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Abstract

With the explosion in the number of digital images taken every day, the demand for more accurate and visually

pleasing images is increasing. However, the images captured by modern cameras are inevitably degraded by noise,

which leads to deteriorated visual image quality. Therefore, work is required to reduce noise without losing image

features (edges, corners, and other sharp structures). So far, researchers have already proposed various methods for

decreasing noise. Each method has its own advantages and disadvantages. In this paper, we summarize some

important research in the field of image denoising. First, we give the formulation of the image denoising problem,

and then we present several image denoising techniques. In addition, we discuss the characteristics of these

techniques. Finally, we provide several promising directions for future research.
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Introduction
Owing to the influence of environment, transmission

channel, and other factors, images are inevitably con-

taminated by noise during acquisition, compression, and

transmission, leading to distortion and loss of image in-

formation. With the presence of noise, possible subse-

quent image processing tasks, such as video processing,

image analysis, and tracking, are adversely affected.

Therefore, image denoising plays an important role in

modern image processing systems.

Image denoising is to remove noise from a noisy image,

so as to restore the true image. However, since noise, edge,

and texture are high frequency components, it is difficult

to distinguish them in the process of denoising and the

denoised images could inevitably lose some details. Over-

all, recovering meaningful information from noisy images

in the process of noise removal to obtain high quality im-

ages is an important problem nowadays.

In fact, image denoising is a classic problem and has

been studied for a long time. However, it remains a chal-

lenging and open task. The main reason for this is that

from a mathematical perspective, image denoising is an

inverse problem and its solution is not unique. In recent

decades, great achievements have been made in the area

of image denoising [1–4], and they are reviewed in the

following sections.

The remainder of this paper is organized as follows. In

Section “Image denoising problem statement”, we give the

formulation of the image denoising problem. Sections “Clas-

sical denoising method, Transform techniques in image

denoising, CNN-based denoising methods” summarize the

denoising techniques proposed up to now. Section “Experi-

ments” presents extensive experiments and discussion. Con-

clusions and some possible directions for future study are

presented in Section “Conclusions”.

Image denoising problem statement

Mathematically, the problem of image denoising can be

modeled as follows:

y ¼ xþ n ð1Þ

where y is the observed noisy image, x is the unknown

clean image, and n represents additive white Gaussian

noise (AWGN) with standard deviation σn, which can be

estimated in practical applications by various methods,

such as median absolute deviation [5], block-based esti-

mation [6], and principle component analysis (PCA)-

based methods [7]. The purpose of noise reduction is to

decrease the noise in natural images while minimizing the

loss of original features and improving the signal-to-noise

ratio (SNR). The major challenges for image denoising are

as follows:
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� flat areas should be smooth,

� edges should be protected without blurring,

� textures should be preserved, and

� new artifacts should not be generated.

Owing to solve the clean image x from the Eq. (1) is

an ill-posed problem, we cannot get the unique solution

from the image model with noise. To obtain a good esti-

mation image x̂ , image denoising has been well-studied

in the field of image processing over the past several

years. Generally, image denoising methods can be

roughly classified as [3]: spatial domain methods, trans-

form domain methods, which are introduced in more

detail in the next couple of sections.

Classical denoising method
Spatial domain methods aim to remove noise by calculat-

ing the gray value of each pixel based on the correlation

between pixels/image patches in the original image [8]. In

general, spatial domain methods can be divided into two

categories: spatial domain filtering and variational denois-

ing methods.

Spatial domain filtering

Since filtering is a major means of image processing, a

large number of spatial filters have been applied to image

denoising [9–19], which can be further classified into two

types: linear filters and non-linear filters.

Originally, linear filters were adopted to remove noise in

the spatial domain, but they fail to preserve image textures.

Mean filtering [14] has been adopted for Gaussian noise re-

duction, however, it can over-smooth images with high

noise [15]. To overcome this disadvantage, Wiener filtering

[16, 17] has further been employed, but it also can easily

blur sharp edges. By using non-linear filters, such as me-

dian filtering [14, 18] and weighted median filtering [19],

noise can be suppressed without any identification. As a

non-linear, edge-preserving, and noise-reducing smoothing

filter, Bilateral filtering [10] is widely used for image denois-

ing. The intensity value of each pixel is replaced with a

weighted average of intensity values from nearby pixels.

One issue concerning the bilateral filter is its efficiency.

