
Brief Announcement: The Cache-Oblivious Gaussian
Elimination Paradigm — Theoretical Framework and

Experimental Evaluation ∗

Rezaul Alam Chowdhury & Vijaya Ramachandran
Department of Computer Sciences, UT Austin, Austin, TX 78712

shaikat@cs.utexas.edu, vlr@cs.utexas.edu

Categories & Subject Descriptors: B.3.2[Memory Struc-
tures]:Design Styles – Cache memories; F.2.1 [Analysis of
Algorithms and Problem Complexity]: Numerical Algorithms
and Problems – Computations on matrices

General Terms: Algorithms, Theory, Experimentation.

Cache-efficient algorithms improve execution time by ex-
ploiting data parallelism inherent in the transfer of blocks
of useful data between adjacent memory levels. By increas-
ing locality in their memory access patterns, these algo-
rithms try to keep the number of block transfers small. The
cache-oblivious model [1] is a further refinement that enables
the development of system-independent cache-efficient algo-
rithms that simultaneously adapt to all levels of a multi-level
memory hierarchy. This leads to fuller use of data paral-
lelism and also produces portable code. The cache-oblivious
model represents the memory hierarchy with two memory
levels — an ideal cache of size M and an unlimited main
memory partitioned into blocks of size B. The cache com-
plexity of an algorithm is the number of I/Os (i.e., block
transfers) performed between these two levels.

In [2] we introduced the Gaussian Elimination Paradigm
(GEP) — a cache-oblivious framework for several important
problems solvable using a construct similar to the computa-
tion in Gaussian elimination without pivoting (see Fig. 1).

The traditional GEP code in Fig. 1 runs in O
�
n3
�

time

and incurs O
�

n
3

B

�
I/Os. In [2] we presented a framework

(which we call here I-GEP) for an in-place O
�
n3

�
time and

O
�

n
3

B
√

M

�
I/O cache-oblivious execution of Gaussian elimi-

nation without pivoting, all-pairs shortest paths, and other
important special cases of GEP. However, there exist in-
stances of f and ΣG for which I-GEP does not solve GEP
correctly (e.g., see full version of this write-up [3]).

In this work we establish several important properties of
I-GEP and build on these results to derive C-GEP, which is
a provably correct and optimal cache-oblivious implementa-
tion of GEP for all f and ΣG. C-GEP has the same time
and cache complexity as I-GEP, and uses n2 +n extra space
(where the size of the input matrix c is n2).

Both I-GEP and C-GEP have potential application in op-
timizing compilers as cache-oblivious ‘tiling’ techniques.

∗This work was supported in part by NSF Grant CCF-0514876 and NSF
CISE Research Infrastructure Grant EIA-0303609.

Copyright is held by the author/owner(s).
SPAA’06, July 30–August 2, 2006, Cambridge, Massachusetts, USA.
ACM 1-59593-262-3/06/0007.

G(c, n, f, ΣG)

(Input c[1 . . . n, 1 . . . n] is an n × n matrix, f(·, ·, ·, ·) is an ar-
bitrary problem-specific function, and ΣG is a problem-specific
set of triplets such that c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k]) is
executed in line 5 if 〈i, j, k〉 ∈ ΣG.)

1. for k ← 1 to n do

2. for i← 1 to n do

3. for j ← 1 to n do

4. if 〈i, j, k〉 ∈ ΣG then

5. c[i, j]← f(c[i, j], c[i, k], c[k, j], c[k, k])

Figure 1: Traditional GEP code.

We present an empirical comparison of I-GEP and C-GEP
with the traditional GEP in Fig. 1 for both in-core and out-
of-core computations. We use f(x, u, v, w) = min(x, u + v)
and ΣG = { 〈i, j, k〉 | i, j, k ∈ [1, n] } as in Floyd-Warshall’s
all-pairs shortest paths algorithm.

We ran our in-core experiments on Intel Xeon and SUN
UltraSPARC-III+. On both architectures the relative per-
formance of I-GEP and C-GEP with respect to GEP im-
proved as n increased, and both of them ran faster than
GEP when n ≥ 211. On the SUN machine both I-GEP and
C-GEP ran 1.7 times faster and incurred a factor of 100
times fewer L2 cache misses than GEP when n = 213.

We ran our out-of-core experiments on an Intel Xeon ma-
chine equipped with a fast (10K RPM and 4.5 ms avg seek
time) hard disk. For disk accesses we used STXXL — an im-
plementation of the C++ standard template library STL for
external memory computations. STXXL maintains a fully
associative cache in RAM with pages from the disk. In our
experiments, the I/O wait time for I-GEP/C-GEP was less
than that for GEP by at least a factor of 180 when executed
on an input matrix only half of which fit in internal memory.

All experimental data along with a more detailed descrip-
tion of experiments are given in [3], together with detailed
results for properties of I-GEP and C-GEP.

REFERENCES
[1] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran.

Cache-oblivious algorithms. Proc. FOCS, 1999.
[2] R. Chowdhury and V. Ramachandran. Cache-oblivious

dynamic programming. Proc. SODA, 2006.
[3] R. Chowdhury and V. Ramachandran. The cache-oblivious

Gaussian elimination paradigm: theoretical framework and
experimental evaluation. TR-06-04, CS Dept., UT Austin,
2006.


