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Abstract

Background: Fluorescence microscopy is the standard tool for detection and analysis of cellular phenomena. This
technique, however, has a number of drawbacks such as the limited number of available fluorescent channels in
microscopes, overlapping excitation and emission spectra of the stains, and phototoxicity.

Methodology: We here present and validate a method to automatically detect cell population outlines directly from bright
field images. By imaging samples with several focus levels forming a bright field z -stack, and by measuring the intensity
variations of this stack over the z -dimension, we construct a new two dimensional projection image of increased contrast.
With additional information for locations of each cell, such as stained nuclei, this bright field projection image can be used
instead of whole cell fluorescence to locate borders of individual cells, separating touching cells, and enabling single cell
analysis. Using the popular CellProfiler freeware cell image analysis software mainly targeted for fluorescence microscopy,
we validate our method by automatically segmenting low contrast and rather complex shaped murine macrophage cells.

Significance: The proposed approach frees up a fluorescence channel, which can be used for subcellular studies. It also
facilitates cell shape measurement in experiments where whole cell fluorescent staining is either not available, or is
dependent on a particular experimental condition. We show that whole cell area detection results using our projected
bright field images match closely to the standard approach where cell areas are localized using fluorescence, and conclude
that the high contrast bright field projection image can directly replace one fluorescent channel in whole cell quantification.
Matlab code for calculating the projections can be downloaded from the supplementary site: http://sites.google.com/site/
brightfieldorstaining
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Introduction

The development of highly specific stains and probes, for example

the green fluorescent protein and its derivatives, have made

fluorescence microscopy the standard tool for visualization and

analysis of cellular functions and phenomena. On the other hand,

automated microscopes and advances in digital image analysis have

enabled high-throughput studies automating the imaging procedure

and cell based measurements. In fluorescence microscopy of

eukaryotic cells, automated single-cell quantification can be achieved

using multiple fluorescent probes and channels in a single experiment.

The first fluorescence channel enables detection of stained nuclei,

resulting in markers for cell locations. The second fluorescent channel

visualizes the areas occupied by whole cells or cytoplasm, for example

by a cytoskeletal actin stain [1]. Alternatively, a nonspecific

subcellular stain can be used for whole cell detection, with most

fluorescence molecules located in the compartments the stain targets,

but with stain residue visible in the cytoplasmic area. Regardless of

the approach for whole cell staining, cells that are touching or partly

overlapping can be automatically separated with the help of the

nuclei markers of the first channel [2]. Finally, subcellular

phenomena are quantified by measuring different properties of the

first and second channels, or by using additional organelle and

molecule specific probes and extra fluorescence channels, for example

in colocalization measurements [3].

Because of the limited number of fluorescent channels available,

and because of partly overlapping excitation and emission spectra

of the probes, studies involving subcellular colocalization are
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commonly carried out without nuclear or whole cell staining. As a

consequence, cell-by-cell measurements are not possible. Single

cell measurements are also difficult or even impossible in cells that

are used for negative control, where the lack of fluorescence is used

for the detection of some phenomena. Furthermore, there are

other limitations in fluorescence microscopy, such as phototoxicity

and imaging setup complexity. These problems have motivated

the search for alternate methods to replace at least some of the

fluorescence channels with standard transmitted light microscopy.

The bright field channel, although readily available in all

microscopes, is often neglected in cell population studies. Firstly,

the cells are often nearly transparent, making the contrast very poor.

