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Abstract In this paper we study the Brill–Noether theory of invertible subsheaves of a
general, stable rank-two vector bundle on a curve C with general moduli. We relate this
theory to the geometry of unisecant curves on smooth, non-special scrolls with hyperplane
sections isomorphic to C . Most of our results are based on degeneration techniques.
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1 Introduction

The classical Brill–Noether theory aims at the description of all families Gr
d(C) of linear

series of fixed degree d and dimension r on a given curve C of genus g. Equivalently, one
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can consider the image via the Abel–Jacobi map W r
d (C) ⊆ Picd(C) of Gr

d(C). In such a
generality, the project is certainly too ambitious. However, for C sufficiently general in Mg

the problem has been completely solved. The main results are Griffiths–Harris’ theorem
(see [21]), which determines the dimensions of the families Gr

d(C), and Gieseker’s theorem
(see [19]), proving the so called Petri’s conjecture which refines Griffiths–Harris’ result
giving further important information about the local structure of Gr

d(C). Recall also Fulton–
Lazarsfeld’s theorem (see [10]) asserting that W r

d (C) is connected, for any curve C , as soon
as its dimension is positive.

There are various extensions of Brill–Noether theory involving vector bundles, one of
which we consider here. Given a curve C of genus g ≥ 1, one can consider the moduli
space UC (d) of semistable, degree d , rank-two vector bundles on C , which is an irreducible,
projective variety of dimension 4g − 3 + ε, where ε = 1, if g = 1 and d is even (cf. [36]),
ε = 0 otherwise (cf. e.g. [30]). For any [F] ∈ UC (d), one can consider the set

Mn(F) := {N ⊂ F | N invertible subsheaf of F, deg(N ) = n}, (1.1)

which has a natural structure of Quot-scheme. Note that Mn(F) is isomorphic to Mn+2l(F ⊗
L), for any L ∈ Picl(C). If [F] ∈ UC (d) is general, then Mn(F) is not empty if and only if

n ≤
⌊

d−g+1
2

⌋
=: n (cf. Corollary 4.16, Remark 4.18 and [26]). The problem we consider

here is to study the loci Mn(F), for C general of genus g and F general in UC (d), as well as
their images Wn(F) in Picn(C). Of course, similar questions can be asked for vector bundles
of any rank and in this generality they have been considered by various authors (see e.g.
[5,24,26,31,32]).

As is well known, the study of vector bundles on curves is equivalent to the one of scrolls
in projective space. Therefore, the above questions can be translated in terms of the geometry
of scrolls. Let S be a smooth, non-special scroll of degree d and sectional genus g ≥ 0 which
is linearly normal in P

R , R = d − 2g + 1. If d ≥ 2g + 3 + min{1, g − 1}, such scrolls fill
up a unique component Hd,g of the Hilbert scheme of surfaces in P

R which dominates Mg

(cf. Theorem 3.1 below).
Let [S] ∈ Hd,g be a general point, such that S ∼= P(F), where F is a very ample rank-two

vector bundle of degree d on C , a curve of genus g with general moduli, and S is embedded
in P

R via the global sections of OP(F)(1). In [7] we showed that, if g ≥ 1 and S is general,
then F is general in UC (d) (cf. [2] and [7, Theorem 5.5]). We then proved that S is a general
ruled surface in the sense of Ghione [14], namely the scheme Div1,m

S parametrizing unisecant
curves of given degree m on S behaves as expected (for details, cf. [7, Def. 6.6 and Thm.
6.9]). If we put m := d − n, in Proposition 4.11 we prove that there is a natural isomorphism

Div1,m
S

∼= Mn(F).

This provides the translation from the vector bundle to the scroll setting. The map

πn : Mn(F) → Wn(F) ⊆ Picn(C)

can also be interpreted in terms of curves on the scroll: the fibres of πn are connected
(cf. Lemma 4.21) and can be identified with linear systems of unisecant curves of degree m
on S. Therefore, the map πn can be regarded as an analogue of the Abel–Jacobi map. It is
then natural to consider the subschemes W r

n (F) ⊆ Wn(F) of points where the fibre of πn has
dimension at least r . These are analogues of the classical Brill–Noether loci.

The scheme Div1,m
S was originally studied by C. Segre (cf. [33]), then in [14] and, by

the present authors, in [7], where we used degeneration techniques. These techniques, in
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particular the degeneration of a general scroll in Hd,g to the union of a rational normal scroll
and g quadrics (cf. Construction 3.2), are also the main tool in the present paper.

First of all, we apply the results in [7] to prove a conjecture by Oxbury asserting that
Mn(F) is connected for any curve C of genus g, [F] ∈ UC (d) general and d − g even (cf.
[31, Conjecture 2.8]; Oxbury’s conjecture refers more generally to vector bundles of any
rank).

Then, we turn to the consideration of W r
n (F). In order to study such loci, a basic ingredient

is the contraction map

µN : H0(F ⊗ N∨)⊗ H0(F∨ ⊗ ωC ⊗ N ) → H0(ωC )

which, in accordance with the line bundle case, is called the Petri map of the pair (F, N )
(cf. e.g. [31]). The case n = n is already studied in [31] (cf. Proposition 4.36 below). For
n < n the situation is more complicated. In Proposition 4.39, we give some general results
about the Brill–Noether filtration in the general moduli case. In particular we show that, when
[S] ∈ Hd,g is general, one has:

(a) if dim(Div1,m
S )≥g and [�]∈Div1,m

S is general, then dim(|OS(�)|)=dim(Div1,m
S )− g,

(b) if 0 ≤ dim(Div1,m
S ) < g and [�] ∈ Div1,m

S is general, then dim(|OS(�)|) = 0.

In Theorem 5.1, we concentrate on W 1
n (F) and, when C has general moduli, we prove

that each of its irreducible components has the expected dimension. We finish the paper
by proving an enumerative result, i.e. Theorem 6.1, in which we compute the class of the
sum of all invertible subsheaves of F of maximal degree, when these are finitely many and
[F] ∈ UC (d) is general.

