BRILL-NOETHER-PETRI WITHOUT DEGENERATIONS

ROBERT LAZARSFELD

Introduction

The purpose of this note is to show that curves generating the Picard group of a K3 surface X with Pic(X) = Z behave generically from the point of view of Brill-Noether theory. In particular, one gets a quick new proof of Gieseker's theorem [5] concerning the varieties of special divisors on a general algebraic curve.

Let C be a smooth irreducible complex projective curve of genus g. One says that C satisfies *Petri's condition* if the map

$$\mu_0: H^0(A) \otimes H^0(\omega_C \otimes A^*) \to H^0(\omega_C)$$

defined by multiplication is injective for every line bundle A on C. Roughly speaking, this condition means that the varieties $W'_d(C)$ of special divisors on C have the properties one would naively expect. Specifically, it implies that $W'_d(C)$ is smooth away from $W'_d^{r+1}(C)$, and that $W'_d(C)$ (when nonempty) has the postulated dimension $\rho(r, d, g) =_{def} g - (r + 1) \cdot (g - d + r)$. We refer to [1] for the definition of $W'_d(C)$, and for a detailed discussion of Petri's condition and its role in Brill-Noether theory. One of the most basic results of this theory is Gieseker's theorem [5] that Petri's condition does in fact hold for the generic curve of genus g.

We prove here the following

Theorem. Let X be a complex projective K3 surface, and let $C_0 \subset X$ be a smooth connected curve. Assume that every divisor in the linear system $|C_0|$ is reduced and irreducible. Then the general curve $C \in |C_0|$ satisfies Petri's condition.

Received January 14, 1986. This work was partially supported by a Sloan Fellowship and National Science Foundation Grant DMS 84-05304.

ROBERT LAZARSFELD

The hypothesis is satisfied in particular when Pic(X) is infinite cyclic, generated by the class of C_0 . But for any integer $g \ge 2$ there exists a K3 surface X with $Pic(X) = \mathbb{Z} \cdot [C_0]$ for some curve C_0 of genus g, and thus the theorem implies Gieseker's result [5].

The study of special divisors on a general curve has traditionally centered around degeneration arguments. One of the first results in this area was due to Griffiths and Harris [7], who proved the assertion of Brill and Noether that if C is a general curve of genus g, then dim $W'_d(C) = \rho(r, d, g)$ provided that $\rho(r, d, g) \ge 0$. Their method was to deduce the theorem from an analogous statement for a rational curve with g nodes, which in turn was proved by a further degeneration. To prove Petri's conjecture, Gieseker [5] combined some rather elaborate combinatorial arguments with a systematic analysis of the limiting linear series on reducible curves arising in a degeneration of g-nodal \mathbb{P}^1 's. Eisenbud and Harris [2] subsequently streamlined Gieseker's proof by using a different degeneration, and they have recently extended and given several interesting new applications of these techniques (cf. [4]).

By contrast, the proof of the theorem here does not require any degenerations. Instead the method is simply to exhibit smooth families of g'_d 's. Specifically, we consider triples (C, A, τ) consisting of a nonsingular curve $C \subset X$ in the linear system $|C_0|$, a line bundle $A \in W_d^r(C)$ such that both A and $\omega_C \otimes A^*$ are base-point free, and an isomorphism τ mod scalars of $H^0(A)$ with a fixed vector space of dimension r + 1. Such triples are parametrized by a variety P_d^r , and one has an evident map $\pi: P_d^r \to |C_0|$. The tangent spaces to P_d^r and the derivative of π are computed cohomologically in terms of certain vector bundles $F_{C,A}$ on X which we study in §1. One finds in particular that these bundles have only trivial endomorphisms so long as $|C_0|$ does not contain any reducible curves. Much as in [10] this allows us to show in §2 that P_d^r is nonsingular, and that moreover the morphism π is smooth at (C, A, τ) if and only if the Petri μ_0 map for A is injective. The theorem then follows (§3) from the generic smoothness of π . In as much as it avoids the combinatorics involved in degenerational proofs, the present approach to Brill-Noether-Petri would seem to be simpler than the traditional one. On the other hand, as in [2] the argument only works in characteristic zero, and these techniques do not yield the theorem of Kempf [8] and Kleiman-Laksov [9] that $W'_d(C)$ is nonempty when $\rho(r, d, g) \ge 0$ (which however is elementary nowadays; cf. [1, Chapter VII]).