Even by manual visual cell analysis it is often impossible to reliably

detect the locations of cell borders, especially if the cells are clumped

together. Furthermore, since no specific staining is applied,

subcellular phenomena cannot be detected and nuclei are often only

faintly visible. Recently, however, a number of studies have been

published showing the usefulness of the bright field channel in cell

detection and automated image analysis of cell populations. In

Quantitative Phase Microscopy, a phase map of samples is estimated

from bright field images of different focus levels [4] using proprietary

software to greatly increase the contrast. In [5] a similar approach was

taken, but the phase map was measured using lowpass digital filtering,

followed by a computationally expensive level set based segmentation

of individual cells. Texture analysis methods have also been used for

bright field cell detection, such as the method presented by [6], where

cell contours were extracted after initial segmentation. For round cells

with rather good contrast borders, such as yeast, there are multiple

algorithms available [7–9]. In cell tracking, the bright field cell

segmentation is often presented as a preprocessing step followed by

the actual tracking algorithm [10]. Utilizing bright field images with

rather good contrast, it has also been shown that it is possible to

classify between different cell types without fluorescent stains [11].

Finally, special microscopy techniques such as digital holography [12]

have been used instead of fluorescent staining.

We introduce and validate z -projection based methods for

replacing whole cell fluorescent staining with bright field

microscopy. In the presented approaches the cells are imaged

with several different focal planes as in [5] and [4], but instead of

solving for the phase map, we measure the intensity variations in

the z -dimension of bright field stack, creating a new 2-D image for

analysis. The pixel intensities inside the cells vary when the focus is

changing, but the background intensity stays more constant

throughout the stack, resulting in relatively high variation inside

the cells, but almost zero outside. Therefore, in the resulting

projections the cells appear as brighter objects on an essentially

black background, enabling us to replace the fluorescence image of

whole cell staining with this bright field projection. In comparison

to the previous bright field based cell segmentation techniques

presented in the literature, this approach is more straightforward

to implement, and the resulting bright field projection image is

directly applicable for segmentation using CellProfiler [2] analysis

software designed for fluorescent microscopy. Furthermore, with

the exception of a preprocessing step with image filtering, no

parameters need to be set when calculating the projection. As

validation, we apply the technique for segmentation of mouse

bone marrow derived macrophage cells with complex shapes and

very low contrast. Phase contrast and differential interference

contrast (DIC) microscopy techniques offer contrast increase

through special optics, but to the best of our knowledge there is no

work in the literature suggesting that standard cell segmentation

algorithms for fluorescence microscopy would be applicable for

phase or DIC images, or that the robust segmentation of cells with

irregular shapes would be possible for large sets of images.

The resulting projections are shown to enable whole cell

segmentation if only nuclear staining or other marker, such as

manual cell marking for each cell is available, removing the need

for an additional fluorescent channel for whole cell detection.

Methods

To evaluate the performance of projection based methods, we

acquired test image data by culturing and imaging bone marrow

macrophages (BMM). The macrophages isolated from BL6 were

cultured on glass cover slip in RPMI medium, supplemented with

10% fetal bovine serum, 100 u/ml penicillin, 100 ug/ml strepto-

mycin, 2 mM GlutaMAX and 50 ng/ml m-CSF (37 C, 5% CO2).

The cells were stimulated with LPS 100 ng/ml for 1, 2, 4, 6, 18,

and 24 hours, fixed with 3% Paraformaldehyde for 20 min and

stained with BODIPY 493/503 (Invitrogen) for lipid bodies, and

Sytox (Invitrogen) for nuclei. Unstimulated macrophages as well as

the stimulated cells of different time points were imaged with Leica

DMIRB confocal laser scanning microscope.

The image stacks form eight groups with varying cell morphol-

ogies: two image sets of unstimulated macrophage cells, and a time

series experiment with six groups of macrophage images from

different time points during the stimulation. For each group, there

are five image stacks, each consisting of three channels: 1.

fluorescent nuclei 2. fluorescence subcellular stain for lipid bodies

also visualizing the cytoplasm and 3. bright field channel. Each of

the stacks for every channel consist of 20 individual z -slices. One

stack for each channel of the time point 18h had to be removed

because it was erroneously imaged as a single slice instead of a stack.

In total, the test data set includes nearly 800 cells.

