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Abstract

A tutorial of the Coefficient Diagram Method (CDM) will 
be given first and then the survey of CDM in recent years
will be made. By CDM, the simplest controller to satisfy 
the specification can be designed efficiently. Its
application ranges from ordinary PID control, mechanical
system, and feed-forward control to sophisticated MIMO 
control in aerospace. 

1 Introduction

With wide spread of control technology into various fields,
simple and reliable control design approach is keenly
needed. The classical control well answered to this need
for the ordinary control design problems, but not for more
complex plants. The modern control has been developed
to answer to this need.  However, in spite of the
tremendous effort in the past, it has not reached to the
satisfactory state because of following reasons.

(1) The controller parameter tuning is difficult.
(2) Theory is difficult for control non-specialists.
(3) Weight selection rules are not established.
(4) The controller is unnecessarily of high order.
(5) Sometimes an un-robust and fragile controller is 

designed for structured uncertainty.
(6) Sometimes good controller is excluded due to either
  deficiency of theory itself or its misinterpretation. 
(7) The incorporation of gain-scheduling or

non-linearity in controller is difficult.

The Coefficient Diagram Method (CDM) has been
developed to answer this problem. The CDM is fairly
new and it is not well-known, but its basic philosophy has
been known in industry and in control community for 
more than 40 years [1][3] with successful application in
servo control [1], steel mill drive control [3], gas turbine
control [10], and spacecraft attitude control [5].  The 
historical background is given in [8]. In Section 2 and 3,
tutorial of CDM is given. In Section 4, survey of recent
development is made.

2 Basics of CDM

2.1 Basic Philosophy of CDM
The CDM is an algebraic control design approach [24]
with the following five features [8].
(1) Polynomials and polynomial matrices are used
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system representation.
aracteristic polynomial and controller are
ultaneously designed.
efficient diagram is effectively utilized.
e sufficient condition for stability by Lipatov
stitutes the theoretical basis of CDM [5][9].
ssler standard form [3] is improved and used as the
dard form of CDM.

 design is based on the stability index and equivalent
constant as defined later. Thus for the specified
g time, a controller of the lowest order with the
est bandwidth and of no-overshoot can be easily
ed. CDM can be considered as “Generalized PID”, 

se the controller can be more complex than PID, and
reliable parameter selection rules are provided. Also
 can be considered as “Improved LQG”, because the 
of controller is smaller and weight selection rules

so given [7]. 

Mathematical model
tandard block diagram of the CDM design for a
-input-single-output system is shown in Fig. 1. The
ion to multi-input-multi-output can be made with 

r interpretation, but it is not discussed here for
icity. The plant equation is given as

  (1a)( )pA s x u d

,   (1b) xsBy p )(

u, y, and d are input, output, and disturbance. The
l x is called the basic state variable. Ap(s) and
are the denominator and numerator polynomial of
ant transfer function Gp(s). It will be easily seen
is expression has a direct correspondence with the
l canonical form of the state-space expression, and x
ponds to the state variable of the lowest order. All
her states are expressed as the derivatives of x of
rder. Controller equation is given as

, (2)))(()()( nysBysBusA crac

yr and n are reference input and noise on the output.
is the denominator of the controller transfer function.
and Bc(s) are called the reference numerator and

ack numerator of the controller transfer function.
se the controller transfer function has two

rators, it is called two-degree-of-freedom system.
expression corresponds to the observer canonical 
of the state-space expression. Elimination of y and

Eq. (2) by Eqs. (1a, b) gives
, (3a)nsBdsAysBxsP ccra )()()()(

P(s) is the characteristic polynomial and given as 
. (3b) )()()()()( sBsBsAsAsP pcpc



In a similar manner, equation for y and u can be obtained.
Because this system has 3 inputs and 3 outputs, there are 9
transfer functions.

For CDM design, the following four basic relations are
selected as standard, namely

  (4a)ryPxsP )0()(

(4b)rap ysBsBysP )()()(

(4c)dsAsBysP cp )()()(

. (4d)( )( ) ( ) ( )p cP s y B s B s n

Eq. (4a) is the response of x to yr when Ba(s) = P(0), and it 
corresponds to the canonical closed-loop transfer function
of system type 1 for P(s), which will be explained later.
This equation specifies the characteristic polynomial, and
it is a very good measure of stability. Eq. (4b) is for the
command following characteristics. Eq. (4c) is for the
disturbance rejection characteristics.  Eq. (4d)
corresponds to the complementary sensitivity function
T(s), and it is useful for checking the robustness. In the
CDM design, these four basic relations are used as
performance specification.  The design of P(s) is first
made to satisfy specifications on Eqs. (4a)(4c)(4d), and 
then Ba(s) is adjusted to satisfy the specification on Eq.
(4b).
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Fig. 1. Mathematical model

2.3  Mathematical relations
Some mathematical relations extensively used in CDM
will be introduced hereafter.  The characteristic
polynomial is given in the following form.
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The stability index i , the equivalent time constant , and
stability limit i

* are defined as follows.