The brute-force implementation takes O(Nr2) time, which

is prohibitively high when the kernel radius r is large.

Spatial filters make use of low pass filtering on pixel

groups with the statement that the noise occupies a higher

region of the frequency spectrum. Normally, spatial filters

eliminate noise to a reasonable extent but at the cost of

image blurring, which in turn loses sharp edges.

Variational denoising methods

Existing denoising methods use image priors and

minimize an energy function E to calculate the denoised

image x̂. First, we obtain a function E from a noisy image

y, and then a low number is corresponded to a noise-free

image through a mapping procedure. Then, we can deter-

mine a denoised image x̂ by minimizing E:

x̂∈ arg min
x

E xð Þ ð2Þ

The motivation for variational denoising methods of

Eq. (2) is maximum a posterior (MAP) probability esti-

mate. From a Bayesian perspective, the MAP probability

estimate of x is

x̂ ¼ arg max
x

P x yjð Þ ¼ arg max
x

P y xjð ÞP xð Þ

P yð Þ
ð3Þ

which can be equivalently formulated as

x̂ ¼ arg max
x

logP y xjð Þ þ logP xð Þ ð4Þ

where the first term P(y|x) is a likelihood function of x,

and the second term P(x) represents the image prior. In

the case of AWGN, the objective function can generally

be formulated as

x̂ ¼ arg min
x

1

2
y−xk k22 þ λR xð Þ ð5Þ

where ky−xk22 is a data fidelity term that denotes the dif-

ference between the original and noisy images. R(x) = ‐

logP(x) denotes a regularization term and λ is the

regularization parameter. For the variational denoising

methods, the key is to find a suitable image prior (R(x)).

Successful prior models include gradient priors, non-

local self-similarity (NSS) priors, sparse priors, and low-

rank priors.

In the remainder of this subsection, several popular

variational denoising methods are summarized.

Total variation regularization

Starting with Tikhonov regularization [20, 21], the ad-

vantages of non-quadratic regularizations have been ex-

plored for a long time. Although the Tikohonov method

[20, 21] is the simplest one in which R(x) is minimized

with the L2 norm, it over-smooths image details [22,

23]. To solve this problem, anisotropic diffusion-based

[24, 25] methods have been used to preserve image de-

tails, nevertheless, the edges are still blurred [26, 27].

Meanwhile, to solve the issue of smoothness, total

variation (TV)-based regularization [28] has been pro-

posed. This is the most influential research in the field

of image denoising. TV regularization is based on the

statistical fact that natural images are locally smooth and

the pixel intensity gradually varies in most regions. It is

defined as follows [28]:

RTV xð Þ ¼ ∇xk k1 ð6Þ

where ∇x is the gradient of x.
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It has achieved great success in image denoising because

it can not only effectively calculate the optimal solution

but also retain sharp edges. However, it has three major

drawbacks: textures tend to be over-smoothed, flat areas

are approximated by a piecewise constant surface result-

ing in a stair-casing effect and the image suffers from

losses of contrast [29–32].

To improve the performance of the TV-based

regularization model, extensive studies have been con-

ducted in image smoothing by adopting partial differ-

ential equations [33–36]. For example, Beck et al.

[36] proposed a fast gradient-based method for con-

strained TV, which is a general framework for cover-

ing other types of non-smooth regularizers. Although

it improves the peak signal-to-noise rate (PSNR)

values, it only accounts for the local characteristics of

the image.

Non-local regularization

While local denoising methods have low time complex-

ities, the performances of these methods are limited

when the noise level is high. The reason for this is that

the correlations of neighborhood pixels are seriously dis-

turbed by high level noise. Lately, some methods have

applied the NSS prior [37]. This is because images con-

tain extensive similar patches at different locations. A

pioneering work on non-local means (NLM) [38] used

the weighted filtering of the NSS prior to achieve image

denoising, which is the most notable improvement for

the problem of image denoising. Its basic idea is to build

a pointwise estimation of the image, where each pixel is

obtained as a weighted average of pixels centered at re-

gions that are similar to the region centered at the esti-

mated pixel. For a given pixel xi in an image x, NLM(xi)

indicates the NLM-filtered value. Let xi and xj be image

patches centered at xi and xj, respectively. Let wi, j be

the weight of xj to xi, which is computed by.

wi; j ¼
1

ci
exp −

xi−x j

�

�

�

�

2

2

h

 !

