
BriMon: A Sensor Network System for
Railway Bridge Monitoring

Kameswari Chebrolu∗, Bhaskaran Raman∗, Nilesh Mishra+, Phani Kumar Valiveti†, Raj Kumar‡
∗Indian Institute of Technology, Bombay +University of Southern California

†Cisco Systems ‡Indian Army

Abstract: Railway systems are critical in many regions,
and can consist of several tens of thousands of bridges, be-
ing used over several decades. It is critical to have a sys-
tem to monitor the health of these bridges and report when
and where maintenance operations are needed. This paper
presents BriMon, a wireless sensor network based system for
such monitoring. The design of BriMon is driven by two im-
portant factors: application requirements, and detailed mea-
surement studies of several pieces of the architecture. In com-
parison with prior bridge monitoring systems and sensor net-
work prototypes, our contributions are three-fold. First,we
have designed a novel event detection mechanism that triggers
data collection in response to an oncoming train. Next, Bri-
Mon employs a simple yet effective multi-channel data trans-
fer mechanism to transfer the collected data onto a sink lo-
cated on the moving train. Third, the BriMon architecture is
designed with careful consideration of the interaction between
the multiple requisite functionalities such as time synchro-
nization, event detection, routing, and data transfer. Based
on a prototype implementation, this paper also presents sev-
eral measurement studies to show that our design choices are
indeed quite effective.

1 Introduction
Railway systems are a critical part of many a nation’s

infrastructure. For instance, Indian Railways is one of the
largest enterprises in the world. And railway bridges form
a crucial part of the system. In India, there are about 120,000
such bridges [1] spread over a large geographical area. 57% of
these bridges are over 80 years old and many are in a weak and
distressed condition. It is not uncommon to hear of a major
accident every few years due to collapse of a bridge. An auto-
mated approach to keeping track of bridges’ health to learn of
any maintenance requirements is thus of utmost importance.

In this paper, we present the design ofBriMon, a system
for long-termrailway bri dgemonitoring. Two factors guide
the design of BriMon. (1) Given the huge number of exist-
ing bridges that need to be monitored, it is important that any
solution to the problem should beeasy to deploy. (2) Next,
since technical expertise is both difficult to get and expensive
on field, it is equally important that the deployment require
minimal maintenance.

To facilitate ease of deployment, we choose to build our

system based on battery operatedwirelesssensor nodes. Bri-
Mon consists of several tens to hundreds of such nodes
equipped with accelerometers, spread over the multiple spans
of the bridge. The use ofwireless transceiversand battery
eliminates the hassle of having to lay cable to route data or
power (tapped from the 25 KV overhead high voltage line if
available) to the various sensors that are spread about on the
bridge. Cables and high voltage transformers typically need
special considerations for handling and maintenance: safety,
weather proofing, debugging cable breaks, etc.; the use of
wireless sensor nodes avoids these issues.

We also reject the possibility of using solar panels as a
source of renewable energy. They are not only expensive, they
are also cumbersome to use: some sensors may be placed un-
der the deck of the bridge where there is little sunlight. Fur-
thermore, solar panels are also prone to theft in the mostly
unmanned bridges.

Given the choice of a battery operated wireless nodes for
BriMon, a key goal which drives our design is low energy con-
sumption, so that the maintenance requirements of BriMon
(visits to the bridge to change battery) are kept to a minimum.

A significant challenge which arises in this context is the
following. The nodes need to sleep (turn off radio, sensors,
etc) most of the time to conserve power. But they also need to
be ready for taking accelerometer measurements when there
is a passing train. BriMon employs a novel event detection
mechanism to balance these conflicting requirements.

Our event detection mechanism consists of a beaconing
train and high gain external antennae at designated nodes on
the bridge that can detect the beacons much before (30s or
more) the train approaches the bridge. This large guard in-
terval permits a very low duty cycle periodic sleep-wakeup-
check mechanism at all the nodes. We use a combination of
theoretical modeling and experimentation to design this peri-
odic wakeup mechanism optimally.