Special divisors on a curve C on a K3 surface X appear to have been first considered by Reid [13], who showed that under suitable numerical hypotheses a special pencil on C is the restriction of one on X. A beautiful conjecture of Mumford, Harris and Green (see [6, §5]) asserts that all curves in a given linear

series on X have the same Clifford index. This conjecture—which would generalize the well-known fact that if $C_0 \subset X$ is hyperelliptic, then so too is any other smooth curve in $|C_0|$ —has been verified in special cases by Donagi and Morrison, and by Green and the author. Serrano-Garcia [14] has extended some of Reid's results to surfaces other than K3's.

I am grateful to L. Ein, D. Gieseker, M. Green and U. Persson for valuable discussions. The reader will also recognize my debt to the recent work of Mukai [10]. I would especially like to thank R. Donagi and D. Morrison for giving me an unpublished manuscript in which they had proven a special case of the corollary at the end of §1 below. The present paper in part grew out of an attempt to understand and generalize their result.

1. The vector bundles $F_{C,A}$

This section is devoted to the study of certain vector bundles that play an important role in the argument. But first some notation. Throughout the paper X denotes a complex projective K3 surface, and $C_0 \subset X$ is a smooth irreducible curve of genus g. Given a curve C, and integers d and r, we define

$$V_d^r(C) \subset \operatorname{Pic}^d(C)$$

to be the open subset of $W_d^r(C)$ consisting of line bundles A on C such that:

(i) $h^0(A) = r + 1$, deg(A) = d; and

(ii) both A and $\omega_C \otimes A^*$ are generated by their global sections.

Fix now a smooth curve $C \subset X$ in the linear series $|C_0|$, and a line bundle $A \in V'_d(C)$. We associate to the pair (C, A) a vector bundle $F_{C,A}$ on X, of rank r + 1, as follows. Thinking of A as a sheaf on X, there is a canonical surjective evaluation map

$$e_{C,A}: H^0(A) \otimes_{\mathbf{C}} \mathcal{O}_X \twoheadrightarrow A$$

of \mathcal{O}_X -modules. Take

$$F_{C,\mathcal{A}} = \ker e_{C,\mathcal{A}}$$

to be its kernel. [Note that A, being locally isomorphic to \mathcal{O}_C , has homological dimension 1 over \mathcal{O}_X . Hence $F_{C,A}$ is indeed a vector bundle.]

The basic properties of these bundles are easily determined. Specifically, setting $F = F_{C,A}$ one has by construction the exact sequence

(1.1)
$$0 \to F \to H^0(A) \otimes_{\mathbb{C}} \mathcal{O}_X \to A \to 0$$

of sheaves on X. Since $\mathcal{O}_X = \mathcal{O}_X$, dualizing (1.1) gives:

(1.2)
$$0 \to H^0(A)^* \otimes_{\mathbf{C}} \mathcal{O}_X \to F^* \to \omega_{\mathbf{C}} \otimes A^* \to 0,$$

and from (1.1) and (1.2) one sees that:

- (i) $c_1(F) = -[C_0], c_2(F) = \deg(A) = d;$
- (ii) F^* is generated by its global sections [recall: $h^1(\mathcal{O}_X) = 0$];
- (iii) $H^0(F) = H^2(F^*) = 0$,

$$H^{1}(F) = H^{1}(F^{*}) = 0,$$

$$h^{0}(F^{*}) = h^{0}(A) + h^{1}(A).$$

Furthermore, one has:

(iv) $\chi(F \otimes F^*) = 2 \cdot h^0(F \otimes F^*) - h^1(F \otimes F^*) = 2 - 2 \cdot \rho(A)$, where $\rho(A) = g(C) - h^0(A) \cdot h^1(A)$.