To enable whole cell segmentation from bright field images, the

contrast must be enhanced by increasing the intensity differences

between cell and background areas. We achieve this by calculating

different measures of variation in the z -direction, projecting the

bright field stacks into two dimensional (2-D) images. That is, each

pixel in the resulting 2-D projections corresponds to a measure of

intensity variation in the z -direction in the original stack in that

specific x, y pixel location. Since there is typically less z intensity

variation in the background than in cells, these two classes of pixels

can be separated. Specifically, we make the projections using

standard deviation (STD), interquartile range (IQR), coefficient of

variation (CV), and median absolute deviation (MAD) measures.

The STD projection image is constructed by calculating the

standard deviation of intensities in the z -direction for each pixel of

the original stack:

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N{1

XN

i~1

Ii{mð Þ2
vuut , ð1Þ

where Ii is the pixel intensity of z -slice i, m is the mean of the pixel

intensities, and N is the total number of z -slices.

For a more robust measure of variation we calculated IQR

projection, the difference between the 75th and the 25th

percentiles of the sample. That is, the lowest 25% and highest

25% of the values are first discarded, and the IQR is the range

between the maximum and minimum of all the remaining

intensities of z -slices.

In CV projection, the standard deviation of the z -values is

divided by the mean of the values

CV~
s

m
: ð2Þ
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And finally, MAD measures how much ‘‘on average’’ one value

deviates from the median of all the values, that is, the median

deviation from the median of the intensities of all the z -slices for

every x,y pixel location:

MAD~median Jð Þ, ð3Þ

where I~ Iif gi~1...N , H~median Ið Þ, and J~ Ii{Hj jf g.
To assess the projections’ sensitivity to the number of z -slices

imaged for each stack, we applied the STD projection to two

different types of reduced stacks, consisting only of three slices.

First, the three slices were selected by hand representing nearly the

whole z -range of the original stack (slices 2, 10 and 19), referred to

as the 3Slices-method. And second, we created five reduced

versions of the original stacks by selecting the three slices

randomly, referred to as 3SlicesRandom1 to 3SlicesRandom5.

The automated image analysis and cell segmentation for the

evaluation of the various projection methods was carried out by the

open source CellProfiler software package [2], originally designed for

fluorescence microscopy. First, markers for each cell were obtained

by detecting fluorescent nuclei with IdentifyPrimAutomatic analysis

module. Second, to smooth out small unwanted details from the

Table 1. Summary of different whole cell segmentation methods and abbreviations.

Description of whole cell segmentation method Abbreviation

Standard deviation projection STD

Interquartile range projection IQR

Coefficient of variation projection CV

Median absolute deviation projection MAD

Standard deviation projection for a reduced z -stack with three z -slices (2, 10 and 19) out of the 20 in original stacks. 3Slices

Standard deviation projection for a reduced z -stack with three randomly selected z -slices. Five separate samples. 3SlicesRandom1-5

Whole cell area estimated to extend 30 pixels around the nucleus. Annulus

Ground truth segmentation using fluorescent cytoplasm staining. Fluorescence

Descriptions and abbreviations of all the different methods used for whole cell segmentation.
doi:10.1371/journal.pone.0007497.t001

Figure 1. Flowchart of the cell segmentation procedure. Whole cell fluorescent staining is replaced by projection images calculated from
bright field image stacks of different focal planes.
doi:10.1371/journal.pone.0007497.g001
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projections, a Gaussian lowpass filter radius of 5 pixels was applied by

SmoothOrEnhance module. Third, we used the propagation

algorithm [13] in the IdentifySecondaryAutomatic module for

detecting the whole cell areas. For ground truth, the whole cell areas

were segmented with the same procedure (excluding the lowpass

filter) using fluorescent cytoplasm images to be compared against cell

area detection using the various 2-D projections. To simulate a

situation where no fluorescent staining is available, the cytoplasmic

areas were estimated by an annulus of radius 30 pixels around each

nuclei as described, for example, in [14]. This estimation approach is

referred to as the Annulus-method.

