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Abstract

This paper presents a Newton-like algorithm for solving systems of rank constrained linear matrix inequalities. Though local quadratic
convergence of the algorithm is not a priori guaranteed or observed in all cases, numerical experiments, including application to an output
feedback stabilization problem, show the effectiveness of the algorithm.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The linear matrix inequality (LMI) problem is a well known
type of convex feasibility problem that has found many appli-
cations to controller analysis and design. The rank constrained
LMI problem is a natural as well as important generalization of
this problem. It is a non-convex feasibility problem defined by
LMI constraints together with an additional matrix rank con-
straint.

Interest in rank constrained LMIs arises as many impor-
tant output feedback and robust control problems, that can-
not always be addressed in the standard LMI framework, can
be formulated as special cases of this problem (El Ghaoui &
Gahinet, 1993; Goh, Safonov, & Ly, 1996; Mesbahi, Safonov,
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& Papavassilopoulos, 1999; Skelton, Iwasaki, & Grigoriadis,
1998). Examples include bilinear matrix inequality (BMI)
problems, see Goh et al. (1996) and Mesbahi et al. (1999), that
are easily seen to be equivalent to rank one constrained LMI
problems.

In addition to their importance for control, rank constrained
LMIs also appear naturally in mathematical programming and
combinatorial optimization tasks: all optimization problems
with polynomial objective and polynomial constraints can be re-
formulated as LMI optimization problems with a rank one con-
straint (Boyd & Vandenberghe, 1997; Nesterov & Nemirovskii,
1994).

In general, if the set of points that satisfy an LMI is non-
empty, then a numerical solution to the LMI problem can
be efficiently found using well developed interior point algo-
rithms, see for example Vandenberghe & Boyd (1996). Lack
of convexity makes the rank constrained LMI problem much
harder to solve. Currently available algorithms for the rank
constrained LMI problem are largely heuristic in nature and
are not guaranteed to converge to a solution even if one exists.
Solution methods for this problem, or certain specializations of
the problem, include those based on linearization (El Ghaoui,
Oustry, & Ait Rami, 1997); alternating projections (Beran &
Grigoriadis, 1996; Grigoriadis & Beran, 1999; Grigoriadis
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& Skelton, 1996); trace minimization methods that try to
solve the problem by solving a related convex problem (Pare,
2000); augmented Lagrangian methods (Fares, Apkarian, &
Noll, 2001); and sequential semidefinite programming (Fares,
Noll, & Apkarian, 2002). Aside from Fares et al. (2002), these
methods do not have established superlinear convergence rates
and the challenge remains to find numerical schemes with
verifiable local quadratic convergence rates.

In this paper we present a new heuristic method for solv-
ing the rank constrained LMI problem. The method is closely
related to existing alternating projection methods but is ex-
pected to have improved convergence properties due to a
built-in Newton-type step. In Grigoriadis and Skelton (1996)
and Grigoriadis and Beran (1999) alternating projection al-
gorithms are proposed that involve tangent-like ideas, similar
to our approach. However, the implementation details are dif-
ferent and the connection to the Newton method is neither
mentioned nor obvious. In fact, it is this established connec-
tion to Newton’s method that distinguishes our approach from
earlier ones.

Our method is based on the “tangent and lift” methodology
(Chu, 1992), a generalization of Newton’s method. While the
classical Newton algorithm can be used to find zeroes of func-
tions, the tangent and lift method is more general and can be
used to find a point in the intersection of an affine subspace and
a manifold. We show that the rank constrained LMI problem
can be formulated as a problem of finding a point in the in-
tersection of an affine subspace and another set which, though
not a manifold, is a finite union of manifolds. Part of the con-
tribution of this paper is a demonstration that tangent and lift
methods can be extended to this more general setting and we
present an algorithm for solving the rank constrained LMI prob-
lem based on such an extension. Numerical experiments show
the effectiveness of this approach.