Proof. The first equality follows from Serre duality. If E is a vector bundle of rank e on X, Riemann-Roch gives $\chi(E \otimes E^*) = (e-1) \cdot c_1(E)^2 - 2e \cdot c_2(E) + 2e^2$. Now compute

The presence or absence of reducible curves in $|C_0|$ comes into play via

Lemma 1.3. Fix a smooth curve C in $|C_0|$ and a line bundle $A \in V'_d(C)$, and let $F = F_{C,A}$. If F has nontrivial endomorphisms, i.e. if $h^0(F \otimes F^*) \ge 2$, then the linear system $|C_0|$ contains a reducible (or multiple) curve.

Proof. Set $E = F^*$. Since $h^0(E \otimes E^*) \ge 2$, there exists by a standard argument a nonzero endomorphism $v: E \to E$ which drops rank everywhere on X. [Take any endomorphism w of $E, w \ne (\text{const}) \cdot 1$, and set $v = w - \lambda \cdot 1$, where λ is an eigenvalue of w(x) for some $x \in X$. Then

$$\det(v) \in H^0(\det(E^*) \otimes \det(E)) = H^0(\mathcal{O}_X)$$

vanishes at x, and hence is identically zero.] Let

$$N = \operatorname{im} v, \qquad M_0 = \operatorname{coker} v,$$

and put

$$M = M_0 / T(M_0),$$

where $T(M_0)$ is the torsion subsheaf of M_0 . Thus

$$[C_0] = c_1(E) = c_1(N) + c_1(M) + c_1(T(M_0))$$

in the Chow group $A_1(X) = \operatorname{Pic}(X)$. Now $c_1(T(M_0))$ is represented by a nonnegative linear combination of the codimension one irreducible components (if any) of $\operatorname{supp}(T(M_0))$. So it is enough to show that $c_1(N)$ and $c_1(M)$ are represented by nonzero effective curves. But N and M are torsion-free sheaves of positive rank, and—being quotients of E—are generated by their global sections. Furthermore, since $H^0(E^*) = 0$ neither of these can be trivial vector bundles. So the lemma follows from the elementary fact:

Let U be a torsion-free sheaf on a smooth projective surface. If U is generated by its global sections, then $c_1(U)$ is represented by an effective (or zero) divisor. Moreover $c_1(U) = 0$ $\Leftrightarrow U$ is a trivial vector bundle.

Indeed, the double dual U^{**} of U is locally free, and the canonical inclusion $U \rightarrow U^{**}$ is an isomorphism outside of a finite set (cf. [12, II.1.1]). Thus $c_1(U) = c_1(U^{**})$, and U^{**} is generated by its sections away from finitely many points. Therefore $H^0(\det(U^{**})) \neq 0$, and (by Porteous) $c_1(U^{**}) = 0$ if and only if U^{**} —and hence also U—is a trivial bundle. q.e.d.

It is amusing to note that the lemma already yields a special case of the Brill-Noether theorem [7], namely that a general curve C of genus g does not carry any line bundle A with $\rho(A) [= g(C) - h^0(A) \cdot h^1(A)] < 0$. In fact:

Corollary 1.4. Assume that every member of the linear series $|C_0|$ is reduced and irreducible. Then for every smooth curve $C \in |C_0|$ and every line bundle A on C one has $\rho(A) \ge 0$.

When $h^0(A) = 2$ the corollary was proved by Donagi and Morrison (unpublished) using very different methods of Reid [13], and independently by Reid himself (private communication). Compare also [3].

Proof of Corollary 1.4. Observe that if B is a base-point free special line bundle on C, and if Δ is the divisor of base-points of $\omega_C \otimes B^*$, then $B(\Delta)$ is again base-point free. Hence we can assume in (1.4) that both A and $\omega_C \otimes A^*$ are generated by their global sections, and then the assertion follows from (iv) and (1.3).