ð7Þ

where ci denotes a normalization factor, and h indi-

cates a filter parameter. Different from local denoising

methods, NLM can make full use of the information

provided by the given images, which can be robust to

noise. Since then, many improved versions have been

proposed. Some studies focus on the acceleration of the

algorithm [39–44], while others focus on how to en-

hance the performance of the algorithm [45–47].

By considering the first step of NLM [38] (the esti-

mation of pixel similarities), regularization methods

have been developed [48]. According to Eq. (5), the

NSS prior is defined as [49].

RNSS xð Þ ¼
X

xi∈x

xi−NLM xið Þk k22

¼
X

xi∈x

xi−w
T
i κi

�

�

�

�

2

2
ð8Þ

where κi and wi denote column vectors; the former con-

tains the central pixels around xi, and the latter contains

all corresponding weights wi, j.

At present, most research on image denoising has

shifted from local methods to non-local methods [50–55].

For instance, extensions of non-local methods to TV

regularization have been proposed in refs. [37, 56]. Con-

sidering the respective merits of the TV and NLM

methods, an adaptive regularization of NLM (R-NL) [56]

has been proposed to combine NLM with TV

regularization. The results showed that the combination

of these two models was successful in removing noise.

Nevertheless, structural information is not well preserved

by these methods, which degrades the visual image qual-

ity. Moreover, further prominent extensions and improve-

ments of NSS methods are based on learning the

likelihood of image patches [57] and exploiting the low-

rank property using weighted nuclear norm minimization

(WNNM) [58, 59].

Sparse representation

Sparse representation merely requires that each image

patch can be represented as a linear combination of sev-

eral patches from an over-complete dictionary [12, 60].

Many current image denoising methods exploit the

sparsity prior of natural images.

Sparse representation-based methods encode an image

over an over-complete dictionary D with L1-norm spars-

ity regularization on the coding vector, i.e., min
α

kαk1 s:t

:x ¼ Dα, resulting in a general model:

α̂¼ arg min
α

y−Dαk k22 þ λ αk k1 ð9Þ

where α is a matrix containing vectors of sparse coeffi-

cients. Eq. (9) turns the estimation of x in Eq. (5) into α.

As a dictionary learning method, the sparse represen-

tation model can be learned from a dataset, as well as

from the image itself with the K-singular value decom-

position (K-SVD) algorithm [61, 62]. The basic idea be-

hind K-SVD denoising is to learn the dictionary D from

a noisy image y by solving the following joint

optimization problem:

arg min
x;D;α

λ y−xk k22 þ
X

i

Rix−Dαik k22

þ
X

i

μi αik k1 ð10Þ

where Ri is the matrix extracting patch xi from image x

at location i.
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Since the learned dictionaries can more flexibly repre-

sent the image structures [63], sparse representation

models with learned dictionaries perform better than de-

signed dictionaries. As shown in ref. [61], the K-SVD dic-

tionary achieves up to 1–2 dB better for bit rates less than

1.5 bits per pixel (where the sparsity model holds true)

compared to all other dictionaries. However, methods in

this category are all local, meaning they ignore the correl-

ation between non-local information of the image. In the

case of high noise, local information is seriously disturbed,

and the result of denoising is not effective.

Coupled with the NSS prior [37], the sparsity from

self-similarity properties of natural images, which has re-

ceived significant attention in the image processing com-

munity, is widely applied for image denoising [64–66].

One representative work is the non-local centralized

sparse representation (NCSR) model [66].

αy ¼ arg min
α

y−Dαk k22 þ λ
X

N

i¼1

αi−βik k1 ð11Þ

where βi is a good estimation of α. Then, for each image

patch xi, βi can be computed as the weighted average of

αi, q:

βi ¼
X

q∈Si

wi;qαi;q ð12Þ

where wi, q ¼ 1
ci
expð−

kx̂i−x̂i;qk
2

2

h
Þ, x̂i is the estimation of

xi, and x̂i;q are the non-local similar patches to x̂i in a

search window Si.

The NCSR model naturally integrates NSS into the

sparse representation framework, and it is one of the

most commonly considered image denoising methods at

present. As mentioned in ref. [66], NCSR is very effect-

ive in reconstructing both smooth and textured regions.

Despite the successful combination of the above two

techniques, the iterative dictionary learning and non-

local estimates of unknown sparse coefficients make this

algorithm computationally demanding, which largely

limits its applicability in many applications.