On detecting a train, BriMon nodes collect vibration data.
The collected data then has to be transferred to a central lo-
cation. This data will be used for analysis of the bridge’s
current health as well as for tracking the deterioration of
the bridge structure over time. For this, BriMon uses an
approach quite different from other sensor network deploy-
ments [2, 3, 4, 5, 6, 7]. We use the passing trains themselves
for the data transfer. The data transfer mechanism is also acti-
vated through the same event detection mechanism as for data
collection.

A very significant aspect of the mobile data transfer model
is that it allows us to break-up the entire system of sensor
nodes (of the order of few hundred nodes) into multipleinde-
pendentand much smaller networks (6-12 nodes each). This
greatly simplifies protocol design, achieves good scalability
and enhances performance.

In our overall architecture, apart from event detection and
mobile data transfer, two other functionalities play important
support roles: time synchronization and routing. Time syn-
chronization is essential both for duty-cycling as well as in
the analysis of the data (correlating different sensor readings
at a given time). Routing forms the backbone of all commu-
nication between the nodes. These four functionalities areall
inter-dependent and interfacing them involves several design
choices as well as parameter values. We design this with care-
ful consideration of the application requirements as well as
measurement studies.

In comparison with prior work in structural monitoring [6,
7, 8], our contributions are three-fold: (a) a novel event detec-
tion mechanism, (b) a detailed design of mobile data transfer,
and (c) the tight integration of the four required functionali-
ties. While the notion of mobile data transfer itself has been
used in prior work (e.g. ZebraNet [9], DakNet [10]), its in-
tegration with the rest of the bridge monitoring system, and
careful consideration of interaction among various protocol
functionalities, are novel aspects of our work.

To validate our BriMon design, we have prototyped the
various components of the system. In our prototype, we use
the Tmote-sky sensor nodes which have an 8MHz MSP430
processor and the 802.15.4 compliant CC2420 radio, oper-
ating in the 2.4GHz band. Our prototype also extensively
uses external high-gain antennas connected to the motes [11].
Although BriMon design is more or less independent of the
choice of accelerometers, it is worth noting that we use the
MEMS-based ADXL 203 accelerometer in our prototype. Es-
timates based on measurements using our prototype indicate
that the current design of BriMon should be deployable with
maintenance requirement only as infrequent as once in 1.5
years or so (with 4 AA batteries used at each node).

Though our design has focused on railway bridges so far,
we believe that the concepts behind BriMon will find appli-
cability in a variety of similar scenarios such as road bridge
monitoring, air pollution monitoring, etc.

The rest of the paper is organized as follows. The next
section provides the necessary background on bridge moni-
toring and deduces the requirements for system design. Sub-
sequently, Sec. 3 describes the overall BriMon architecture.
Then, Sec. 4, Sec. 5, Sec. 6, and Sec. 7 present the detailed
design of the four main modules of BriMon respectively:
event detection, time synchronization, routing, and mobile
data transfer. Sec. 8 highlights our contributions vis-a-vis
prior work in this domain. We present further points of dis-
cussion in Sec. 9 and conclude in Sec. 10.

2 Background on Bridge Monitoring
In this section, we provide a brief background on bridge

monitoring. The details presented here drive several of ourde-
sign choices in the later sections. This information was gath-
ered through extensive discussion with structural engineers.

General information on bridges: A common design for
bridge construction is to have several spans adjoining one an-
other (most railway bridges in India are constructed this way).
Depending on the construction, span length can be anywhere
from 30m to about 125m. Most bridges have length in the
range of a few hundred metres to a few km.

What & where to measure: Accelerometers are a com-
mon choice for the purposes of monitoring the health of the
bridges [6, 12]. We consider the use of 3-axis accelerometers
which measure the fundamental and higher modal frequencies
along the longitudinal, transverse, and vertical directions of
motion. The placement of the sensors to capture these differ-
ent modes of frequencies as well as relative motion between
them is as shown in Fig. 1.

Figure 1. Spans on a bridge
The data collected by the sensors on each span are corre-

lated since they are measuring the vibration of the same physi-
cal structure. In some instances of bridge design, two adjacent
spans are connected to a common anchorage, in which case
the data across the two spans is correlated. For our data col-
lection, we define the notion of adata-spanto consist of the
set of sensor nodes whose data is correlated. A data-span thus
consists of nodes on one physical span, or in some cases, the
nodes on two physical spans. An important point to note here
is that collection of vibration data across different data-spans
are independent of each other i.e. they are not physically cor-
related. In the rest of the paper, when not qualified, the term
span will refer to a data-span.