The paper is organized as follows. In Sect. 2 we collect standard definitions and properties
of scrolls and unisecant curves. In Sect. 3 we recall the results in [6] and in [7]. In Sects.
4 and 5 we prove the above-mentioned results of the Brill–Noether theory, whereas Sect. 6
contains the enumerative result.

2 Notation and preliminaries

In this section we will fix notation and general assumptions as in [7]. For terminology not
recalled here, we refer the reader to [7,23,30,34].

Let C be a smooth, projective curve of genus g ≥ 0 and let ρ : F → C be a geometrically
ruled surface on C , namely F = P(F), for some rank-two vector bundle, or locally free
sheaf, F on C . In this paper, we shall make the following:

Assumption 2.1 We assume that h0(C,F) = R + 1, for some R ≥ 3, that |OF (1)| is
base-point-free and that the corresponding morphism� : F → P

R is birational to its image.

We denote by d the degree deg(F) := deg(det(F)).

Definition 2.2 The surface�(F) := S ⊂ P
R is called a scroll of degree d and of (sectional)

genus g, and S is called the scroll determined by the pair (F,C). S is smooth if and only if
F is very ample; if S is singular, then F is its minimal desingularization. For any x ∈ C , let
fx := ρ−1(x) ∼= P

1. The line lx := �( fx ) is called a ruling of S. Abusing terminology, the
family {lx }x∈C is also called the ruling of S.

For further details on ruled surfaces, we refer to [23, Sect. V], [2,11–14,17,18,20,26–28,
33,35]. If we denote by H a section of ρ such that OF (H) = OF (1), then Pic(F) ∼=
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Z[OF (H)] ⊕ ρ∗(Pic(C)); if d ∈ Div(C), we denote by d f the divisor ρ∗(d) on F , where
f is the general fibre of ρ. A similar notation will be used when d ∈ Pic(C). Thus, any
element of Pic(F) corresponds to a divisor on F of the form nH + d f , for some n ∈ Z and
d ∈ Pic(C).

Definition 2.3 Any curve B ∈ |H + d f | is called a unisecant curve of F . Any irreducible
unisecant curve B of F is smooth and is called a section of F .

There is a one-to-one correspondence between sections B of F and surjections F � L ,
with L = L B a line bundle on C (cf. [23, Sect. V, Prop. 2.6 and 2.9]). Then, one has an exact
sequence

0 → N → F → L → 0, (2.4)

where N is a line bundle on C . If L = OC (m), with m ∈ Divm(C), then m = H B and
B ∼ H + (m − det(F)) f . One has

OB(B) ∼= N∨ ⊗ L (2.5)

(cf. [23, Sect. 5]). In particular,

B2 = deg(L)− deg(N ) = d − 2 deg(N ) = 2m − d. (2.6)

Similarly, if B1 is a reducible unisecant curve of F such that H B1 = m, there exists a section
B ⊂ F and an effective divisor a ∈ Div(C), a := deg(a), such that B1 = B + a f, where
B H = m − a. In particular there exists a line bundle L = L B on C , with deg(L) = m − a,
fitting in (2.4). Thus, one obtains the exact sequence

0 → N ⊗ OC (−a) → F → L ⊕ Oa → 0. (2.7)

(for details, cf. [7]).

Definition 2.8 Let S be a scroll of degree d and genus g corresponding to (F,C) and let
B ⊂ F be a section and L as in (2.4). If�|B is birational to its image, then � := �(B) ⊂ S
is called a section of S. We will say that the pair (S, �) is associated with (2.4) and that �
corresponds to L on C . If m = deg(L), then � is a section of degree m of S; moreover,
�|B : B ∼= C → � is determined by the linear series � ⊆ |L|, which is the image of the
map H0(F) → H0(L). If B1 ⊂ F is a (reducible) unisecant curve and �|B1 is birational to
its image, then�(B1) = �1 is a unisecant curve of degree m of S. As above, the pair (S, �1)

corresponds to a sequence of type (2.7).

By Riemann–Roch, one has

R + 1 := h0(OF (1)) = d − 2g + 2 + h1(OF (1)). (2.9)

Definition 2.10 (cf. [33, Sect. 3, p. 128]) We will call h1(OF (1)) the speciality of the scroll
S. A scroll S is said to be special if h1(OF (1)) > 0, non-special otherwise.

For bounds and remarks on h1(OF (1)), we refer the reader to e.g. [7, Lemma 3.7, Example
3.10] and to [33, pp. 144-145].

Definition 2.11 Let �1 ⊂ S be a unisecant curve of S of degree m such that (S, �1) is
associated to a sequence like (2.7). Then, �1 is said to be special, if h1(C, L) > 0, and
linearly normally embedded, if H0(F) � H0(L ⊕ Oa).
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3 Hilbert schemes

Let S be a linearly normal, non-special scroll of degree d and genus g. When g = 0, S is
rational and its properties are well-known (see e.g. [20]). Thus, from now on, we shall focus
on the case g ≥ 1. From (2.9), one has that S ⊂ P

R where R = d − 2g + 1 and d ≥ 2g + 2,
because of the condition R ≥ 3 in Assumptions 2.1. If, in addition, we assume that S is
smooth, then d ≥ 2g + 3 + k, where k = min{1, g − 1} (cf. e.g. [6, Remark 4.20]). In this
situation, one has the following result essentially contained in [2] (cf. also [6, Theorem 1.2]
and [7, Theorem 5.4]).

Theorem 3.1 Let g ≥ 0 be an integer and let k = min{1, g − 1}. If d ≥ 2g + 3 + k,
there exists a unique, irreducible component Hd,g of the Hilbert scheme of scrolls of degree
d, sectional genus g in P

R such that the general point [S] ∈ Hd,g represents a smooth,
non-special and linearly normal scroll S. Furthermore,

(i) Hd,g is generically reduced;
(ii) dim(Hd,g) = 7(g − 1)+ (d − 2g + 2)2 = 7(g − 1)+ (R + 1)2;

(iii) Hd,g dominates the moduli space Mg of smooth curves of genus g.