Low-rank minimization

Different from the sparse representation model, this

low-rank-based model formats similar patches as a

matrix. Each column of this matrix is a stretched

patch vector. By exploiting the low-rank prior of the

matrix, this model can effectively reduce the noise in

an image [67, 68]. The low-rank method first ap-

peared in the field of matrix filling, and it has made

great progress under the drive of Cand e‘ s and Ma

[69]. In recent years, the low-rank model has achieved

good denoising results, resulting in low-rank denoising

methods being studied more often.

Low-rank approaches for the reconstruction of noisy

data can be grouped in two categories: methods based

on low rank matrix factorization (refs. [70–78]) and

those based on nuclear norm minimization (NNM, ref.

[58, 59, 79, 80]).

Methods in the first category typically approximate a

given data matrix as a product of two matrices of fixed

low rank. For example, in refs. [70, 71], a video denois-

ing algorithm based on low-rank matrix recovery was

proposed. In these methods, similar patches are decom-

posed by low-rank decomposition to remove noise from

videos. Ref. [72] proposed an image denoising algorithm

based on low-rank matrix recovery and obtained good

results. In ref. [73], a hybrid noise removal algorithm

based on low-rank matrix recovery was proposed. Dong

et al. [74] proposed a low-rank method based on SVD to

model the sparse representation of non-locally similar

image patches. In this method, singular value iteration

contraction in the BayesShrink framework was used to

remove noise. The main limitation of these methods is

that the rank must be provided as input, and values that

are too low or too high will result in the loss of details

or the preservation of noise, respectively.

Low-rank minimization is a non-convex non-

deterministic polynomial (NP) hard problem [63]. Alter-

natively, methods based on NNM aim to find the lowest

rank approximation X of an observed matrix Y. Let Y be

a matrix of noisy patches. From Y, the low-rank matrix

X can be estimated by the following NNM problem [80]:

X̂¼ arg min
X

Y−Xk k2F þ λ Xk k� ð13Þ

where k � k2F denotes the Frobenius norm, and the nu-

clear norm kXk� ¼
X

i

kσ iðXÞk1 , where σi(X) is the i-th

singular value of X. A closed-form solution of Eq. (13)

has been proposed in ref. [80] and is shown in Eq. (14)

X̂¼USλ Σð ÞVT ð14Þ

where Y =UΣVT is the SVD of Y and Sλ(Σ) = max(Σ

− λI, 0) is the singular value thresholding operator. For

NNM [80], the weights of each singular value are equal,

and the same threshold is applied to each singular value,

however different singular values have different levels of

importance.

Hence, on the basis of the NNM, Gu et al. [58, 59]

proposed a WNNM model, which can adaptively assign

weights to singular values of different sizes and denoise

them using a soft threshold method. Given a weight vec-

tor w, the weighted nuclear norm proximal problem

consists of finding an approximation X of Y that mini-

mizes the following cost function:
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X̂¼ arg min
X

Y−Xk k2F þ Xk k
w;� ð15Þ

where kXk
w;� ¼

X

i

kwiσ iðXÞk1 is the weighted nuclear

norm of X. Here, wi denotes the weight assigned to sin-

gular value σi(X). As shown in ref. [58], Eq. (15) has a

unique global minimum when the weights satisfy 0 ≤

w1 ≤⋯ ≤wn:

X̂¼USw Σð ÞVT ð16Þ

where Sw(Σ) = max(Σ −Diag(w), 0).

From ref. [58], we know that WNNM achieves advanced

denoising performance and is more robust to noise

strength than other NNMs. Besides, the low-rank theory

has been widely used in artificial intelligence, image pro-

cessing, pattern recognition, computer vision, and other

fields [63]. Although most low-rank minimization methods

(especially the WNNM method) outperform previous

denoising methods, the computational cost of the iterative

boosting step is relatively high.

Transform techniques in image denoising
Image denoising methods have gradually developed from

the initial spatial domain methods to the present trans-

form domain methods. Initially, transform domain

methods were developed from the Fourier transform, but

since then, a variety of transform domain methods grad-

ually emerged, such as cosine transform, wavelet domain

methods [81–83], and block-matching and 3D filtering

(BM3D) [55]. Transform domain methods employ the fol-

lowing observation: the characteristics of image informa-

tion and noise are different in the transform domain.