When, how long to collect data: When a train is on a
span, it induces what are known asforced vibrations. After
the train passes the bridge, the structure vibrates freely (free
vibrations) with decreasing amplitude till the motion stops.
Structural engineers are mostly interested in the natural and
higher order modes of this free vibration as well as the cor-
responding damping ratio. Also of interest sometimes is the
induced magnitude of the forced vibrations. For both forced
as well as free vibrations, we wish to collect data for a dura-
tion equivalent to about five time periods of oscillation. The
frequency components of interest for these structures are in
the range of about 0.25 Hz to 20 Hz [6, 7, 12]. For 0.25 Hz,
five time periods is equivalent to 20 seconds. The total data
collection duration is thus about 40 seconds (20 seconds each
for forced and free vibrations).

Quantity of data: As mentioned earlier, each node col-
lects accelerometer data in three different axes (x, y, z). The
sampling rate of data collection is determined by the maxi-
mum frequency component of the data we are interested in:
20 Hz. For this, we need to sample at least at 40 Hz. Often
oversampling (at 400 Hz or so) is done and the samples aver-
aged (on sensor node itself before transfer) to eliminate noise

in the samples. But the data that is finally stored/transmitted
would have a much smaller sampling frequency which we set
to 40Hz in our case. Each sample is 12-bits (because of use
of a 12 bit Analog-to-Digital converter). The total data gen-
erated by a node can be estimated as: 3channels× 12bits×
40Hz×40sec= 57.6Kbits. There are an estimated 6 sensor
nodes per span, and a maximum of 12 nodes per data span.
Thus the total data we have per data-span per data collection
cycle is a maximum of 57.6×12= 691.2Kbits.

Time synchronization requirement: Since the data
within a data-span are correlated, we need time synchroniza-
tion across the nodes, to time-align the data. The accuracy of
time synchronization required is determined by the time pe-
riod of oscillation above, which is minimum for the highest
frequency component present in that data i.e. 20 Hz. For this
frequency, the time period is 50ms, so a synchronization ac-
curacy of about 5ms (1/10 of the time period) should be suffi-
cient. Note that this is of much coarser granularity than what
is typically described in several time synchronization proto-
cols (e.g. FTSP [13]).

3 BriMon: Design Overview
With the application details as given above, we now present

the design of BriMon. The various components of our de-
sign are closely inter-related. Given this interaction, wefirst
present an overview of the design in this section, before mov-
ing on to the details in subsequent sections.

The prime goal in BriMon design is to have a system which
requires minimal maintenance. This translates to two impli-
cations. (1) Once installed, the system should be able to run
as long as possible without requiring battery replacements.
(2) The data collected should be made available from remote
bridges to a central data repository where it can be analyzed,
faults detected and isolated.

Important questions in this context are:

• How do we balance the requirement for duty cycling with
the fact that train arrivals are unpredictable?

• How do we transfer the data from the place of collection
to a repository?

• How can we achieve scaling, for potentially long
bridges?

• What are going to be the inter-dependencies among Bri-
Mon’s components, and how do we resolve them?

We answer these questions as follows.
Event detection: We balance the requirements of having

to duty cycle, and being ready when a train arrives, through
our event detection mechanism. We use the fact that signifi-
cant radio range is achievable with the 802.15.4 radios [11],
on using external antennas. An 802.15.4 node on the train
beacons as it arrives, and is detected several tens of seconds
in advance (before the train is on the span) by nodes on the
span. This enables a periodic sleep/wake-up mechanism for
the nodes on the bridge.

Mobile data transfer: In BriMon, we use the passing train
itself for transferring the data collected. The data is thenulti-
mately delivered to a central repository. This could be done,
via say an Internet connection available at the next major train
station. The same event detection used for datacollection is

also used to trigger the datatransferto a moving train. A sub-
tle point to note here is that the data collected in response to a
train is actually conveyed to the central repository via thenext
oncoming train.