If, moreover g ≥ 1, let (F,C) be a pair which determines S, where [C] ∈ Mg is general.
If UC (d) denotes the moduli space of semistable, degree d, rank-two vector bundles on C,
then [F] ∈ UC (d) is a general point. �

We recall a construction of some reducible surfaces corresponding to points in Hd,g . This
is one of the key ingredients of the degeneration arguments used in [7], which will also be
used in this paper. The presence of points in Hd,g corresponding to reducible surfaces was
already pointed out in [2]. However the reducible surfaces we need in this paper are different.

Construction 3.2 (see [7, Construction 5.11]) Let g ≥ 1. Then Hd,g contains points [Y ]
such that Y is a reduced, connected, reducible surface, with global normal crossings, of the
form

Y := W ∪ Q1 ∪ · · · ∪ Qg, (3.3)

where W is a rational normal scroll, corresponding to a general point of Hd−2g,0, each Q j

is a smooth quadric, such that Q j ∩ Qk = ∅, if 1 ≤ j �= k ≤ g, and W ∩ Q j = l1, j ∪ l2, j ,
where li, j are general rulings of W , for 1 ≤ i ≤ 2, 1 ≤ j ≤ g, and where the intersections
are transverse. Furthermore, for any such Y , one has that h1(Y,NY/PR ) = 0; in particular,
[Y ] is a smooth point of Hd,g.

We finish this section with the following definition and result.

Definition 3.4 (see [14, Definition 6.1]) Let C be a smooth, projective curve of genus g ≥ 0.
Let F = P(F) be a geometrically ruled surface over C and let d = deg(F). For any positive
integer m, we denote by

Div1,m
F (3.5)

the Hilbert scheme of unisecant curves of F , which are of degree m with respect to OF (1);
it has a natural structure as a Quot-scheme (cf. [22]), whose expected dimension is

dm := max{−1, 2m − d − g + 1}; (3.6)

therefore dim(Div1,m
F ) ≥ dm .
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In [7], we proved

Theorem 3.7 (see [7, Theorem 6.9]) Let g, d,Hd,g be as in Theorem 3.1. If [S] ∈ Hd,g is
a general point, then S is a general ruled surface, namely, for any m ≥ 1:

(i) dim(Div1,m
S ) = dm, for any m ≥ 1;

(ii) Div1,m
S is smooth, for any m such that dm ≥ 0;

(iii) Div1,m
S is irreducible, for any m such that dm > 0. �

4 Brill–Noether theory

4.1 Preliminaries

Let S ⊂ P
R be a smooth, non degenerate scroll of degree d and genus g. Let (F,C) be a pair

determining S. Let � be any unisecant curve of S of degree m, corresponding to the exact
sequence

0 → N → F → L ⊕ Oa → 0, (4.1)

where L and N are line bundles and a ∈ Diva(C) such that m = deg(L)+ a. Set

n := deg(N ) = d − m. (4.2)

In this section we will study the subschemes of Pic(C) parametrizing the invertible sub-
sheaves N ⊂ F as in (4.1).

Definition 4.3 Let C be a smooth, projective curve of genus g ≥ 0 and let F be any rank-two
vector bundle on C . The Segre invariant of F is defined as:

s(F) := deg(F)− 2(Max {deg(N )}),
where the maximum is taken among all the invertible subsheaves N of F (cf. e.g. [24]). We
denote by M(F) the set of all invertible subsheaves of F of maximal degree. Notice that
M(F) has a natural structure of Quot-scheme (cf. e.g. [31]).

In other words, s(F) is the minimum of the self-intersections of sections of F := P(F)

(cf. Formula (2.5) and see e.g. [24]) and therefore, s(F) = s(F ⊗ L), where L is any line
bundle. Similarly, M(F) is isomorphic to M(F ⊗ L). Note that the vector bundle F is stable
(resp., semi-stable) if and only if s(F) ≥ 1 (resp., s(F) ≥ 0). In the following proposition
we recall a result by Nagata, cf. [28].

Proposition 4.4 Let C be a smooth, projective curve of genus g ≥ 0 and let F be any
rank-two vector bundle on C. One has:

s(F) ≤ g. (4.5)

Proof Let d = deg(F). Let � be a section of F = P(F), such that �2 = s(F). It corresponds
to an exact sequence of type (4.1), with a = 0. Let m = deg(L), so that �2 = 2m − d
(cf. Formula (2.6)). Consider Div1,m

F . By the assumption �2 = s(F), then all the curves in

Div1,m
F are sections. Therefore, dim(Div1,m

F ) ≤ 1. On the other hand, by (3.6), dim(Div1,m
F ) ≥

dm = 2m − d − g + 1 = �2 − g + 1. Hence, (4.5) follows. �
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The proof of Proposition 4.4 shows that invertible subsheaves N of F with maximal degree
n correspond to sections in Div1,m

F , with 0 ≤ dm ≤ 1.

Lemma 4.6 Let C be a curve of genus g ≥ 1 with general moduli and let [F] ∈ UC (d) be
a general point. Then, the line bundles in M(F) have degree

n :=
⌊

d − g + 1

2

⌋
. (4.7)

Proof This is proved in [24, Prop. 3.1]. Here we give an alternative proof, which directly
follows from what discussed up to now.

From what is recalled above on M(F), by tensoring F with a sufficiently large multiple
of an ample line bundle we can assume that the scroll S corresponding to the pair (F,C)
is a general point in Hd,g as in Theorem 3.1. The assertion follows from Theorem 3.7 and
from (2.4). �

Let n be any integer such that

n ≤ n. (4.8)

For any such n, one can consider the set

Mn(F) := {N ⊂ F | N invertible subsheaf of F, deg(N ) = n}. (4.9)

With this notation, Mn(F) = M(F) as in Definition 4.3 (cf. also [31]). As for the maximal
case, any Mn(F) has a natural structure of Quot-scheme.

For any [N ] ∈ Mn(F), one can define sN (F) := deg(F) − 2 deg(N ); observe that, as
for the Segre invariant, one has sN⊗L (F ⊗ L) = sN (F), for any L ∈ Pic(C). The proof
of Lemma 4.6 shows that, in order to study the schemes Mn(F), for C with general moduli
and [F] ∈ UC (d) general, we may assume that the pair (F,C) determines a general point in
Hd,g as in Theorem 3.1. Then, one has the morphism

ψm,n : Div1,m
S → Mn(F), (4.10)

with m = d − n as in (4.2), defined by

ψm,n([�]) = [N ],
where � corresponds to L ⊕ Oa on C fitting in (4.1). The morphism ψm,n is bijective; in
fact, given N ↪→ F one has an exact sequence of type (4.1), which uniquely determines the
corresponding unisecant curve �. This defines the inverse ψ−1

m,n . In particular,

dim(Div1,m
S ) = dim(Mn(F)).