For further validation, we also enumerated fluorescent spots

visible in the second fluorescent channel of the stacks. The spot

enumeration was done with a kernel density estimation based

algorithm [15] using a Gaussian kernel. Since this spot enumeration

module is not included in the standard CellProfiler distribution, we

implemented the analysis pipeline in the Developer’s Version of

CellProfiler, running on Matlab 2008a. The various approaches for

whole cell segmentation are summarized in Table 1.

We did not discard cells touching image borders, although it is a

procedure commonly performed to minimize bias in measure-

ments caused by cells that are only partly visible. These cells allows

us to compare segmentation accuracy also on image borders where

image quality is often compromised due to nonuniform back-

ground. The computational complexity of the analysis is relatively

low, taking around 4 seconds per method to calculate the

projection and segment the image on a 2GHz PC with Windows

Vista.

Results

As described in the previous section, we projected stacks of

bright field images into 2-D by various measures of stack z -

variation, with the aim of replacing whole cell fluorescent staining.

This procedure is outlined in Fig. 1, where markers for each cell

are detected from fluorescence, or marked by hand, with two

alternative methods for whole cell detection: fluorescence and the

projections. Fig. 2 illustrates the contrast improvement by one of

the projection approaches (STD). Fig. 2A shows one slice of the

original bright field image, while fluorescence staining, the

proposed STD projection, and the inverse of the projection are

presented in Fig. 2B, 2C and 2D, respectively. The difference in

Figure 2. Contrast enhancement by standard deviation projection of bright field image stack. (A) Low contrast bright field image. (B)
Fluorescence staining for whole cell and bright spot detection. (C) Standard deviation projection of stack of bright field images. (D) Inverse of the
projection for another visualization of the projection result. In addition to increased contrast, the projection also suppresses background
nonuniformities.
doi:10.1371/journal.pone.0007497.g002
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contrast between the projection 2C and original bright field data

2A is easily noticeable, and furthermore, since the deviation in

background intensities is similar in all the z -slices, the nonuniform

background is efficiently removed by the projection. The

projections by all the methods for all the stacks are given in

the supplementary www-pages at http://sites.google.com/site/

brightfieldorstaining

For assessing the performance of the projection method, we

compared automated image segmentation of whole cell areas of

fluorescently stained cells to the bright field projections, and to the

Annulus-method where the cytoplasm areas were estimated by

annuli around the detected nuclei. We were unable to detect the

cells of our whole dataset using the best previously published

method in the literature for segmenting complex cell shapes in

bright field images [5], and we therefore had to leave it out of this

comparison study. Fig. 3 illustrates one segmentation comparison,

after image analysis by CellProfiler software. Fig. 3A presents the

the whole cell segmentation result using fluorescence (Fig. 2B), and

in Fig. 3B the whole cell areas were detected from the projected

bright field stack (Fig. 2C). Fig. 3C shows the annuli around nuclei,

resulting from the Annulus method. All the methods use

fluorescent nuclei as markers for each cell, around which the

whole cell areas are located.

To quantify the segmentation accuracy for all the image stacks

of the time series experiment, we measured the precision

Precision~
tp

tpzfp
, ð4Þ

and recall

Recall~
tp

tpzfn
, ð5Þ

where tp, fp, and fn are the numbers of detected true positive, false

positive, and false negative pixels, respectively [16]. Perfect precision

would indicate that all the pixels detected by the method under testing

(different bright field projections) are also present in the ground truth

segmentation result (fluorescence). Perfect recall, on the other hand,

would indicate that that no pixels of the fluorescence image are

missed by using the bright field projection image.

Figure 3. Whole cell segmentation using different input data. (A) Fluorescent whole cell staining. (B) Standard deviation projection of bright
field stack. (C) The Annulus-method. The segmentation was performed using CellProfiler software, all methods requiring the use of fluorescent nuclei
as markers for each cell.
doi:10.1371/journal.pone.0007497.g003
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For a more compact representation of the segmentation

accuracy we computed the F-score [16]:

Fscore~
2 Precision:Recallð Þ
PrecisionzRecallð Þ , ð6Þ

that is, the harmonic mean of precision and recall. An F-score of 1
corresponds to perfect segmentation accuracy.