2. Infinitesimal calculations

Keeping notation as in §1, we now fix positive integers r and d, and a vector space H of dimension r + 1.

Definition 2.1. Let P_d^r denote the quasi-projective scheme (constructed below) parametrizing the set of all triples (C, A, λ) , where:

(i) $C \subset X$ is a smooth curve in the linear system $|C_0|$;

(ii) $A \in V_d^r(C)$; and

(iii) λ is a surjective homomorphism of \mathcal{O}_X -modules:

$$\lambda \colon H \otimes_{\mathbf{C}} \mathcal{O}_X \to A \to 0$$

inducing an isomorphism $H \simeq H^0(A)$, two such homomorphisms being identified if they differ only by multiplication by a nonzero scalar.

Construction of P'_d : P'_d is an open subset of a Hilbert scheme classifying curves in $X \times \mathbf{P}(H)$. Specifically, given a triple (C, A, λ) as above, the quotient $\lambda | C$: $H \otimes_C \mathcal{O}_C \to A$ determines an embedding

$$C \subset \mathbf{P}(H \otimes_{\mathbf{C}} \mathcal{O}_X) = X \times \mathbf{P}(H)$$

and distinct triples give rise to distinct subvarieties of $X \times P(H)$. The subschemes of $X \times P(H)$ arising in this manner are parametrized by a Zariski-open subset of the Hilbert scheme of curves in $X \times P(H)$ (with appropriate Hilbert polynomial defined with respect to some ample divisor on $X \times \mathbf{P}(H)$). We take this open set to be P_d^r .

Observe that there is a natural morphism

 $\pi\colon P_d^r \to |C_0|$

sending a triple (C, A, λ) to the point $\{C\}$. Note also that for every $(C, A, \lambda) \in P_d^r$, the sheaf ker λ is isomorphic to the bundle $F_{C,A}$ introduced in §1. Consequently the discussion of §1 applies to these kernels.

The basic fact for us is that one has good infinitesimal control over P_d^r and π :

Proposition 2.2. Fix any point $(C, A, \lambda) \in P'_d$, and let $F = \ker \lambda$. Assume that $h^0(F \otimes F^*) = 1$. Then:

(i) P'_d is smooth at (C, A, λ) , of dimension $\rho(A) + g + \{h^0(A)^2 - 1\}$; and

(ii) The map π is smooth at (C, A, λ) , i.e. $d\pi_{(C,A,\lambda)}$ is surjective, if and only if the Petri homomorphism

$$\mu_0: H^0(A) \otimes H^0(\omega_C \otimes A^*) \to H^0(\omega_C)$$

is injective.

Remark. Observe that there is no assumption on the integers r and d. However it may well be that P_d^r is empty [cf. Corollary 1.4].

Proof of Proposition 2.2. Consider the embedding $C \subset X \times \mathbf{P}(H)$ determined by λ . Denoting by $\Phi: C \to \mathbf{P}(H)$ the projection of C to $\mathbf{P}(H)$, one has a canonical exact sequence of tangent and normal bundles:

(*)
$$0 \to \Phi^*(\Theta_{\mathbf{P}(H)}) \to N_{C/X \times \mathbf{P}(H)} \to N_{C/X} \to 0,$$

and $d\pi_{(C,A,\lambda)}$ is identified with the resulting homomorphism

$$T_{(C,A,\lambda)}P_d^r = H^0(N_{C/X \times \mathbf{P}(H)}) \to H^0(N_{C/X}) = T_{(C)}|C_0|$$

Grant for the time being the following

Claim. If $h^0(F \otimes F^*) = 1$, then the map

$$(**) H^1(N_{C/X \times \mathbf{P}(H)}) \to H^1(N_{C/X})$$

determined by (*) is bijective.

Then first of all one gets an isomorphism coker $d\pi_{(C,A,\lambda)} \simeq H^1(\Phi^*(\Theta_{\mathbf{P}(H)}))$. But $\Phi = \Phi_A$ is the morphism determined by the complete linear system associated to A, and hence $H^1(\Phi^*(\Theta_{\mathbf{P}(H)}))$ is Serre dual to ker μ_0 . This proves (ii).