Proposition 4.11 Let g ≥ 1 and d be integers as in Theorem 3.1. Let n ≤ n and m = d − n
be integers. Let [S] ∈ Hd,g be a general point. Then

ψm,n : Div1,m
S → Mn(F)

is an isomorphism.

Proof Since Mn(F) is a Quot-scheme, it is smooth at those points [N ] ∈ Mn(F) such that
Ext1(N ,F/N ) = (0). From (4.1), Ext1(N ,F/N ) ∼= H1((L ⊕ Oa)⊗ N∨) ∼= H1(L ⊗ N∨).
Let [�1] ∈ Div1,m

S be the unisecant curve as in (4.1). �1 is of the form

�1 = � ∪ l1 ∪ · · · ∪ la, a = deg(a),

123



128 Geom Dedicata (2009) 139:121–138

where [�] ∈ Div1,m−a
S is a section and the li ’s are lines of the ruling. From the inclusion of

schemes � ⊂ �1, we get

L ⊕ Oa � L . (4.12)

Therefore, the section � corresponds to a sequence

0 → N ′ → F → L → 0,

where N ′ is a line bundle on C of degree n′ = n + a. Moreover, from (4.12), it follows that

N ↪→ N ′. (4.13)

Since H1(L ⊗ N∨) ∼= H0(ωC ⊗ L∨ ⊗ N )∨, by (4.13) we have

H0(ωC ⊗ L∨ ⊗ N ) ↪→ H0(ωC ⊗ L∨ ⊗ N ′). (4.14)

From (2.5),

L ⊗ (N ′)∨ ∼= N�/S

and h1(N�/S) = 0, for any [�] ∈ Div1,m−a
S (cf. Theorem 3.7). This implies that H1(L ⊗

N∨) = (0) so Mn(F) is smooth. Since ψm,n is bijective, it is an isomorphism (cf. [23,
Exercise I, 3.3]). �

As an immediate consequence of Proposition 4.11 and of the proof of Lemma 4.6, we
have the following:

Corollary 4.15 Let C be a curve of genus g ≥ 1 with general moduli and [F] ∈ UC (d) be
a general point. Let n ≤ n and m = d − n be integers. Then Mn(F) is smooth, of dimension
dm and it is irreducible when dm > 0.

The formula dim(Mn(F)) = dm is a special case of [32, Theorem 0.2].
We have also the following result (cf. [26], [24, Corollary 3.2] and [31, Proposition 1.4,

Theorem 3.1, Example 3.2]).

Corollary 4.16 Let C be a smooth, projective curve of genus g ≥ 1 and let F be a rank-two
vector bundle of degree d on C. One has:

(a) if s(F) = g, then dim(M(F)) = 1, d − g is even and n = d−g
2 .

(b) if C has general moduli, [F] ∈ UC (d) general and s(F) ≤ g−1, then dim(M(F)) = 0,
s(F) = g − 1, d − g is odd and n = d−g+1

2 .

Proof As usual, we may assume that (F,C) corresponds to a point in Hd,g . Let m := d −n.

(a) One has 1 ≥ dim(M(F)) = dim(Div1,m
F ) ≥ dm = 1 (cf. the proof of Proposition 4.4). The

assertion follows. (b) By the generality assumptions, one has dim(M(F)) = dim(Div1,m
F ) ≥

dm = 0. The assertion follows. �
The following corollary proves a particular case of [31, Conjecture 2.8].

Corollary 4.17 Let C be any smooth, projective curve of genus g ≥ 1. Let d be an integer
such that d − g is even. Let [F] ∈ UC (d) be general. Then M(F) is a connected curve.
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Proof By Corollary 4.15, M(F) is a smooth and irreducible curve if C has general moduli.
On the other hand, since we are in in case (a) of Corollary 4.16, then M(F) is in any case
a curve. Now, [31, Theorem 3.1] implies that the numerical equivalence class of M(F) is
independent of C . Therefore, M(F), as a limit of a smooth, irreducible curve, is connected.

�
Remark 4.18 Note that, in case (b) of Corollary 4.16, Maruyama proves more, i.e. he assumes
C to be any curve, d any positive integer and [F] ∈ UC (d) general. Furthermore, in this case,
M(F) consists of 2g distinct elements (cf. [36, Theorem 16], [24, Corollary 3.2] and [31,
Proposition 1.4, Theorem 3.1, Example 3.2]; see also Proposition 4.11 and [7, Theorem
7.1.1]). Thus, when d − g is odd, one has a rational map

λ : UC (d) ��� Sym2g
(

Pic
d−g+1

2 (C)
)
.

For g = 1, λ is everywhere defined and it is an isomorphism. This is proved in [36] and the
bijectivity is proved implicitly in [3] (cf. also [7, Remark 5.5]).

As soon as g ≥ 2, dim(UC (d)) < dim
(

Sym2g
(Pic

d−g+1
2 )

)
. Natural questions are:

• is λ injective?
• is dλ injective where λ is defined?

Affirmative answers would give (global and infinitesimal) Torelli type theorems.
There are several remarks, pointed out to us by the referee, which are related to the above

questions. When g = 2, the fact that λ is generically injective follows from results in [29].
In fact, suppose F has four non-isomorphic maximal, invertible subsheaves Ni , 1 ≤ i ≤ 4.
Then F can be written as an extension 0 → N1 → F → N2(p2) → 0, for some p2 ∈ C ,
and is determined by N1, N2 and p2. The bundles N1 and N2 do not determine F, but using
similar expressions for F with quotients N3(p3) and N4(p4), one can see that the set of four
bundles does determine F.

On the other hand, for any g, if one restricts to bundles of a fixed determinant, the generic
injectivity of λ is proved in [8].