Fig. 4A presents the per cell segmentation F-score medians over

all cells for all the different projection methods against the

fluorescence ground truth. Furthermore, the segmentation results

for the STD projection of the 3Slices set with only 3 hand picked

z -slices are given, as well as the F-score for the Annulus method.

Fig. 4B gives the segmentation results of STD projection for

3SlicesRandom1 to 5, assessing the effect of random z -slice

selection from the stack for the projection.

With our data set consisting of nearly 800 macrophage cells with

highly complex morphologies, the overall performance of the

projection methods were close to the ground truth fluorescence

staining with the median F-score fluctuating around 0.8. As

expected, the F-score is consistently lower for the Annulus method.

More extensive plots, including F-score boxplots for each method,

are given at the supplementary site. The supplementary boxplots

 

 

 

 

Figure 4. Pixel-by-pixel comparison of whole cell segmentation using bright field projections against fluorescence ground truth. (A)
Median F-scores over all cells for each image group, with all the projection methods. (B) Median F-scores for cell segmentation using standard
deviation projection images, each projected from three randomly selected slices.
doi:10.1371/journal.pone.0007497.g004

 

 

 

Figure 5. Spot enumeration, average number of spots per cell. Spots detected from fluorescence channel, and distributed among the cells
based on different whole cell segmentation methods. (A) Spot counts per cell, cells detected from the bright field projections versus cells detected
with the fluorescence reference. (B) Spot counts per cell, cells detected with standard deviation projections for five randomly selected slice triples.
Only the Annulus method and 3SlicesRandom3 stand out as inferior to the others.
doi:10.1371/journal.pone.0007497.g005
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show a number of outliers for each of the of the eight groups, for

all the projection methods. In comparison to the whole dataset, the

number of outliers is limited, and the effect of these outliers can be

reduced, for example, by discarding the corresponding cells from

further analysis, similarly as cells that are too clumped together

often need to be removed from automated segmentation results.

As seen from the segmentation result images (supplement) the

outliers were caused by segmentation errors overestimating the

whole cell areas, suggesting the area of the cell to be a suitable

feature for discarding these outliers if necessary.

To evaluate whether the outliers and other variations in the cell

segmentation results affect the biological conclusions drawn from

the data, we compared subcellular spot counts on a single cell

level. By utilizing the second fluorescent channel where lipid

bodies are emphasized as bright spots, we first detected the spots in

the images (spot detection results for all images available in the

 

 

 

 

 

 

Figure 6. Cell by cell spot enumeration. Spots detected from fluorescence channel, and distributed among the cells based on different whole
cell segmentation methods. (A) Each data point represents the number of spots in one cell, with cell area detected with standard deviation projection
compared to cell area detection using fluorescence. The color indicates the number of overlapping data points. (B) Regression curves of spot counts
cell by cell, with cell detection by each of the projection methods, the 3Slices method and the Annulus method against fluorescent ground truth. (C)
Regression results of spot counts cell by cell, with cell detection of by the standard deviation projections for five randomly selected slice triples
against fluorescence (sets 3SlicesRandom1–5).
doi:10.1371/journal.pone.0007497.g006
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supplement site). Then, based on the whole cell segmentation by

all the projection approaches, we determined the cell to which

each spot belongs. Finally, we discarded the spots outside the

detected cells. This procedure enables us to estimate the effect of

the different whole cell detection methods on the actual biological

conclusions (spot counts per cell), since if the whole cell area

detection differs dramatically from the fluorescence ground truth

cell area, the numbers of spots detected in these erroneously

segmented cells also change. If there is no change in spot counts,

the whole cell detection is considered to have worked satisfactorily.

The results for this experiment are given in Fig. 5, where 5A

shows the average spot counts per cell in each image for the

different projection techniques, and in 5B the spot per cell

enumeration is presented for the standard deviation projections of

sets 3SlicesRandom1 to 5. With all the projection methods the

spot count per cell increases over time, as previously reported in

the literature [17].