Since our method is based on a generalization of the New-
ton method, local quadratic convergence to isolated solutions
is expected. However, complications arise due to the non-
smoothness of the constraints as well as the possibility of
continua of solutions. This makes a rigorous convergence the-
ory difficult to develop and in fact, as some of our experiments
show, local quadratic convergence cannot be expected in all
cases. The challenge therefore is to single out a class of prob-
lems for which local quadratic convergence can be rigorously
established.

The rest of the paper is structured as follows. Section 2 con-
tains a statement of the rank constrained LMI problem and a re-
formulation of this problem into an equivalent form. Section 3
contains a discussion of the tangent and lift method and details
of how we extend this methodology so that it can be applied to
the rank constrained LMI problem. Section 4 discusses impor-
tant geometric properties of rank constrained positive semidef-
inite matrices. Our algorithm for solving the rank constrained
LMI problem is given in Section 5. Section 6 considers various
numerical implementation issues. It includes a discussion of
how the basic approach extends to enable the solution of more
general problems such as those with multiple rank constraints.
Section 7 reports on some numerical experiments and includes

an application of the algorithm to an output feedback problem.
The paper ends with some concluding remarks.

2. Problem formulation

Let R denote the set of real numbers and Sn denote the
set of real symmetric n × n matrices. For A ∈ Sn, let A�0
denote the property that A is positive semidefinite. The rank
constrained LMI problem is the following:

Problem 1. Find x ∈ Rm such that

F(x) := F0 +
m∑

i=1

xiFi�0, (1)

G(x) := G0 +
m∑

i=1

xiGi�0, (2)

rank G(x)�r . (3)

The problem data are the real symmetric matrices Fi ∈ SnF

and Gi ∈ SnG , and the rank bound r. Problem 1 consists of two
LMI constraints, (1) and (2), and a rank constraint, (3). When
r=nG, constraint (3) is always satisfied and the problem reduces
to a standard LMI feasibility problem. The more interesting
case is when r < nG. In this case the problem is non-convex.

Let Sn+ = {X ∈ Sn |X�0} and, for each integer
s, let Sn+(s) = {X ∈ Sn |X�0, rank(X) = s}. De-
fine Mr = S

nF+ × ∪r
s=0 S

nG+ (s) = {(X, Y ) ∈ SnF ×
SnG |X�0, Y�0, rank(Y )�r} and L = {(X, Y ) ∈ SnF ×
SnG | (X, Y ) = (F (x), G(x)) for some x ∈ Rm}. Problem 1
can be stated in the following equivalent form.

Problem 2. Find (X, Y ) ∈ Mr ∩ L.

We will see that, for each s, Sn+(s) is a manifold and hence
that the rank constrained LMI problem is equivalent to finding
a point in the intersection of an affine subspace and another set
which is a finite union of manifolds. This structure will enable
us to use the tangent and lift ideas that are discussed in the next
section.

3. Tangent and lift

In this section we discuss the tangent and lift methodology
and present an extension that can be applied to the rank con-
strained LMI problem.

Before proceeding with the main discussion, a brief note on
projections is required. Let x be an element in a Hilbert space
H and let C be a closed (possibly non-convex) subset of H.
Any c0 ∈ C such that ‖x − c0‖�‖x − c‖ for all c ∈ C will
be called a projection of x onto C. In the cases of interest here,
namely that H is a finite dimensional Hilbert space, there is
always at least one such point for each x. If C is convex as well
as closed then each x has exactly one such minimum distance
point (Luenberger, 1969).

The tangent and lift method is a generalization of Newton’s
method and can be used to find a point in the intersection of an
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Fig. 1. Two different methods for finding a zero of a function: (a) Tangent
and lift; (b) Newton’s method.

affine subspace and a manifold. It originated in Chu (1992) and
is based on a geometric interpretation of an algorithm appearing
in Friedland, Nocedal, and Overton (1987).