Transform domain filtering methods

In contrast with spatial domain filtering methods,

transform domain filtering methods first transform the

given noisy image to another domain, and then they

apply a denoising procedure on the transformed image

according to the different characteristics of the image

and its noise (larger coefficients denote the high fre-

quency part, i.e., the details or edges of the image,

smaller coefficients denote the noise). The transform

domain filtering methods can be subdivided according

to the chosen basis transform functions, which may be

data adaptive or non-data adaptive [84].

Data adaptive transform

Independent component analysis (ICA) [85, 86] and

PCA [65, 87] functions are adopted as the transform

tools on the given noisy images. Among them, the ICA

method has been successfully implemented for denoising

non-Gaussian data. These two kinds of methods are data

adaptive, and the assumptions on the difference between

the image and noise still hold. However, their main

drawback is high-computational cost because they use slid-

ing windows and require a sample of noise-free data or at

least two image frames from the same scene. However, in

some applications, it might be difficult to obtain noise-free

training data.

Non-data adaptive transform

The non-data adaptive transform domain filtering

methods can be further subdivided into two domains,

namely spatial-frequency domain and wavelet domain.

Spatial-frequency domain filtering methods use low

pass filtering by designing a frequency domain filter that

passes all frequencies lower than and attenuates all fre-

quencies higher than a cut-off frequency [14, 16]. In

general, after being transformed by low-pass filters, such

as Fourier transform, image information mainly spreads

in the low frequency domain, while noise spreads in the

high frequency domain. Thus, we can remove noise by

selecting specific transform domain features and trans-

forming them back to the image domain [88]. Neverthe-

less, these methods are time-consuming and depend on

the cut-off frequency and filter function behavior.

As the most investigated transform in denoising, the

wavelet transform [89] decomposes the input data into a

scale-space representation. It has been proved that wave-

lets can successfully remove noise while preserving the

image characteristics, regardless of its frequency content

[90–95]. Similar to spatial domain filtering, filtering op-

erations in the wavelet domain can also be subdivided

into linear and non-linear methods. Since the wavelet

transform has many good characteristics, such as sparse-

ness and multi-scale, it is still an active area of research

in image denoising [96]. However, the wavelet transform

heavily relies on the selection of wavelet bases. If the se-

lection is inappropriate, image shown in the wavelet do-

main cannot be well represented, which causes poor

denoising effect. Therefore, this method is not adaptive.

BM3D

As an effective and powerful extension of the NLM ap-

proach, BM3D, which was proposed by Dabov et al. [55],

is the most popular denoising method. BM3D is a two-

stage non-locally collaborative filtering method in the

transform domain. In this method, similar patches are

stacked into 3D groups by block matching, and the 3D

groups are transformed into the wavelet domain. Then,

hard thresholding or Wiener filtering with coefficients is

employed in the wavelet domain. Finally, after an inverse

transform of coefficients, all estimated patches are ag-

gregated to reconstruct the whole image. However, when

the noise increases gradually, the denoising performance

of BM3D decreases greatly and artifacts are introduced,

especially in flat areas.

Fan et al. Visual Computing for Industry, Biomedicine, and Art             (2019) 2:7 Page 5 of 12



To improve denoising performance, many improved

versions of BM3D have appeared [97, 98]. For example,

Maggioni et al. [98] recently proposed the block-

matching and 4D filtering (BM4D) method, which is an

extension of BM3D to volumetric data. It utilizes cubes

of voxels, which are stacked into a 4-D group. The 4-D

transform applied on the group simultaneously exploits

the local correlation and non-local correlation of voxels.

Thus, the spectrum of the group is highly sparse, leading

to very effective separation of signal and noise through

coefficient shrinkage.

CNN-based denoising methods
In general, the solving methods of the objective function

in Eq. (7) build upon the image degradation process and

the image priors, and it can be divided into two main

categories: model-based optimization methods and con-

volutional neural network (CNN)-based methods. The

variational denoising methods discussed above belong to

model-based optimization schemes, which find optimal

solutions to reconstruct the denoised image. However,

such methods usually involve time-consuming iterative

inference. On the contrary, the CNN-based denoising

methods attempt to learn a mapping function by opti-

mizing a loss function on a training set that contains

degraded-clean image pairs [99, 100].