, i (6a))(/ 11
2
1 iii aaa 1~1 n
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i  (6c)0,1~1 nn

Also the equivalent time constant of the i-th order i is 
defined as follows.

, i  (7a)iii aa /1 1~1 n
Then the following relations are derived.
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Coefficient diagram
 the plant/controller polynomials are given as

(9)

4 3 2
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aracteristic polynomial is expressed as

. (10)2.02225.0)( 2345 ssssssP

= [0.25  1 2 2 1 0.2] (11a)][ 125 aaa

=[2 2 2  2.5] (11b)][ 124

5 (11c)

= [0.5  1  0.9  0.5]  (11d)][ *
1
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*
4

oefficient diagram is shown as in Fig. 2, where
cient ai is read by the left side scale, and stability

i , equivalent time constant  , and stability limit i
*

ad by the right side scale. The is expressed by a 
onnecting 1 to   The stability index i can be
ically obtained (Fig. 3a). If the curvature of the ai

es larger (Fig. 3a), the system becomes more stable, 
ponding to larger stability index i.  If the ai curve
-end down (Fig. 3b), the equivalent time constant
all and response is fast.  The equivalent time
nt specifies the response speed.

coefficient diagram is also used for parameter
ivity analysis and robustness analysis.  In this
le, the characteristic polynomial P(s) is composed

o component polynomials: denominator polynomial
and numerator polynomial .( )kP s

(12a)1( ) ( ) ( )l ks P s P s

(12b)5 4 3 2
1 1( ) (0.25 2 0.5 )s l s s s s

(12c)2
2 1( )s k s k s k

uxiliary sensitivity function T(s) is expressed as
s (12d)( ) ( ) / ( )kP s P s

12b) is shown in Fig. 2 with small circles and
ot lines. Eq. (12c) is shown with small squares and
 lines. Designer can visually assess the deformation
 coefficient diagram due to the parameter change of
, and k0. Then he can visualize the variation of
ty and response. Also from Eq. (12d), it is clear that
tness can be analyzed by comparison of coefficients
ki at the coefficient diagram.

the coefficient diagram indicates stability, response,
bustness (three major properties in control design)
ingle diagram, enabling the designer to grasp the
icture of control system. At present, Bode diagram
d for this purpose. However coefficient diagram is
accurate and easy to use in actual design.
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2.5 Stability condition
From the Routh-Hurwitz stability criterion, the stability
condition for the 3rd order is given as 

. (13a)0312 aaaa
If it is expressed by stability index,

. (13b)112

The stability condition for the fourth order is given as 
,   (14a)0134312 )/()/( aaaaaaa

. (14b)*
22

For the system higher than or including 5th degree,
Lipatov [4] gave the sufficient condition for stability and
instability in several different forms. The conditions most
suitable to CDM can be stated as follows;

"The system is stable, if all the partial 4th order
polynomials are stable with the margin of 1.12.  The
system is unstable if some partial 3rd order polynomial is 
unstable."

Thus the sufficient condition for stability is given as 

1 1
2

1 1

1.12 [ ]i i
i i

i i

a a
a a

a a 2ia ,  (15a)

, .  (15b)*12.1 ii 2~2 niallfor
The sufficient condition for instability is given as 

, (16a)121 iiii aaaa

, .  (16b)11 ii 2~1 nisomefor

These conditions can be graphically expressed in the
coefficient diagram.  Fig. 4a is a 3rd-order example.
Point A is (a2 a1)

0.5 and point B is (a3 a0)
0.5. Thus if A is 
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0.5. If it

ve 1, the system is stable. Fig. 4b is a 4th-order
le. Point A is obtained by drawing a line from a4 in

el with line a3 a1. Similarly point B is obtained by
ng a line from a0 in parallel with line a3 a1. The
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Canonical transfer function
 given characteristic polynomial, there exist infinite
er of open-loop and closed-loop transfer functions.
specific transfer functions to represent the
teristic polynomial, called canonical transfer

on, are defined as follows.

 type 1, canonical open/closed-loop transfer
on, G1(s) and T1(s):

, (17a))(/)( 101 sasaasG n
n

. (17b))(/)( 0101 asasaasT n
n

 type 2, canonical open/closed-loop transfer
on, G2(s) and T2(s):

G , (17c))(/)()( 2
2012 sasaasas n

n

T . (17d))(/)()( 01012 asasaasas n
n

 canonical open/closed-loop transfer functions are
ely defined by the characteristic polynomial P(s),
ey are helpful to visualize the characteristics of P(s).
reak point i is defined as 

iiii aa /1/ 1 .  (18a)

i is the reciprocal of the equivalent time constant of
rder i . The ratio of adjacent break points is equal
stability index i . 