Recall that Newton’s method for finding a zero of a function
f : R → R is iterative in nature and is given by the recursion
xn+1 =xn −f (xn)/f

′(xn). Geometrically speaking, xn+1 is the
x-axis intercept of the line which is tangent to the graph of f at
(xn, f (xn)). In tangent and lift, the role of the x-axis is replaced
by an affine subspace and the role of the graph of f is replaced
by a manifold. More precisely, the method works as follows.
Let H be a real finite dimensional Hilbert space and suppose
L is an affine subspace of H and that M is a submanifold
of H. Given xn ∈ L, and assuming it is possible to calculate
projections onto M, let yn be a projection of xn onto M. As M
is a manifold, it has a tangent space T at the point yn. T has a
canonical representation as a linear subspace of H and yn + T

can be thought of as an affine subspace of H that is tangent to
the manifold at yn. Assuming yn +T and L intersect uniquely,
xn+1 is taken to be the intersection point of yn + T and L. As
xn+1 ∈ L, the scheme can be iterated.

A graphical representation of the algorithm is given in Fig.
1(a). Here the Hilbert space H is R2, L is the x-axis, and M
is the graph of a function f : R → R. In this case, finding a
point in M ∩ L is equivalent to finding a zero of f. Newton’s
method can also be employed to solve this problem and for
purposes of comparison is also illustrated in Fig. 1.

For tangent and lift to work it must be possible to calculate
projections onto M. This step replaces the process of ‘lifting’
x to (x, f (x)) in Newton’s method. In addition, at least for all
points near a solution, each yn + T must intersect L uniquely.
This essentially places a rather strong requirement on the di-
mensions of L and M:

dim L + dim M = dim H . (4)

In Problem 2, Mr is not a manifold but rather a finite union
of pairwise disjoint manifolds, see Section 4. This means that
each point in Mr lies in a manifold with a well defined tangent
space. However, these manifolds are of varying dimensions.
Depending on y ∈ Mr , it may therefore happen that y + T

does not intersect L uniquely. The intersection may be empty
or it may contain more than one point. This may happen even
arbitrarily close to a solution point.

In order to apply tangent and lift ideas to Problem 2, the ap-
proach must be extended to deal with these intersection issues.
Our method of doing this is as follows. We consider all points in
L that are of minimum distance to yn+T and from these points
choose xn+1 to be the point closest to yn. As we will see in
Section 5, xn+1 can be found by solving a linearly constrained
least squares problem. Numerical experiments demonstrate this
methodology leads to a locally convergent algorithm which,
though it not always the case, often exhibits local quadratic
convergence.

Regarding rigorous convergence results, though our method
is based on a generalization of the Newton method, analysis of
convergence is complicated due to the non-smoothness of the
constraints as well as the possibility of continua of solutions.
We currently have only partial results and the development of a
rigorous convergence theory presents a challenge for the future.

4. The geometry of rank constrained positive semidefinite
matrices

Before proceeding to describe our algorithm for solving the
rank constrained LMI problem in greater detail, in this section
we collect together some geometric properties of rank con-
strained positive semidefinite matrices.

Theorem 3. Sn+(s) is a connected smooth manifold of dimen-
sion 1

2 s(2n− s +1). The tangent space of Sn+(s) at an element
X is TXS

n+(s) = {�X + X�T |� ∈ Rn×n}.

Corollary 4. Mr is a finite union of manifolds.

As the next theorem shows, after applying an appropriate
transformation, TXS

n+(s) has a rather simple form.

Theorem 5. Given X ∈ Sn+(s), let X = �X̄�T, X̄ = ��0,
where � ∈ Rn×n is orthogonal and � ∈ Ss is a positive
definite diagonal matrix. Then �TTXS

n+(s)� = TX̄S
n+(s)

=
{[

�1
�2

�T
2

0

]
|�1 ∈ Ss , �2 ∈ R(n−s)×s

}
.

The following useful fact is obvious from Theorem 3.

Lemma 6. X ∈ TXS
n+(s) for each X ∈ Sn+(s).