4.2 The Brill–Noether loci

As in [31, Sect. 1], for any n ≤ n one can consider the natural morphism

πn : Mn(F) → Picn(C) (4.19)

sending any invertible subsheaf N ⊂ F of degree n to [N ] ∈ Picn(C). We shall denote by

Wn(F) := I m(πn) ⊆ Picn(C) (4.20)

(cf. [15, Theorem 3], [16] and [31], where Wn(F) is denoted by W (F)). The map πn can be
viewed as an analogue of the classical Abel–Jacobi map and Mn(F) has to be viewed as an
analogue of the symmetric product of the curve C .

Lemma 4.21 For any [N ] ∈ Wn(F),

π−1
n ([N ]) ∼= P(H0(F ⊗ N∨)).

In particular, πn has connected fibres.

123



130 Geom Dedicata (2009) 139:121–138

Proof This follows from the definition of Wn(F) (cf. [31, p. 11], for n = n). Indeed, [N ] ∈
Wn(F) iff [N ] ∈ Picn(C) is an invertible subsheaf of F, equivalently, iff there exists a non-
zero global section in H0(F ⊗ N∨). �
Remark 4.22 Recalling (4.10), we have the commutative diagram

Div1,m
S

ψm,n

�m,n

Mn(F)

πn

Wn(F)

(4.23)

For any [N ] ∈ Wn(F) and [�N ] = �−1
m,n(N ), we have

P(H0(F ⊗ N∨)) ∼= |OS(�N )|, (4.24)

i.e., the fibres of πn can be identified with linear systems of unisecant curves of degree
m = d − n on S.

The above setting suggests the definition of Brill–Noether type loci in Wn(F). One pro-
ceeds as follows. For any integer p ≥ 0, one defines the Brill–Noether locus

W p
n (F) := {[N ] ∈ Picn(C) | h0(F ⊗ N∨) ≥ p + 1}. (4.25)

Since [F] ∈ UC (d) is general, this is a degeneracy-locus of a suitable vector bundle map on
Picn(C) and, as such, has a natural scheme structure (cf. the construction in [31, pp. 11–12], for
the case n = n, which extends to any n ≤ n). In particular, for any n ≤ n,Wn(F) = W 0

n (F)

and there is a filtration

∅ = W k+1
n (F) ⊂ W k

n (F) ⊆ W k−1
n (F) ⊆ · · · ⊆ W 2

n (F) ⊆ W 1
n (F) ⊆ W 0

n (F) = Wn(F),

(4.26)

for some k ≥ 0 (cf. [16]). Note that, for any p ≥ 0, W p+1
n (F) is contained in the singular

locus of W p
n (F). Recalling Remark 4.22, we see that the pull-back via �m,n of W p

n (F) is

Div1,m
S (p) := {[�] ∈ Div1,m

S | dim(|OS(�)|) ≥ p}, (4.27)

which is a subscheme of Div1,m
S (cf. [15, p. 68]). Via the isomorphism ψm,n , the scheme

Div1,m
S (p) can be identified with

M p
n (F) := {N ⊂ F | deg(N ) = n and h0(F ⊗ N∨) ≥ p + 1}, (4.28)

which is the subscheme of Mn(F) pull-back of W p
n (F) via πn .

We recall the following proposition from [15, Theorems 2, 3], [16] (see also [31, Lemma
2.2], for the case n = n):

Proposition 4.29 Let dm be as in (3.6). For any integer p ≥ 0, let

τp(F) := max{−1, g − (p + 1)(p + g − dm)}. (4.30)

If W p
n (F) �= ∅, then

dim(W p
n (F)) ≥ min {g, τp(F)}, (4.31)

where the right-hand-side is the expected dimension of W p
n (F). In particular, with d as in

Theorem 3.1, one has:
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(i) if 0 ≤ τp(F) < g, then

dim(Div1,m
S (p)) ≥ τp(F)+ p =: expdim(Div1,m

S (p)),

whereas,
(ii) if τp(F) = g, then for any p0 ≤ p, one has

W p0
n (F) = Picn(C) and Div1,m

S (p0) = Div1,m
S ;

furthermore, the general fibre of �m,n has dimension dm − g = 2m − d − 2g + 1.

If, moreover, the equality in (4.31) holds with 0 ≤ τp(F) < g, then the class in Picn(C)
of W p

n (F) is

[W p
n (F)] ≡

( p∏
i=0

i !
(p + g + i − dm)!

)
· 2g−τp(F) · θ g−τp(F),

where ≡ denotes the numerical equivalence of cycles and θ is the class of the theta divisor
in Picn(C). �

Note that, since m = d − n, one has

τ0(F) = dm, (4.32)

which agrees with the notion of expected dimension for Div1,m
S (cf. Formula (3.6)). Moreover,

in case (ii), for any [�] ∈ Div1,m
S one has

dim(|OS(�)|) ≥ 2m − d − 2g + 1,

which agrees with Riemann–Roch theorem. Equality holds if Div1,m
S has the expected dimen-

sion and [�] ∈ Div1,m
S is general. For the proof of Proposition 4.29, see [16]. In [15, Theorems

2, 3], one finds the expression of the class of [Div1,m
S (p)] in Div1,m

S , for S a general ruled
surface (cf. Theorem 3.7). In order to study the morphism

πn : Mn(F) → Wn(F) (4.33)

and the schemes W p
n (F), for p ≥ 0, a basic ingredient is the following contraction map

µN : H0(F ⊗ N∨)⊗ H0(F∨ ⊗ ωC ⊗ N ) → H0(ωC ) (4.34)

defined for any [N ] ∈ Mn(F). In accordance with the classical case of line bundles, µN is
called the Petri map of the pair (F, N ) (cf. e.g. [31]). As in [1, Ch. IV, Sect. 1], one has (cf.
[31, Prop. 2.4], for the maximal case n = n):

Lemma 4.35 For [N ] ∈ W p
n (F)\W p+1

n (F),

T[N ](W p
n (F)) ∼= I m(µN )

⊥.

Therefore, if not empty, W p
n (F) is smooth and of the expected dimension at [N ] if and only

if the Petri map µN is injective.