For (i) we argue much as in [10] that the obstructions to the smoothness of the Hilbert scheme of $X \times P(H)$ at (C, A, λ) vanish. Specifically, let R be a local artinian C-algebra, let $I \subset R$ be a one-dimensional square-zero ideal, and set S = R/I. Consider an infinitesimal deformation

$$(+) \qquad \underline{C} \subset X \times \mathbf{P}(H) \times \operatorname{Spec}(S)$$

of C in $X \times \mathbf{P}(H)$ over Spec(S). The obstruction to extending (+) to a deformation over Spec(R) is given by an element $o_{(+)} \in H^1(N_{C/X \times \mathbf{P}(H)})$. On the other hand, (+) determines by projection an infinitesimal deformation

$$(\#) \qquad \qquad \underline{C} \subset X \times \operatorname{Spec}(S)$$

of C in X, and one has a corresponding obstruction class $o_{(\#)} \in H^1(N_{C/X})$. Furthermore, $o_{(+)}$ maps to $o_{(\#)}$ under the homomorphism (**); this can be checked, e.g., using the explicit description of the obstruction classes in [11, Lecture 23] by observing that the local equation of \underline{C} in $X \times \text{Spec}(S)$ can be taken as one of the equations locally cutting out \underline{C} in $X \times P(H) \times \text{Spec}(S)$. But the Hilbert scheme $|C_0|$ of C in X is smooth, and hence $o_{(\#)} = 0$. Therefore $o_{(+)} = 0$ thanks to the claim, and this proves that P_d^r is smooth at (C, A, λ) . (One could also deduce (i) from Theorem (0.1) of [10].)

It remains to verify the claim. Denoting by p and q the projections of $X \times \mathbf{P}(H)$ onto X and $\mathbf{P}(H)$ respectively, note first that C is defined in $X \times \mathbf{P}(H)$ as the zero-locus of the evident section of $p^*(F^*) \otimes q^*(\mathcal{O}_{\mathbf{P}(H)}(1))$. Therefore

$$N_{C/X \times \mathbf{P}(H)} = F^* | C \otimes A.$$

We next compute $h^1(C, F^*|C \otimes A) = h^1(X, F^* \otimes A)$. To this end, observe that since F^* is locally free, λ determines an exact sequence

 $0 \to F \otimes F^* \to H \otimes_{\mathbb{C}} F^* \to A \otimes F^* \to 0$

of sheaves on X. Using the computations of $H^{i}(F^{*})$ in §1 one sees that $H^{1}(X, A \otimes F^{*}) = H^{2}(X, F \otimes F^{*})$, and so by duality plus the hypothesis on $F \otimes F^{*}$ one finds that $h^{1}(N_{C/X \times P(H)}) = 1$. Since also $h^{1}(N_{C/X}) = h^{1}(\omega_{C}) = 1$, the claim follows. Finally, using facts (iii) and (iv) from §1, one gets the stated value for $h^{0}(X, F^{*} \otimes A) = \dim_{(C, A, \lambda)} P_{d}^{r}$.

Remark. Suppose that the linear system $|C_0|$ does not contain any reducible members. Then it follows from the proposition and Lemma 1.3 that P_d^r (if nonempty) has pure dimension $g + \rho(d, r, g) + \{(r+1)^2 - 1\}$. Observing that the fiber of π over a point $\{C\} \in |C_0|$ is a PGL(r + 1)-bundle over $V_d^r(C)$, one can use this to give a proof of the Brill-Noether theorem of Griffiths and Harris [7]. But at this point it is quicker for us to get dimensionality via Petri.

3. **Proof of the Theorem**

We assume that the linear system $|C_0|$ does not contain any reducible or multiple members, and we wish to show that almost every curve in $|C_0|$ satisfies Petri's condition.