5. Algorithm

This section presents our algorithm for solving the rank con-
strained LMI problem. It contains a description of the algorithm
at a conceptual level followed by details of the various compo-
nents of the algorithm, including the required projections and
initialization. The algorithm described here has been made into
a freely available Matlab toolbox titled LMIRank (Orsi, 2005).
LMIRank can be used either directly or via YALMIP (Löfberg,
2004).

In order to do projections, we need to define an appropri-
ate Hilbert space. From now on Sn will be regarded as a
Hilbert space with inner product 〈A, B〉=tr(AB)=∑

i,j Aij Bij .
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The associated norm is the Frobenius norm ‖A‖ = 〈A, A〉 1
2 . In

addition, SnF ×SnG will be regarded as a Hilbert space with
the usual inner product for a space that is a product of Hilbert
spaces.

We will have need to refer to the tangent space of SnF+ (s)×
S

nG+ (t) at a point (X, Y ) as an affine subspace of SnF ×SnG :
for (X, Y ) ∈ S

nF+ (s) × S
nG+ (t), define A(X,Y ) = (X, Y ) +

T(X,Y )(S
nF+ (s) × S

nG+ (t)). Lemma 6 implies that (X, Y ) ∈
T(X,Y )(S

nF+ (s) ×S
nG+ (t)). Hence, A(X,Y ) = T(X,Y )(S

nF+ (s) ×
S

nG+ (t)) and A(X,Y ) is in fact a linear subspace and not just
an affine subspace.

At a conceptual level, the algorithm is as follows.

Algorithm.
Problem Data. F0, . . . , Fm ∈ SnF , G0, . . . , Gm ∈ SnG ,

and 0�r �nG.
Initialization. Either choose any (X1, Y1) ∈ SnF × SnG ,

or use (X1, Y1) = (F (x), G(x)) where x is the solution
of the semidefinite definite program (5).

repeat
(1) Project (X1, Y1) onto Mr to give a new point

(X2, Y2).
(2) Define B = {(X, Y ) ∈ L | dist((X, Y ),A(X2,Y2))=

dist(L,A(X2,Y2))}.
(3) (X3, Y3) = arg min(X,Y )∈B‖(X, Y ) − (X2, Y2)‖.
(4) Set (X1, Y1) = (X3, Y3).
until (X1, Y1) converges to a solution of Problem 2. (See

Section 6.1 for a precise termination criteria.)

Here are some comments regarding the above algorithm. Step
1 is readily calculated via eigenvalue–eigenvector decomposi-
tions of X1 and Y1. This will be shown in Section 5.2 below.
In Step 2, B is the set of points in L that are of minimum
distance to A(X2,Y2). Step 3 is the projection of (X2, Y2) onto
B. Note that as L and A(X2,Y2) are closed affine subspaces,
the distance between them is zero if and only if they intersect.
Whether the sets intersect or not, B itself will always be either
a single point or an affine subspace. In the case that B is a sin-
gle point, Step 3 is trivial. In the case that B is an affine sub-
space, Step 3 is equivalent to solving a linearly constrained least
squares problem. Details of how to solve this step are given in
Section 5.3 below. Finally, note that each new (X1, Y1) is in L
as (X1, Y1)=(X3, Y3) ∈ B ⊂ L. Hence, the termination crite-
rion of the algorithm can be replaced by ‘until (X1, Y1) ∈ Mr ’.

5.1. Initialization

There is no guarantee that the algorithm will converge
from an arbitrary initial condition (X1, Y1). While a random
choice for the initial condition does often work, an alterna-
tive choice is to use (X1, Y1) = (F (x), G(x)) where x is the
solution of the following semidefinite programming (SDP)
problem:

min
x∈Rm

tr(G(x)) s.t. F(x)�0, G(x)�0. (5)

This is based on the heuristic that minimizing the trace of a
matrix subject to LMI constraints often leads to a low rank

solution. Nice insights into why trace minimization might be
effective can be found in Fazel (2002).