  (18b)1/ iii

 shows an example of Bode diagram of the canonical
loop transfer function for the system type 1 and 2.
straight-line approximation (asymptotic represent-

of Bode diagram used here is somewhat different
the ordinary way.  The break points are chosen
the ratio of the coefficients and not from the poles
eros of the transfer function as in the usual case.
ver this way is more accurate and the relation with
efficient diagram is closer.

it becomes clear that the coefficient diagram has a 



one-to-one correspondence with the straight-line
approximation of Bode diagram of its canonical open-loop
transfer function.
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Fig. 5. Canonical open-loop transfer function

2.7 Standard form
From number of reasons, which will become clear later,
the recommended standard form for CDM is 

. (19a)5.2,2~ 121n

When a0 = 0.4 and  = 2.5 are chosen, the characteristic
polynomial P(s) is obtained by Eq. (7c) in the following
simple form:

( 2)( 1)
10 6 6 5 3 42

3 2

( ) 2 2 2 2

0.5 0.4

n n
nP s s s s s

s s s
. (19b)

The step response of the canonical closed-loop transfer
function for the system type 1 and 2 for various orders are
given in Fig. 6 and 7. There is virtually no overshoot for
the system type 1. There is an overshoot of about 40%
for system type 2. This overshoot is necessary, because
the integral of the error for the step response must become
zero in system type 2. It is also noticed that the
responses are about the same irrespective to the order of 
the system. Because of this nature, the designer can start
from a simple controller and move to more complicated
one in addition to the previous design. The settling time is
about 2.5 ~ 3 . Many simulation runs show that the
standard form has the shortest settling time for the same
value of

The pole location is given in Fig. 8. It is found that the
three lowest order poles are aligned in a vertical line and 
the two highest order poles are at the point about 49.5 deg
from the negative real axis. The rest of the poles are on
or close to the negative real axis. For 4th order, all poles
are exactly on the vertical line.

It can be mathematically proven that a 3rd order system 
with three poles on a vertical line has no overshoot. For

2=2 and 1=2.7, three poles are on a vertical line and 
overshoot is zero. If 1 = 2.5 as in the standard form, the
complex poles are a little bit closer to the imaginary axis
with the result of a small overshoot. The choice of 1 = 
2.5 instead of 2.7 is made for the reason of simplicity.

In summary, the standard form has the favorable
characteristics as listed below.
(1) For system type 1, overshoot is almost zero. For

system type 2, necessary overshoot of about 40 % is 
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lized.
ong the systems with the same equivalent time

stant , the standard form has the shortest settling
e.  The settling time is about 2.5~3 .
e step responses show almost equal waveforms
spective to the order of the characteristic
ynomials.
e lower order poles are aligned on a vertical line.
 higher order poles are located within a sector 49.5 
rees from the negative real axis, and their damping
o  is larger than 0.65.
e CDM standard form is very easy to remember.

er words, the standard form seems to posses all the
teristics of "good designs" found from experience,
as no overshoot, short settling time, and pole
ent on a vertical line. For comparison, stability

s i's for various standard forms used in the control



theory are given in Table 1.  It is found that CDM
standard is similar to Bessel at the low order, and become
similar to binomial at the high order.

  Table 1.  Comparison of stability index

Stability index

4 3 2 1

Stability index
4 3 2 1

 Standard
 forms

 Standard
 forms

4
 3 3

2.667   2.25   2.667
2.5  2 2 2.5

2
 2  2

2   1.707  2
  2  1.618  1.618 2

3
 2.4 2.5

  2.222  1.929 2.333
2.143   1.75  1.778   2.25

2.5
 2 2.5

2   2 2.5
 2  2 2 2.5

2
 2 2

2   2 2
 2  2 2 2

2
1.424  2.641

  1.297   2.039 2.144
1.568  1.624  1.779    2.102

 Binomial

Butter-
worth

 Bessel

ITAE

Kessler

CDM

2.8  Robustness consideration
Robustness and stability are completely different concepts.
Simply stated, stability concerns where the poles are 
located, and robustness concerns how fast the poles move
to the imaginary axis for the variation of parameters.
Stability is specified by the stability index i of the
characteristic polynomial, but robustness is only specified
after the open-loop structure is specified.  Thus in 
designing the characteristic polynomial, more
consideration is required beyond the choice of i. The
traditional design principle of sticking to the minimum-
phase controller wherever possible, with the lowest- 
possible order, and with the narrowest possible bandwidth
is actually found to be a strong guarantee of robustness.