Therefore if the Petri mapµN is injective for any [N ] ∈ W p
n (F)\W p+1

n (F), then the singular
locus of W p

n (F) coincides with W p+1
n (F).

The maximal case n = n has been studied in [31]. We recall the results.
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Proposition 4.36 Let g ≥ 1 be an integer and let C be any smooth, projective curve of genus
g. For any integer d, let [F] ∈ UC (d) be general. Then:

(i) the map πn is an isomorphism; in particular, Wn(F) is smooth and strictly contained
in Picn(C).

(ii) W p
n (F) = ∅, for any p ≥ 1.

(iii) If d is as in Theorem 3.1 and if

m := d − n =
⌊

d + g

2

⌋
, (4.37)

then for the general [S] ∈ Hd,g and for any [�] ∈ Div1,m
S , one has dim(|OS(�)|) = 0.

Parts (i) and (ii) are contained in [31]. Part (iii) is an immediate consequence of Remark 4.22.

Remark 4.38 Wn(F) is a divisor in Picn(C) when g = 2 and d is even (cf. [31, Remark
1.6]): up to twists, d = 0 so n = −1; in this case, Wn(F) can be identified with the divisor
DF = {M ∈ Pic1(C) | h0(F ⊗ M) = 1} ∈ |2|, where  denotes the theta divisor in
Pic1(C).

For n < n the situation is more complicated. We will prove the following:

Proposition 4.39 Let C be a smooth, projective curve of genus g ≥ 1 with general moduli
and let d be an integer. Let [F] ∈ UC (d) be general and let τ0(F) be as in (4.32). Let n < n
be any integer. (a) If τ0(F) ≥ g, then for general [N ] ∈ Mn(F), h1(F ⊗ N∨) = 0 and we
have the filtration

∅ ⊂ · · · ⊆ W dm−g+1
n (F) ⊂ W dm−g

n (F) = · · · = W 1
n (F) = Wn(F) = Picn(C). (4.40)

(b) If 0 ≤ τ0(F) < g, then W 0
n (F) is not empty, strictly contained in Picn(C) and also the

inclusion W 1
n (F) ⊂ Wn(F) is strict. Moreover:

(i) W 0
n (F) is smooth, of dimension τ0(F), at any [N ] ∈ W 0

n (F)\W 1
n (F).

(ii) πn| : Mn(F)\M1
n (F) → W 0

n (F)\W 1
n (F) is an isomorphism.

(iii) W 0
n (F) is irreducible when τ0(F) > 0.

Proof (a) As usual, we may assume that the pair (F,C) determines a general point in Hd,g

as in Theorem 3.1. Consider the exact sequence

0 → OC → F ⊗ N∨ → (L ⊕ Oa)⊗ N∨ → 0, (4.41)

obtained from (4.1). One has h1((L ⊕ Oa)⊗ N∨) = 0 (see the proof of Proposition 4.11).
Thus

0 → H0(OC ) → H0(F ⊗ N∨) → H0(L ⊗ N∨) ∂→ H1(OC ) → H1(F ⊗ N∨) → 0,

(4.42)

where the coboundary map ∂ can be identified with the differential of the morphism πn :
Mn(F) → Picn(C). Since τ0(F) ≥ g, the morphism πn is surjective (cf. Proposition 4.29
- (i i)). Hence ∂ is surjective if [N ] is general and therefore h1(F ⊗ N∨) = 0. (b) Since
τ0(F) = dm , as in (4.32), then from Theorem 3.7 dim(Div1,m

S ) = dm ≥ 0. By (4.10),
also Mn(F) �= ∅, so W 0

n (F) is not empty. Since dim(Mn(F)) = dm , by (4.31), we have
dim(W 0

n (F)) = τ0(F) = dm (cf. also [32, Theorem 0.3]). Since τ0(F) < g, then W 0
n (F)

is strictly contained in Picn(C). From Proposition 4.11 and Lemma 4.21, it follows that
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πn : Mn(F) → Wn(F) is birational. Since Mn(F) is smooth (see Theorem 3.7 and Proposition
4.11), then the scheme Wn(F) is generically smooth. This proves that the inclusion W 1

n (F) ⊂
Wn(F) is strict. Part (i) follows by the injectivity of the Petri mapµN . In fact, h0(F⊗N∨) = 1,
for any [N ] ∈ Wn(F)\W 1

n (F). Moreover, since [F] ∈ UC (d) is general, then F is very-stable
(cf. [25] and [31, p. 12]), which means that µN is injective on each factor of the tensor
product.

Part (ii) follows since πn | is a bijective morphism between smooth varieties hence it is an
isomorphism.

Part (iii) follows from Theorem 3.7 and Proposition 4.11. �
The above argument shows the following:

Corollary 4.43 Let d and g be positive integers as in Theorem 3.1. Let C be a smooth,
projective curve of genus g with general moduli. Let [F] ∈ UC (d) be general. Let [S] ∈ Hd,g

be determined by (F,C). Let m > m be any integer. Then:
(a) If dm ≥ g and [�] ∈ Div1,m

S is general, then dim(|OS(�)|) = τ0(F)− g = dm − g.

(b) If 0 ≤ dm < g, then for any unisecant curve [�] ∈ Div1,m
S \Div1,m

S (1) one has
dim(|OS(�)|) = 0.

In the circle of ideas presented in this section, a natural and interesting problem would be
to prove the analogue of Petri’s conjecture:

Conjecture 4.44 Let C be a smooth, projective curve of genus g with general moduli. Let
[F] ∈ UC (d) be general. Let [N ] ∈ Mn(F) be any point. Then, the Petri mapµN is injective.

As remarked above, the validity of this conjecture would imply:

(i) W p
n (F) has the expected dimension, i.e. min{g, τp(F)} as in (4.31);

(ii) W p
n (F) is smooth off W p+1

n (F).

Statement (i) above is an analogue of the Brill–Noether Theorem. In the next section, we
will prove (i) for p = 1 under suitable numerical assumptions.