As we will see in the results section, in some cases the solu-
tion of (5) will satisfy rank G(x)�r , in which case the overall
problem is solved. In general, however, the solution of the SDP
gives a singular matrix G(x) which does not satisfy this rank
constraint.

5.2. Projecting onto Mr

Step 1 of the algorithm is the projection of a point (X1, Y1)

onto the set Mr . This projection is equivalent to component-
wise projection of X1 onto S

nF+ = ∪nF

s=0S
nF+ (s) and Y1 onto

∪r
s=0S

nG+ (s).
The projection of X ∈ Sn onto ∪r

s=0S
n+(s) is given by

Theorem 7 below. More precisely, Theorem 7 gives a projection
of X onto ∪r

s=0S
n+(s) as, for r strictly less than n, the set

∪r
s=0S

n+(s) is nonconvex and projections onto this set are not
always guaranteed to be unique. While Theorem 7 is not new
(see Mardia, 1978) our proof (see Orsi, Helmke, & Moore,
2006) is new.

Theorem 7. Given X ∈ Sn and 0�r �n, let X =
� diag(�1, · · · , �n)�T with �1 � · · · ��n and � a real or-
thogonal matrix. Define Pr : Sn → Sn by Pr(X) =
� diag(max{�1, 0}, . . . , max{�r , 0}, 0, . . . , 0)�T. Then Pr(X)

is a best approximant in ∪r
s=0S

n+(s) to X in the Frobenius
norm.

5.3. Projecting onto B

In this section, we will make use of the following notation.
Given X ∈ Rn×n and 0�s�n, let Xs ∈ R(n−s)×(n−s) denote
the matrix consisting of the last n − s rows and columns of X.

Theorem 8. Suppose (X, Y ) ∈ Mr and define s = rank(X)

and t = rank(Y ). Then X and Y have eigenvalue–eigenvector
decompositions X=V (�X�0)V T, Y =W(�Y �0)WT, where
V ∈ RnF ×nF and W ∈ RnG×nG are orthogonal, and �X ∈ Ss

and �Y ∈ St are positive definite diagonal matrices.
Using the Fi’s and Gi’s of (1) and (2), and V and W, define

b ∈ R(nF −s)2+(nG−t)2
and B ∈ R((nF −s)2+(nG−t)2)×m by

b =
[

vec((V TF0V )s)

vec((WTG0W)t )

]
,

B =
[

vec((V TF1V )s) . . . vec((V TFmV )s)

vec((WTG1W)t ) . . . vec((WTGmW)t )

]
.

If F(·) and G(·) are the functions defined in (1) and (2), and
‖ · ‖2 denotes the standard vector 2-norm, then the projection
of (X, Y ) onto B equals (F (x), G(x)) where x is a minimizing
solution of

min
x∈Rm

∥∥∥∥
[

vec(F1) . . . vec(Fm)

vec(G1) . . . vec(Gm)

]
x+

[
vec(F0−X)

vec(G0−Y )

]∥∥∥∥
2

(6)

s.t. BTBx = −BTb. (7)
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Hence projecting onto B is equivalent to solving the linearly
constrained least squares problem (6), (7). Such problems can
be solved in a number of ways, see for example Lawson and
Hanson (1995).

6. Numerical implementation issues

6.1. Convergence criteria

Let �alg > 0 be a user chosen algorithm tolerance. The con-
vergence criteria is that the constraints (1)–(3) are ‘satisfied to
a tolerance of �alg’, by which we mean the following condi-
tions are met: F(x)� − �algI , G(x)� − �algI and G(x) has
nG − r eigenvalues of absolute value ��alg. While choosing
�alg small guarantees that the constraints (1)–(3) will be al-
most exactly satisfied, such a choice will lead to longer con-
vergence times. The choice of tolerance �alg will be dictated
by the problem being considered and it may be possible to
choose a relatively large value. An example of this will be given
in Section 7 when considering output feedback stabilization
problems.