Recently, CNN-based methods have been developed

rapidly and have performed well in many low-level com-

puter vision tasks [101, 102]. The use of a CNN for

image denoising can be tracked back to [103], where a

five-layer network was developed. In recent years, many

CNN-based denoising methods have been proposed [99,

104–108]. Compared to that of ref. [103], the perform-

ance of these methods has been greatly improved. Fur-

thermore, CNN-based denoising methods can be divided

into two categories: multi-layer perception (MLP)

models and deep learning methods.

MLP models

MLP-based image denoising models include auto-

encoders proposed by Vincent et al. [104] and Xie et al.

[105]. Chen et al. [99] proposed a feed-forward deep net-

work called the trainable non-linear reaction diffusion

(TNRD) model, which achieved a better denoising effect.

This category of methods has several advantages. First,

these methods work efficiently owing to fewer ratiocin-

ation steps. Moreover, because optimization algorithms

[77] have the ability to derive the discriminative archi-

tecture, these methods have better interpretability.

Nevertheless, interpretability can increase the cost of

performance; for example, the MAP model [106] re-

stricts the learned priors and inference procedure.

Deep learning-based denoising methods

The state-of-the-art deep learning denoising methods

are typically based on CNNs. The general model for

deep learning-based denoising methods is formulated

as

min
Θ

loss x̂; xð Þ; s:t:x̂ ¼ F y; σ;Θð Þ ð17Þ

where F(⋅) denotes a CNN with parameter set Θ, and

loss(⋅) denotes the loss function. loss(⋅) is used to esti-

mate the proximity between the denoised image x̂ and

the ground-truth x. Owing to their outstanding denois-

ing ability, considerable attention has been focused on

deep learning-based denoising methods.

Zhang et al. [106] introduced residual learning and

batch standardization into image denoising for the first

time; they also proposed feed-forward denoising CNNs

(DnCNNs). The aim of the DnCNN model is to learn a

function x̂ ¼ Fðy;ΘσÞ that maps between y and x̂ . The

parameters Θσ are trained for noisy images under a fixed

variance σ. There are two main characteristics of

DnCNNs: the model applies a residual learning formula-

tion to learn a mapping function, and it combines it with

batch normalization to accelerate the training procedure

while improving the denoising results. Specifically, it

turns out that residual learning and batch normalization

can benefit each other, and their integration is effective

in speeding up the training and boosting denoising per-

formance. Although a trained DnCNN can also handle

compression and interpolation errors, the trained model

under σ is not suitable for other noise variances.

When the noise level σ is unknown, the denoising

method should enable the user to adaptively make a

trade-off between noise suppression and texture protec-

tion. The fast and flexible denoising convolutional neural

network (FFDNet) [107] was introduced to satisfy these

desirable characteristics. In particular, FFDNet can be

modeled as x̂ ¼ Fðy;M;ΘÞ (M denotes a noise level

map), which is a main contribution. For FFDNet, M in-

dicates an input while the parameter set Θ are fixed for

noise level. Another major contribution is that FFDNet

acts on down-sampled sub-images, which speeds up the

training and testing and also expands the receptive field.

Thus, FFDNet is quite flexible to different noises.

Although this method is effective and has a short run-

ning time, the time complexity of the learning process is

very high. The development of CNN-based denoising

methods has enhanced the learning of high-level features

by using a hierarchical network.

Experiments

For a comparative study, the existing denoising methods

adopt two factors (visual analysis and performance met-

rics) to analyze the denoising performance.
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Currently, we cannot find any mathematical or specific

methods to evaluate the visual analysis. In general, there

are three criteria for visual analysis: (1) significant degree of

artifacts, (2) protection of edges, and (3) reservation of tex-

tures. For image denoising methods, several performance

metrics are adopted to evaluate accuracy, e.g., PSNR and

structure similarity index measurement (SSIM) [109].

In this study, all image denoising methods work on

noisy images under three different noise variances σ ∈ [30,

50, 75]. For the test images, we use two datasets for a thor-

ough evaluation: BSD68 [110] and Set12. The BSD68

dataset consists of 68 images from the separate test set of

the BSD dataset. The Set12 dataset, which is shown in

Fig. 1, is a collection of widely used testing images. The

sizes of the first seven images are 256 × 256, and the sizes

of the last five images are 512 × 512.

Metrics of denoising performance

To evaluate the performance metrics of image denoising

methods, PSNR and SSIM [109] are used as representa-

tive quantitative measurements:

Given a ground truth image x, the PSNR of a denoised

image x̂ is defined by

PSNR x; x̂ð Þ ¼ 10 � log10
2552

x−x̂k k22

 !