5 Brill–Noether’s theorem for W 1
n(F)

In this section we will study W 1
n (F) and prove that it has the expected dimension e := e1

n(d),
which is:

(i) −1, when n > 2d−3g
4 ,

(ii) 2d − 4n − 3g < g, when d−2g
2 < n ≤ 2d−3g

4 ,

(iii) g, when n ≤ d−2g
2 ,

(cf. (4.30), (4.31)). Case (iii) is contained in Proposition 4.39-(a). Therefore, it suffices to
consider n > d−2g

2 .

Theorem 5.1 Let C be a smooth, projective curve of genus g ≥ 1 with general moduli and
d be an integer. Let [F] ∈ UC (d) be general. Let n >

d−2g
2 be any integer. Then, each

irreducible component of W 1
n (F) has the expected dimension.

Proof As usual, we can assume that the pair (F,C) corresponds to a general point [S] ∈
Hd,g . In order to prove the theorem, it suffices to show that, for m = d − n, one has
dim(Div1,m

S (1)) = e + 1, if e ≥ 0, whereas Div1,m
S (1) is empty, if e = −1(cf. (4.27)).
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We will prove this by degeneration, studying the limit of Div1,m
S (1) when S degenerates to

a surface Y = W ∪ Q1 ∪ · · · ∪ Qg , where W is a general rational normal scroll of degree
d − 2g and Q1, . . . , Qg are general quadrics as in Construction 3.2, from which we keep the
notation.

In order to study the limit in question, let P be a linear pencil of curves in Div1,m
S and

let P0 be the flat limit of P on Y . Then P0 consists of a collection of linear pencils L,
L1, . . . ,Lg of unisecant curves on W , Q1, . . . , Qg . By the genericity of Q1, . . . , Qg none
of these pencils contain the double lines li, j , where 1 ≤ i ≤ 2, 1 ≤ j ≤ g, in their fixed
locus. Moreover, they verify the obvious matching properties along them. Let µ, µ1, . . . , µg

be the degrees of the curves in L, L1, . . . ,Lg , respectively. We will call such a P0 a limit
unisecant pencil of type (µ,µ1, . . . , µg). One has m = µ+ ∑g

i=1 µi . We may assume that
µ1 = µ2 = . . . = µh = 1, whereas µh+1, . . . , µg ≥ 2. Note that h ≥ 1; otherwise we
would have m ≥ µ+ 2g ≥ d−2g

2 + 2g = d
2 + g (cf. (4.37) applied to µ and W ). This reads

d ≥ 2n + 2g which implies τ1(F) ≥ g hence e = g, a case which we are not considering.
Recall that W ∩ Q j consists of the pair of lines l1, j , l2, j , 1 ≤ j ≤ g. The Segre embedding
� j of l1, j × l2, j sits in a P

3, whose dual we denote by � j . Let G be the grassmannian of

lines in Div1,µ
W . One has a natural rational map

r : G ��� �1 × · · · ×�h,

which is defined as follows. Let L be a general pencil in Div1,µ
W ; L cuts on the divisor l1, j +l2, j

a linear series of dimension one and degree two which can be interpreted as a curve on � j ,
cut out by a plane corresponding to a point � j ∈ � j . The map r sends L to the h-tuple
(�1, . . . , �h).

Claim 5.2 If e = −1, then r is not dominant.

Proof of Claim 5.2 One has m = µ+h+∑g
j=h+1 µ j ≥ µ+2g−h. The assumption e = −1

is equivalent to m <
2d+3g

4 ; therefore one has 2d+3g
4 > µ+2g − h, i.e. 4µ+5g −2d < 4h,

which implies dim(G) = 4µ + 4g − 2d < 3h = dim(�1 × · · · × �h). This proves the
assertion. �

This claim settles the case e = −1. In fact it shows that, by the genericity of the quadrics
Q1, . . . , Qh , the pencils L1, . . . ,Lh cannot match any pencil L on W to give a limit unisecant
pencil P0. Thus, from now on, we assume e ≥ 0 and we study the possible components of
the flat limit of Div1,m

S (1) when S degenerates to Y . Since Div1,m
S (1) is not empty in this

case, its flat limit is not empty. Let P0 be a limit unisecant pencil of type (µ,µ1, . . . , µg) as
above. By the genericity of the quadrics Q1, . . . , Qh , the map r has to be dominant. Let �
be the general fibre of r . One has

dim(�) = dim(G)− 3h = 4m − 2d − 3g −
g∑

i=h+1

(4µi − 7). (5.3)

Now we are ready to compute the dimension of a component of limit unisecant pencils. Let

G j be the grassmannian of lines of Div
1,µ j
Q j

, for j = h +1, . . . , g. We have two rational maps

p : � ��� �h+1 × · · · ×�g, q : Gh+1 × · · · × Gg ��� �h+1 × · · · ×�g

defined as follows. A general point of � is a pencil L in Div1,µ
W . It cuts a linear series of

degree 2 and dimension 1 on the divisor l1, j + l2, j , j = h + 1, . . . , g, which, as usual, gives
rise to a point � j ∈ � j . The map p sends L to (�h+1, . . . , �g). The definition of the map q
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is similar (see the proof of Claim 5.4 below). A component Z of limit unisecant pencils of
type (µ,µ1, . . . , µg) can be interpreted as an irreducible component of the fibred product of
p and q .

Claim 5.4 All fibres of the map q have dimension
∑g

i=h+1(4µi − 7).