6.2. Additional LMI constraints and multiple rank constraints

The methods described in this paper can be readily modi-
fied to deal with additional LMI constraints. Indeed, it is even
possible to have multiple rank constraints. In the rest of this
section we briefly outline how the algorithm can be modified to
incorporate these additions. These extensions are incorporated
into our software package LMIRank (Orsi, 2005).

If there are q LMI constraints in total, when projecting onto
‘Mr ’, q (rather than 2) individual projections must be carried
out. As before, each projection is given by Theorem 7. Note
that whether or not the ith LMI is rank constrained influences
the ith (and only the ith) projection.

When projecting onto ‘B’, the only difference is that, in
Theorem 8, rather than considering (X, Y ), we now have to
consider a q-tuple of symmetric matrices. As a result, each
column of b and B in the theorem now consists of q (rather than
2) stacked vectors. Similarly, each column of the block matrix
and block vector in (6) consists of q stacked vectors. Each of
these terms are calculated in an analogous manner to the ones
appearing in Theorem 8.

6.3. Linear programming inequality constraints

Linear programming inequalities constraints in x of the form

aTx + b�0, a ∈ Rm, b ∈ R

are just 1×1 LMIs and hence, by the prior subsection, can also
be readily incorporated.

7. Numerical experiments

This section contains some numerical experiments. Algo-
rithm performance is investigated using both randomly gener-

Table 1
Experiments for random F and G with nF = 10, nG = 10 and r = 5

m Iterations i T

1 2.10 11.20 21.1000 NC

10 965 35 0 0 0 1.1 0.16
20 333 448 84 112 23 21 0.36
30 279 559 70 71 21 21 0.48
40 756 214 19 9 2 3.2 0.46
50 967 26 6 1 0 1.5 0.54

i denotes the average number of iterations and T denotes average CPU time
in seconds. i and T do not include the problems that had not converged after
1000 iterations. The number of such problems for each m is given in the ‘NC’
or ‘non-convergence after 1000 iterations’ column. Tolerance �alg = 10−12.

ated problems and by applying the algorithm to a particular
output feedback problem.

All computational results were obtained using a 3 GHz Pen-
tium 4 machine. Our algorithm was coded using Matlab 7.0.
For each problem, the initial condition was found by solving the
semidefinite programming problem (5) using SeDuMi (Sturm,
1999).

7.1. Random problems

All results in this section are for randomly generated prob-
lems. Each problem is generated as follows. Let N(0, 1) de-
note the normal distribution with zero mean and variance 1.
Each entry of the matrices F1, . . . , Fm and G1, . . . , Gm is
drawn from N(0, 1). To ensure feasibility, F0 and G0 are set to
F0 =VF DF V T

F −∑m
i=1�iFi and G0 =VGDGV T

G −∑m
i=1�iGi ,

where each �i is drawn from N(0, 1); VF and VG are ran-
domly generated orthogonal matrices; and DF and DG are ran-
domly generated diagonal matrices: each diagonal entry in DF

is drawn from N(0, 1) and set to zero if it is negative, while r
diagonal entries in DG are drawn from the uniform distribution
on the interval [0, 1] and the others set to zero.

For the problems in this section, the algorithm tolerance
was set to �alg = 10−12. (For the problems considered, typical
nonzero eigenvalues have magnitudes between 101 and 10−2.)

Table 1 contains results for nF =10, nG=10, r=5 and various
values of m. For each value of m in the table, the algorithm is
given 1000 random problems to solve. Listed are a distribution
of the number of iterations taken for the algorithm to converge,
the average number of iterations, and the average CPU time.
Iteration 1 is the initialization step using the trace minimization
heuristic.

For m = 10 and 50, solutions for all 1000 problems were
found. In both these cases the trace minimization heuristic was
very effective, finding solutions for almost all the problems.
Most of the few problems that were not solved in this first itera-
tion, were solved using a small number of additional iterations.
For both m = 20 and 30, the trace minimization heuristic was
no longer quite as successful though it did still manage to find
a solution in about 30% of cases. Overall, 95% of problems
were solved in 20 iterations or less while less than 1% had not
converged after 1000 iterations. Average solution times were
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very small and tended to increase with m. (For some results for
larger problems, see Orsi et al. (2006).)