Since each spot was assigned to a specific cell, we also compared

the spot per cell counts for each individual cell for further

validation. Fig. 6A shows a scatter plot and a regression curve

obtained with linear least squares regression [18] of spot counts

per each individual cell, for ground truth fluorescence against the

STD projection. Overlapping data points are indicated with

different colors. For clarity, in Fig. 6B only the regression lines are

given for all the projections, with all the scatter plots available in

the supplementary pages. Similarly to the previous plots, Fig. 6C

illustrates the regression results for 3SlicesRandom1 to 5 against

the ground truth fluorescence, with all the scatter plots again

available as a supplement. The results of the spot-per-cell analysis

are summarized in Table 2 listing the spot count slopes and biases

for the different methods against ground truth. All the regression

results except Annulus and the STD projection of 3SlicesRan-

dom3 show a near perfect match between cell-by-cell spot counts

by projections and fluorescence segmentation.

Discussion

We have presented and evaluated different z -projection

methods for contrast enhancement in bright field image stacks,

and shown that the projection approach can replace whole cell

fluorescent staining for our set of macrophage images. In single cell

detection and segmentation, our method has several advantages

over the previously presented bright field based techniques. Firstly,

the projection images can be directly used for whole cell

segmentation in the freeware CellProfiler software or other tools.

Secondly, among the different projection methods tested, the

standard deviation projection is computationally very light and

trivial to implement, requires no parameters to be set, and still

offers excellent segmentation performance. Thirdly, we have

successfully applied the whole cell detection method to macro-

phages, a cell type of high morphological complexity with various

protrusions and low contrast. Fourthly, the segmentation results

with randomly selected z -slices suggest that precise focusing is not

critical. And finally, background intensity variations have no effect

on the resulting projection images. The drawback of our approach

is the need for taking three images instead of one, requiring a

rather fast stage in live cell imaging to acquire the images without

cell movement, and currently the segmentation results include

outliers resulting from erroneous whole cell detection. Space

requirements, on the other hand, are not increased since only the

projection images must be stored for analysis.

Further studies are needed for assessing generality of the

projection approach. We only used images of one cell type, with

low contrast all around the cells, without clearly visible cell

borders. Halo effects, present in bright field images of many other

cell types, for example yeast, might be emphasized erroneously in

the projections. Furthermore, it would be interesting to study the

segmentation performance with various cell densities and different

imaging setups, and to search for optimal conditions for the

imaging and subsequent analysis. Many different approaches

could also be tested for preprocessing; in this work the standard

Gaussian filter was found adequate, but no rigorous parameter

optimization or method comparisons were performed.

To fully automate the bright field cell segmentation, the markers

for each cell need to be located without fluorescent nuclei, but to the

best of our knowledge, there are no robust bright field based

methods presented in the literature. The markers could also be set

manually, but especially in high throughput studies a manual

approach is not realistic. In certain studies where the cells have a

very distinctive shape, such us bacteria or yeast cells, the object

separation could be done based on cell shape, removing the need for

a nuclear marker and thus, the need for fluorescence altogether.

Bright field images are not the only stacks where the standard

deviation or other projections should be studied in more detail. In

fluorescence microscopy, the studied phenomenon is often visible

as subcellular spots, the intensities varying according to the z -

levels. This suggests that the spots may be better visible in the

standard deviation projections as compared to the methods

commonly used, such as mean and maximum projections. The

projection approach is also not limited to cellular objects, and any

nearly transparent targets should benefit from the increased

contrast without the need for any special optics.
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3SlicesRandom2 0.0871 0.9797

3SlicesRandom3 20.1181 0.8130
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3SlicesRandom5 0.0256 0.9293

Spots are detected from fluorescence channel, but distributed among
individual cells by whole cell detection based on the different methods. All
methods except Annulus and 3SlicesRandom3 resulted in a near perfect match.
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