ROBERT LAZARSFELD

To begin with fix arbitrary positive integers r and d. We claim that there is a nonempty Zariski-open set $U_d^r \subset |C_0|$ of smooth curves such that for all $C \in U_d^r$:

$$\mu_0: H^0(A) \otimes H^0(\omega_C \otimes A^*) \to H^0(\omega_C) \text{ is injective}$$

for every line bundle $A \in V_d^r(C)$.

Indeed, it follows from Lemma 1.3 and the assumption on $|C_0|$ that for any point $(C, A, \lambda) \in P_d^r$, the bundle $F = \ker \lambda$ satisfies $h^0(F \otimes F^*) = 1$. Thus by Proposition 2.2 the variety P_d^r is nonsingular (or empty). As we are in characteristic zero the theorem on generic smoothness applies, and there exists a nonempty open set $U_d^r \subset |C_0|$ over which the map $\pi: P_d^r \to |C_0|$ is smooth. Invoking the proposition again, it follows that U_d^r has the stated property.

We assert next that there is a nonempty open set $U \subset |C_0|$ of smooth curves such that for any $C \in U$:

 μ_0 is injective for every line bundle A on C such that both A and $\omega_C \otimes A^*$ are generated by their global sections.

In fact, for a fixed genus g the injectivity of μ_0 for A is nontrivial for only finitely many values of $d = \deg(A)$ and r = r(A) [e.g., $0 \le 2r \le d \le 2g - 2$]. It suffices to take U to be the intersection of the corresponding U'_{d} 's.

Using the remark at the beginning of the proof of Corollary 1.4, the theorem now follows from the observation that if D is any effective divisor on C, and if Δ is the divisor of base-points of |D|, then the injectivity of μ_0 for $\mathcal{O}_C(D - \Delta)$ implies the injectivity of μ_0 for $\mathcal{O}_C(D)$.

Remark. It is not generally the case that Petri's condition holds for *all* smooth curves in $|C_0|$. Furthermore, one cannot avoid the hypothesis on $|C_0|$: e.g. for $n \ge 2$ the general member of $|n \cdot C_0|$ does not satisfy Petri. Similarly one can not expect to weaken too greatly the hypothesis that X be a K3, since for instance the theorem already fails for the general surface of degree ≥ 5 in \mathbf{P}^3 .

References

- E. Arbarello, M. Cornalba, P. Griffiths & J. Harris, Geometry of algebraic curves, Volume 1, Springer, Berlin, 1985.
- [2] D. Eisenbud & J. Harris, A simpler proof of the Gieseker-Petri theorem on special divisors, Invent. Math. 74 (1983) 269-280.
- [3] _____, On the Brill-Noether theorem, in Algebraic Geometry—Open Problems, Lecture Notes in Math., Vol. 997, Springer, Berlin, 1983, 131-137.
- [4] _____, Limit linear series: basic theory, to appear.

- [5] D. Gieseker, Stable curves and special divisors: Petri's conjecture, Invent. Math. 66 (1982) 251-275.
- [6] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geometry 19 (1984) 125–171.
- [7] P. Griffiths & J. Harris, The dimension of the variety of special linear systems on a general curve, Duke Math. J. 47 (1980) 233-272.
- [8] G. Kempf, Schubert methods with an application to algebraic curves, Publ. Math. Centrum, Amsterdam, 1972.
- [9] S. Kleiman & D. Laksov, On the existence of special divisors, Amer. J. Math. 94 (1972) 431-436.
- [10] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984) 101–116.
- [11] D. Mumford, *Lectures on curves on an algebraic surface*, Annals of Math. Studies, No. 59, Princeton University Press, Princeton, NJ, 1966.
- [12] C. Okonek, M. Schneider & H. Spindler, Vector bundles on complex projective spaces, Birkhauser, Basel, 1980.
- [13] M. Reid, Special linear systems on curves lying on a K-3 surface, J. London Math. Soc. 13 (1976) 454–458.
- [14] F. Serrano-Garcia, Surfaces having a hyperplane section with a special pencil, Thesis (Brandeis), 1985.

UNIVERSITY OF CALIFORNIA, LOS ANGELES