ð18Þ

In addition, the SSIM index is calculated by

SSIM x; x̂ð Þ ¼
2μxμx̂ þ C1

� �

2σxx̂ þ C2ð Þ

μ2x þ μ2x̂ þ C1

� �

σ2x þ σ2x̂ þ C2

� � ð19Þ

where μx; μx̂; σx , and σ x̂ are the means and variances of

x and x̂ , respectively, σ
xx̂ is the covariance between x

and x̂, and C1 and C2 are constant values used to avoid

instability. While quantitative measurements cannot re-

flect the visual quality perfectly, visual quality comparisons

on a set of images are necessary. Besides the noise removal

effect, edge and texture preservation is vital for evaluating

a denoising method.

Comparison methods

A comprehensive evaluation is conducted on several

state-of-the-art methods, including Wiener filtering [16],

Bilateral filtering [10], PCA method [87], Wavelet trans-

form method [89], BM3D [55], TV-based regularization

[28], NLM [38], R-NL [56], NCSR model [66], LRA_SVD

[78], WNNM [58], DnCNN [106], and FFDNet [107].

Among them, the first five are all filtering methods, while

the last two are CNN-based methods. The remaining al-

gorithms are variational denoising methods.

In our experiments, the code and implementations

provided by the original authors are used. All the source

codes are run on an Intel Core i5–4570 CPU 3.20 GHz

with 16 GB memory. The core part of the BM3D calcu-

lation is implemented with a compiled C++ mex-

function and is performed in parallel, while the other

methods are all conducted using MATLAB.

Comparison of filtering methods and variational

denoising methods

We first present experimental results of image denoising

on the 12 test images from the Set12 dataset. Figures 2

and 3 show the denoising comparison results by the filter-

ing methods variational denoising methods, respectively.

From Fig. 2, one can see that the spatial filters (Wiener

filtering [16] and Bilateral filtering [10]) denoise the

image better than the transform domain filtering

methods (PCA method [87] and Wavelet transform do-

main method [89]). However, the spatial filters eliminate

high frequency noise at the expense of blurring fine de-

tails and sharp edges. The result of collaborative filtering

(BM3D) [55] has big potential for noise reduction and

edge protection.

Fig. 1 Twelve test images from Set12 dataset
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In Fig. 3, the visual evaluation shows that the denois-

ing result of the TV-based regularization [28] smooths

the textures and generates artifacts. Although the R-NL

[56] and NLM [38] methods can obtain better perfor-

mances, these two methods have difficulty restoring

tiny structures. Meanwhile, we find that the representa-

tive low-rank-based methods (WNNM [58], LRA_SVD

[78]) and the sparse coding scheme NCSR [66] produce

better results in homogenous regions because the

underlying clean patches share similar features, so they

can be approximated by a low-rank or sparse coding

problem.

Comparison of CNN-based denoising methods

Here, we compare the denoising results of the CNN-

based methods (DnCNN [106] and FFDNet [107])

with those of several current effective image denoising

methods, including BM3D [55] and WNNM [58]. To

the best of our knowledge, BM3D has been the most

popular denoising method over recent years, and

Fig. 3 Visual comparisons of denoising results on Boat image corrupted by additive white Gaussian noise with standard deviation 50: a TV-based

regularization [28] (PSNR = 22.95 dB; SSIM = 0.456); b NLM [38] (PSNR = 24.63 dB; SSIM = 0.589); c R-NL [56] (PSNR = 25.42 dB; SSIM = 0.647); d NCSR

model [66] (PSNR = 26.48 dB; SSIM = 0.689); e LRA_SVD [78] (PSNR = 26.65 dB; SSIM = 0.684); f WNNM [58] (PSNR = 26.97 dB; SSIM = 0.708)

Fig. 2 Visual comparisons of denoising results on Lena image corrupted by additive white Gaussian noise with standard deviation 30: a Wiener

filtering [16] (PSNR = 27.81 dB; SSIM = 0.707); b Bilateral filtering [10] (PSNR = 27.88 dB; SSIM = 0.712); c PCA method [87] (PSNR = 26.68 dB; SSIM =

0.596); d Wavelet transform domain method [89] (PSNR = 21.74 dB; SSIM = 0.316); e Collaborative filtering: BM3D [55]

(PSNR = 31.26 dB; SSIM = 0.845)
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WNNM is a successful scheme that has been pro-

posed recently.