The results indicate that on average the problems that are
easiest to solve are those with either a rather small number
of variables or those problems with a rather large number of
variables. This situation is rather puzzling. However, as we will
now explain, theoretical rank bound results do suggest why at
least problems with a rather large number of variables may be
easier to solve.

We will use the notation �k to denote the kth triangular
number, �k := (k + 1)k/2. Consider a SDP of the form (5)
where the cost is replaced by a general linear cost cTx. It follows
from the results in Alizadeh, Haeberly, and Overton (1997) that
for a generic choice of c, Fi’s and Gi’s, a solution x of such a
problem satisfies

�rank F(x) + �rank G(x) ��nF
+ �nG

− m. (8)

Hence, for a given rank bound r, if m is large enough, the solu-
tion will satisfy rank G(x)�r . The rank bound (8) is certainly
interesting however its practical value as a means of ensuring
low rank may be limited: for our largest value of m, m = 50,
Eq. (8) only guarantees rank G(x)�10 (in the worst case sce-
nario that rank F(x) = 0) and hence does not even guarantee
that G(x) will not have full rank.

7.2. Reduced order output feedback

Consider a continuous time, linear time invariant (LTI) sys-
tem

ẋ = Ax + Bu, y = Cx, (9)

where x ∈ Rn is the state, u ∈ Rm is the control, and y ∈ Rp

is the output.
A dynamic output feedback controller of order nc, 0�nc �n,

will be understood to be a controller of the form
[

ẋc

u

]
=K

[
xc

y

]
where K ∈ R(nc+m)×(nc+p) is a constant matrix and xc ∈ Rnc .

The problem that interests us in this section is the following
reduced order output feedback stabilization problem.

Problem 9. Given a system (9) and a scalar � > 0, find a dy-
namic output feedback controller of order �nc that places the
closed loop poles of the system in the set

{z ∈ C | Re(z)� − �}. (10)

Recall that a system with its poles in (10) is said to have
stability degree (of at least) �.

Define Ã=
[

A
0

0
0nc

]
, B̃ =

[
0

Inc

B
0

]
, and C̃ =

[
0
C

Inc
0

]
. As is

well known, K is an order nc solution of Problem 9 if and only
if the augmented closed loop system matrix Ã + B̃KC̃ has its
eigenvalues in (10). In addition, Problem 9 is solvable if and
only if Problem 10, given below, is solvable (see for example
Grigoriadis & Beran, 1999).

Problem 10. Given a system (9) and a scalar � > 0, find X, Y ∈
Sn such that

− B⊥(AX + XAT + 2�X)B⊥T�0, (11)

− CT⊥(YA + ATY + 2�Y )CT⊥T�0, (12)[
X I

I Y

]
�0, (13)

rank

[
X I

I Y

]
�n + nc. (14)

Here, B⊥ is a matrix of maximal rank such that its rows are
orthonormal and B⊥B = 0. Similar comments apply for CT⊥.

A solution of Problem 10 can be used to construct a solution
of Problem 9 (and vice versa). As discussed in Section 6.1, our
algorithm computes solutions to a user specified tolerance �alg.
Hence, an algorithm computed solution to Problem 10 will not
in general satisfy the constraints exactly. We take this fact into
account in our method of controller synthesis. The first step
of our method is to use the algorithm to solve the following
perturbed problem.

Problem 11. Given a system (9), a scalar � > 0, and a tolerance
� > 0, find X, Y ∈ Sn such that

− B⊥(AX + XAT + 2�X)B⊥T − �I�0,

− CT⊥(YA + ATY + 2�Y )CT⊥T − �I�0,[
X I

I Y

]
− �I�0,

rank

([
X I

I Y

]
− �I

)
�n + nc.