In the actual design, the choice of 

is strongly recommended due to stability and response
requirement, but it is not necessary to make

equal to 2. The condition can be relaxed as 

1 2 12.5, 2n

3 2~ n

i .  (20)*5.1 i

With such freedom, the designer has the freedom of
designing the controller together with the characteristic
polynomial, and he can integrate robustness in the
characteristic polynomial with a small sacrifice of stability
and response. From the sufficient condition for stability by
Lipatv, stability is guaranteed when all i’s are larger than
1.5. Lipatov proved in his paper [4] that, if all i's are
greater than 4, all the roots are negative real. Thus i’s
are usually chosen between 1.5 and 4.  Because the 
essence of the CDM lies in the proper selection of stability
indices i's, some experiences are required in actual design,
as is true in any design effort.

3  CONTROLLER DESIGN

The important feature of CDM is the simultaneous design
of the characteristic polynomial and controller. By this
feature, robustness can be designed into the controller as
well as stability and response requirement. In order to
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, (21a)3 2
3 2 1( )pA s d s d s d s d

,  (21b)2
2 1( )pB s n s n s n

,  (21c)2
2 1( )cA s l s l s l

,  (21d)2
2 1( )cB s k s k s k

.  (21e)2
2 1( )aB s m s m s m

haracteristic polynomial is given as Eqs. (5)(7c). 

,  (22a)
n

i

i
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n
n saasasas
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01...)

a .  (22b)2 2
0 1 2 2/ ( )i

i i

haracteristic polynomial is related to plant and
ller polynomials by Eq. (3b), which is commonly
 Diophantine equation.

 (23))()()()()( sBsBsAsAs pcpc

iophantine equation can be expanded to a linear
n of coefficients as follows:

. (24) 

3 2

2 3 2 1 4

1 2 3 1 2 0 3

0 1 2 0 1 2 2 2

0 1 0 1 1 1

0 0 0

0 0 0 0 0

0 0 0

0

0 0

0 0 0 0

l

d n l a

d d n n l a

d d n n n k a

d d n n k a

d n k

atrix of the left side is called Sylvester matrix (SM). 
 SM is square and non-singular, the controller
eters can be obtained from the coefficients of the
teristic polynomial. If the plant is controllable and 
able, the SM is non-singular. The condition that the

 square is given as
,   (25a)1c pn

is the order of and is that of .cm ( )cB s pn ( )pA s

. (24), the real design freedom is 5, because can

itrarily chosen for the same controller. Thus if, by
uction of condition for controller parameter
ion, freedom is lost, must increase by that

nt. On the other hand, if loss of freedom in

teristic polynomial is acceptable, can be

sed by that amount. Thus Eq. (25a) is modified as 

0a

cf cm

f p

cm

m n . (25b)1c p cf f

e proper use of the coefficient diagram, the designer
hoose wisely, and the low order controller with

stability, response, and robustness can be realized.
orresponds to selecting a characteristic polynomial
itted to the plant and control requirements. In this
t, CDM is quite different from the pole assignment.

pf

4  Recent Development

 of the important papers in recent 10 years will be



reviewed. Hori used CDM standard form in design of
2-mass control system and gave the PID parameters in
explicit form of the plant parameter [2]. Manabe used
CDM for the analysis of the attitude control of controlled
bias momentum satellite [5], and solution of ACC
benchmark problem [6]. Also the tutorial paper for CDM
[8] and for Lipatov’s sufficient condition for stability [9]
were given by Manabe.

The first organized session on CDM was organized by
Kim [11]. The second one was organized by Manabe [12].
Kim made comparison of various control approaches [13].
Tesfaye reported the design and experimental result for 
actual motion control [14]. Photong reported a design
example for process control [15]. Pang introduced a 
CDM-CAD with GUI capability [16]. Hara introduced
another CDM-CAD with example [17]. Kim reported an
application to MIMO system in steel mill industry [18 ]. 

Further application to MIMO design were made by 
Manabe [21] and Hirokawa [20] in missile control.
Application to system with dead-time was suggested by
Hamamci [19]. Because CDM is closely related with 
polynomial design approaches using Diophantine equation,
efforts were made to exchange ideas with the researchers
in that field [22][23].

5  Conclusions 

In this paper, brief tutorial and short survey of CDM are
presented. The CDM is very useful at this stage, but
further development is keenly expected especially for 
good CAD system and application to MIMO system
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