, all
the caches at level i incur a total of Q1(Zi, Li) + O(ZiPD/Li)
cache misses with high probability.

See [6] for other cache configurations and further details, includ-
ing bounds for PDF schedulers.

Acknowledgments. This work was funded in part by IBM, Intel,
and the Microsoft-sponsored Center for Computational Thinking.

4. REFERENCES

[1] U. A. Acar, G. E. Blelloch, and R. D. Blumofe. The data locality of
work stealing.Theory Comput. Syst., 35(3), Springer, 2002.

[2] A. Aggarwal, A. Chandra, and M. Snir. Hierarchical memory with
block transfer. InIEEE FOCS’87, 1987.

[3] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava.
Fundamental parallel algorithms for private-cache chip
multiprocessors. InACM SPAA’08, 2008.

[4] G. E. Blelloch, R. A. Chowdhury, P. B. Gibbons, V. Ramachandran,
S. Chen, and M. Kozuch. Provably good multicore cache
performance for divide-and-conquer algorithms. InACM-SIAM
SODA’08, 2008.

[5] G. E. Blelloch and P. B. Gibbons. Effectively sharing a cache among
threads. InACM SPAA’04, 2004.

[6] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth
cache-oblivious algorithms. Tech. Rep. CMU-CS-09-134, Carnegie
Mellon University, 2009. http://reports-archive.adm.cs.cmu.edu
/anon/2009/CMU-CS-09-134.pdf.

[7] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H.
Randall. Dag-consistent distributed shared memory. InIEEE
IPPS’96, 1996.

[8] R. A. Chowdhury and V. Ramachandran. The cache-oblivious
gaussian elimination paradigm: Theoretical framework,
parallelization and experimental evaluation. InACM SPAA’07, 2007.

[9] R. A. Chowdhury and V. Ramachandran. Cache-efficient dynamic
programming algorithms for multicores. InACM SPAA’08, 2008.

[10] E. D. Demaine. Cache-oblivious algorithms and data structures. In
Lecture Notes from the EEF Summer School on Massive Data Sets,
LNCS. Springer-Verlag, 2002.

[11] W. D. Frazer and A. C. McKellar. Samplesort: A sampling approach
to minimal storage tree sorting.J. ACM, 17(3), 1970.

[12] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. InIEEE FOCS’99, 1999.

[13] M. Frigo and V. Strumpen. The cache complexity of multithreaded
cache oblivious algorithms. InACM SPAA’06, 2006.

[14] P. Kumar. Cache oblivious algorithms. In U. Meyer, P. Sanders, and
J. Sibeyn, editors,Algorithms for Memory Hierarchies. Springer,
2003.

[15] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time
randomized parallel sorting algorithms.SIAM J. Comput., 18(3),
1989.

123