By choosing �alg equal to the � of Problem 11, an algorithm
calculated solution to Problem 11 will satisfy (11)–(13). In
addition, (14) will be satisfied to a tolerance of 2�, that is, at
least 2n − (n + nc) eigenvalues of the matrix in (14) will have
magnitude 2� or less.

By the Schur complement result, (13) holds if and only
if Y 
 0 (Y is positive definite) and X − Y−1�0. If X −
Y−1 has eigenvalue–eigenvector decomposition X − Y−1 =
V diag(�1, · · · , �n)V

T, with �1 � . . . ��n, define R = V (:, 1 :
nc)diag(�1/2

1 , . . . , �1/2
nc

and X̃ =[ X
RT

R
I
]. Note that X̃ 
 0. The

output feedback matrix K is reconstructed via the following
SDP,

max
�∈R,K

�

s.t. (Ã + B̃KC̃)X̃ + X̃(Ã + B̃KC̃)T + 2�X̃ � 0. (15)

See Orsi et al. (2006) for further comments on this approach.
We now consider a particular reduced order output feed-

back problem from Beran and Grigoriadis (1996) (see also
Grigoriadis & Beran, 1999; Grigoriadis & Skelton, 1996;
Skelton et al., 1998, Chapter 10;). The system considered is a



R. Orsi et al. / Automatica 42 (2006) 1875–1882 1881

Table 2
Results for the two-mass-spring system

� � = 10−4 � = 10−9

�̂ i T �̂ i T

0.2 0.20 59 0.55 0.21 195 1.4
0.42 0.42 644 4.2 0.42 1536 9.5
0.46 0.46 1187 8.0 0.46 2846 19

� denotes the desired stability degree, �̂ the stability degree achieved, i the
number of iterations, and T the CPU time in seconds.

two-mass-spring system with state space representation
given by

A =
⎡
⎢⎣

0 0 1 0
0 0 0 1

−1 1 0 0
1 −1 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ , C =

⎡
⎢⎣

0
1
0
0

⎤
⎥⎦

T

.

Given � > 0, we wish to find an order 2 dynamic controller that
places the closed loop poles in (10).

The problem was solved for two of the same values of �
given in Beran and Grigoriadis (1996), � = 0.2 and 0.42, and
also an additional value, � = 0.46. For each value of �, the
algorithm was applied to Problem 11 with tolerances � = 10−4

and 10−9. In each case the controller matrix K was constructed
via (15). The results are listed in Table 2.

The first main point to note from these results is that it took
more than twice as many iterations and more than twice as long
to solve the problems using � = 10−9 compared to � = 10−4.
Hence, taking relatively large values of � such as � = 10−4

may in general be a good solution strategy for these types
of problems. The second main point to note is that, for both
values of �, convergence time increases with �. Hence, speed of
convergence seems to be influenced by the size of the feasible
set.

While �=0.46 was the best stability degree that we were able
to achieve, it turns out this value is still not the best possible.
The second order controller

K(s) = (43/5)s2 − (54
√

15/125)s − (27/125)

s2 + (6
√

15/5)s + 7
(16)

achieves a stability degree of �=√
15/5 ≈ 0.77. This controller

can be found by considering system and controller transfer
functions and requiring that the denominator of the closed loop
transfer function equal the polynomial (s+�)6. For comparison
purposes, we also tried the cone complementarity linearization
algorithm of El Ghaoui et al. (1997) on the same problem. Our
experience is that this algorithm works quite well in general
though for this particular problem the greatest stability degree
we were able to achieve using this algorithm was � = 0.20.

8. Conclusions

In this paper we have presented an algorithm for solving the
rank constrained LMI problem, as well as more general LMI
problems such as those with multiple rank constraints. Like

all other algorithms that attempt to solve the rank constrained
LMI problem, convergence from an arbitrary initial condition
is not guaranteed. Though the convergence properties of the
algorithm are not yet completely understood, as demonstrated
by the experiments, the algorithm can be quite effective.
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