Proof Fix a j = h + 1, . . . , g. We have a map q j : G j ��� � j and q = qh+1 × · · · × qg . It
suffices to prove that all fibres of q j have dimension 4µ j −7. Sinceµ j > 1, the linear system
Div1,µ j Q j of dimension 2µ j − 1 cuts out a complete linear series� j of dimension 3 on the
divisor l1, j + l2, j . So we have a surjective projection map s j : Div1,µ j Q j ��� � j , with centre
a projective space of dimension 2µ j − 5. This induces a map σ j : G j ��� G j , where G j is
the grassmannian of lines of � j . All fibres of σ j are grassmannians of dimension 4µ j − 8.
We have also a map τ j : G j ��� � j sending, as usual, a pencil in � j to a point � j ∈ � j .
Every fibre of τ j has dimension 1. Indeed, a point � j ∈ � j can be interpreted as a projective
transformation ω j : l1, j → l2, j , and this in turn determines the quadric � j described by all
lines joining corresponding points on l1, j and l2, j . The pairs of such corresponding points
are cut out by all pencils of planes based on lines of the ruling of � j to which l1, j and l2, j

belong. Since q j = τ j ◦ σ j , the above considerations imply the assertion. �
Putting together (5.3) and Claim 5.4, one obtains that dim(Z) = 2d − 4n − 3g, which

proves the theorem. �

6 Tensor product of quotient line bundles

In this section we consider the following problem. Let C be a smooth, projective curve with
general moduli and d be an integer. Let [F] ∈ UC (d) be general. Assume d − g odd, and
let n = d−g+1

2 as in (4.7). Let [Ni ] ∈ Mn(F), with Ni �= N j , for 1 ≤ i �= j ≤ 2g , and let
νi denote a divisor class on C such that Ni = OC (νi ). We want to compute the equivalence
class of the divisor

ν :=
2g∑

i=1

νi .

Set Li := det(F) ⊗ N∨
i and let λi be a divisor class such that Li = OC (λi ). Consider

λ := ∑2g

i=1 λi and notice the relation λ+ ν = 2g H , where det(F) = OC (H).

Theorem 6.1 With the above notation, one has:

ν = 2g−2(2H − KC ), if g ≥ 2, and ν = H, if g = 1 (6.2)

and

λ = 2g−2(2H + KC ), if g ≥ 2, and λ = H, if g = 1. (6.3)

As remarked by the referee, the case g = 1 follows from [36] whereas the case g = 2
follows from the description of the 4 invertible subsheaves as in Remark 4.18 and the fact
that OC (p2 + p3 + p4) ∼= ωC ⊗ det(F)⊗ (N∨

1 )
⊗2.

Proof of Theorem 6.1 It suffices to show (6.2).
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Claim 6.4 There exist α, β ∈ Z such that

ν = αKC + βH. (6.5)

We first show that Claim 6.4 implies (6.2). Then, we will prove the claim.
If g = 1, KC is trivial and therefore the first summand in (6.5) does not appear. Moreover,

it is clear that α and β in (6.5) do not depend on H . As usual, we may assume that the pair
(F,C) is associated to a scroll S correpsonding to a general point in Hd,g . Since any Ni is

a maximal invertible subsheaf of F, then each Li corresponds to a section in Div1,m
S , where

m = d − n = d+g−1
2 . Consider the exact sequence

0 → Ni → F → Li → 0, 1 ≤ i ≤ 2g.

Let p ∈ C be a general point. Twist the above sequence by OC (p)

0 → Ni (p) → F(p) → Li (p) → 0, 1 ≤ i ≤ 2g.

Observe that

H ′ := det((F(p)) = H ⊗ OC (2p),

hence deg(F(p)) = d +2 and F(p) corresponds to a general point of UC (d +2). Thus, Ni (p)
is an invertible subsheaf of F(p) of maximal degree, for 1 ≤ i ≤ 2g . Set Ni (p) = OC (ν

′
i )

and ν′ = ∑2g

i=1 ν
′
i . One has

ν′ = ν + 2g p. (6.6)

By Claim 6.4, there exist two integers α′, β ′, independent of H and p, such that

ν′ = α′KC + β ′ H ′.

By comparing the former relation with (6.5) and (6.6), we find

(α − α′)KC + (β − β ′)H + 2(2g−1 − β ′)p = 0.

Since α, α′, β, β ′ ∈ Z do not depend on H and p, we deduce

β = β ′ = 2g−1 and α = −2g−2,

proving (6.2) (in case g = 1, we simply get ν = H ).
We are left to prove Claim 6.4. To do this, we follow a similar argument as in [9]. Let M0

g
be the Zariski open subset of the moduli space Mg , whose points correspond to equivalence
classes of smooth curves of genus g without non-trivial automorphisms. By definition, M0

g is
a fine moduli space, i.e. we have a universal family p : C → M0

g , where C and M0
g are smooth

schemes and p is a smooth morphism. C can be identified with the Zariski open subset M0
g,1

of the moduli space Mg,1 of smooth, pointed, genus g curves, whose points correspond to
equivalence classes of pairs (C, x), with x ∈ C and C a smooth curve of genus g without
non-trivial automorphisms. On M0

g,1 there is again a universal family p1 : C1 → M0
g,1,

where C1 = C ×M0
g

C. The family p1 has a natural regular global section δ whose image
is the diagonal. By means of δ, for any integer n, we have the universal family of Picard
varieties of order n, i.e.

p(n)1 : Pic(n) → M0
g,1

(cf. [9, Sect. 2]). For any closed point [(C, x)] ∈ M0
g,1, its fibre via p(n)1 is isomorphic to

Pic(n)(C). As in [7, Theorem 5.4], let q : Ud → M0
g,1 be the relative moduli stack of degree d ,
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rank-two semistable vector bundles; namely, the fibre of q over [(C, x)] is UC (d). Thus, we
have the following natural surjective map over M0

g,1

Ud
rd→ Pic(d), (6.7)

which is given by the relative determinant; namely

rd((C, x,F)) = (C, x, det(F)),

for any [(C, x)] ∈ M0
g,1 and any [F] ∈ UC (d). Observe that the fibre of rd over any

[(C, x, H)] ∈ M0
g,1 is SUC (H), i.e. the moduli stack of semistable, rank-two vector bundles

on C with fixed determinant H ∈ Picd(C). From [4], we know that any SUC (H) is stably
rational, i.e. SUC (H)× P

k is rational for some k ≥ 0. In particular, it is unirational.
Set a := deg(ν) = 2g−1(d − g + 1). One has an obvious morphism

ϕ : Ud → Pic(a) (6.8)

which maps (C, x,F) to the class of ν. By the unirationality of the fibres of rd , we have a
morphism φ which makes the following diagram commutative

Ud
rd

ϕ

Pic(d)

φ

Pic(a).

(6.9)

At this point, one concludes by imitating the proof of [9, Proposition (5.1)], which can be
repeated almost verbatim.

Acknowledgements The authors thank the referee for his/her remarks and for the references to be added to
the first version of the paper.
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