Table 1 reports the PSNR results on the BSD68 data-

set. From Table 1, the following observations can be

made. First, FFDNet [107] outperforms BM3D [55] by a

large margin and outperforms WNNM [58] by approxi-

mately 0.2 dB for a wide range of noise levels. Secondly,

FFDNet is slightly inferior to DnCNN [106] when the

noise level is low (e.g., σ ≤ 25), but it gradually outper-

forms DnCNN as the noise level increases (e.g., σ > 25).

In Fig. 4, we can see that the details of the antennas

and contour areas are difficult to recover. BM3D [55]

and WNNM [58] blur the fine textures, whereas the

other two methods restore more textures. This is be-

cause Monarch has many repetitive structures, which

can be effectively exploited by NSS. Moreover, the con-

tour edges of these regions are much sharper and look

more natural. Overall, FFDNet [107] produces the best

perceptual quality of denoised images.

Conclusions

As the complexity and requirements of image denoising

have increased, research in this field is still in high de-

mand. We have introduced the recent developments of

several image denoising methods and discussed their

merits and drawbacks in this paper. Recently, the rise of

NLM has replaced the traditional local denoising model,

which has created a new theoretical branch, leading to

significant advances in image denoising methods, includ-

ing sparse representation, low-rank, and CNN (more

specifically deep learning)-based denoising methods. Al-

though the image sparsity and low-rank priors have been

widely used in recent years, CNN-based methods, which

have been proved to be effective, have undergone rapid

growth in this time.

Despite the many in-depth studies on removing

AWGN, few have considered real image denoising. The

major obstacle is the complexity of real noises because

AWGN is much simpler than real noises. In this situ-

ation, the thorough evaluation of a denoiser is a difficult

task. There are several components (e.g., white balance,

color demosaicing, noise reduction, color transform, and

compression) contained in the in-camera pipeline. The

output image quality is affected by some external and in-

ternal conditions, such as illumination, CCD/CMOS

sensors, and camera shaking.

Although deep learning is developing rapidly, it is not

necessarily an effective way to solve the denoising prob-

lem. The main reason for this is that real-world denoising

processes lack image pairs for training. To the best of our

knowledge, the existing denoising methods are all trained

by simulated noisy data generated by adding AWGN to

clean images. Nevertheless, for the real-world denoising

process, we find that the CNNs trained by such simulated

data are not sufficiently effective.

In summary, this paper aims to offer an overview of

the available denoising methods. Since different types of

noise require different denoising methods, the analysis

of noise can be useful in developing novel denoising

schemes. For future work, we must first explore how to

deal with other types of noise, especially those existing

in real life. Secondly, training deep models without using

image pairs is still an open problem. Besides, the meth-

odology of image denoising can also be expanded to

other applications [111, 112].

Table 1 Average peak signal-to-noise ratio (dB) results for different methods on BSD68 with noise levels of 15, 25, 50 and 75

Methods BM3D WNNM DnCNN FFDNet

σ = 15 31.07 31.37 31.72 31.62

σ = 25 28.57 28.83 29.23 29.19

σ = 50 25.62 25.87 26.23 26.30

σ = 75 24.21 24.40 26.64 24.78

Fig. 4 Visual comparisons of denoising results on Monarch image corrupted by additive white Gaussian noise with standard deviation 75: a

BM3D [55] (PSNR = 23.91 dB); b WNNM [58] (PSNR = 24.31 dB); c DnCNN [106] (PSNR = 24.71 dB); d FFDNet [107] (PSNR = 24.99 dB)
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AWGN: Additive white Gaussian noise; BM3D: Block-matching and 3D

filtering; CNN: Convolutional netural network; DnCNN: Feed-forward

denoising convolutional neural network; FFDNet: Fast and flexible denoising

convolutional neural network; ICA: Independent component analysis; K-

SVD: K-singular value decomposition; MAP: Maximum a posterior; MLP: Multi-

layer perception model; NCSR: Non-local centralized sparse representation;

NLM: Non-local means; NNM: Nuclear norm minimization; NP: Non-

deterministic polynomial; NSS: Non-local self-similarity; PCA: Principle

component analysis; PSNR: Peak signal to noise rate; SNR: Signal-to-noise

ratio; SSIM: Structure similarity index measurement; TV: Total variation;

WNNM: Weighted nuclear norm minimization
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