Data span as an independent network:One fundamental
design decision we make in BriMon is to treat each data-span
as anindependentnetwork. This is possible primarily due to
the fact that the data from each data-span is independent phys-
ically (different physical structures). This also fits in well with
our mobile data transfer model. The alternative here is to treat
the entire bridge (including all data spans) as a single network.
We rejected this approach since there is no specific reason for
the data-spans to know about one another or inter-operate in
any way. Having a smaller network simplifies protocol design,
and enables much better performance.

A designated node on each spangathersall the data col-
lected by the different sensor nodes on that span. It then trans-
fers this data onto the moving train. We make different spans
operate on different independent channels, so that the transfer
on each span can proceed simultaneously and independently.

Inter-dependence challenges:The event detection as well
as data transfer bank on two underlying mechanisms: time
synchronization and routing. So there are four main function-
alities in BriMon: (a) event detection coupled with periodic
sleep/wake-up, (b) mobile data transfer, (c) time synchroniza-
tion, and (d) routing. In this context, several non-obvious
questions arise:

• What protocols should we use for time synchronization
and routing?

• More importantly, how should these two interact with
any duty cycling?

– Should routing be run for each wake-up period,
each time a node wakes up? Or should it be run
periodically, across several wake-up periods? If the
latter, can we be sure that routes formed during the
prior wake-up period will still be valid?

– Similarly, when exactly should time synchroniza-
tion be run? How do we balance between synchro-
nization overhead and having a bound on the syn-
chronization error?

• Also important is the interaction between routing and
time synchronization. Which functionality should build
on the other? Can time synchronization assume routing?
Or should routing assume time synchronization?

To our knowledge, such interfacing challenges have not
been addressed in a significant way in prior sensor network
deployments [2, 3, 4, 5, 6, 7, 9]. These questions are signifi-
cant even for the small networks corresponding to each data-
span, and we answer them as follows.

Approach to time synchronization: We require time syn-
chronization for two things: for the periodic sleep/wake-up
mechanism, and for time-aligning the sensor data from differ-
ent nodes. We adopt the design approach ofnot seeking to
estimate the exact clock drifts, as this normally adds consid-
erable complexity to the time synchronization protocol. We
justify this as follows.

We shall show in Sec. 4.1 that our periodic sleep/wake-up

has a period of the order of 30-60s, with a wake-up duration of
about 200ms. And we show that we can have a light-weight
time synchronization mechanism run during every wake-up
duration, at no extra cost. In the time-period between two
wake-up durations, of about a minute, the worst case clock
drift can be estimated. The work in [14] reported a worst-
case drift of about 20ppm for the same platform as ours. This
means a maximum drift of 1.2ms over 60s. This is negligible
as compared to our wake-up duration, and hence exact drift
estimation is unnecessary.

With respect to our application too, the time synchroniza-
tion requirement is not that stringent. Recall from Sec. 2 that
we require only about 5ms or less accuracy in synchroniza-
tion. So this too does not require any drift estimation.

Our approach to time synchronization is simple and effi-
cient, and is in contrast with protocols in the literature such
as FTSP [13]. FTSP seeks to estimate the clock drift, and
synchronize clocks to micro-second granularity. Due to this,
it necessarily takes a long time (of the order of a few min-
utes [13]). Furthermore, it is not clear how FTSP could be
adapted to work in a periodic sleep/wake-up setting such as
ours.

Approach to routing: The first significant question which
arises here is what is the expected stability of the routing tree;
that is how often this tree changes. This in turn depends on
link stability. For this, we refer to an earlier study in [11],
where the authors show the following results, on the same
802.15.4 radios as used in our work. (1) When we operate
links above a certain threshold RSSI (received signal strength
indicator), they are very stable, even across days. (2) Be-
low the threshold, the link performance is unpredictable over
small as well as large time scales (few sec to few hours).

This threshold depends on the expected RSSI variability,
which in turn depends on the environment. In practice, in
mostly line-of-sight (LOS) environments such as ours1, oper-
ating with a RSSI variability margin of about 10dB is safe.
So, given that the sensitivity of the 802.15.4 receivers is about
−90dBm, having an RSSI threshold of about−80dBmis safe.

With such a threshold based operation, in [11], it is ob-
served that link ranges of a few hundred metres are easily
achievable with off-the-shelf external antennas. The measure-
ments we later present in this paper also corroborate this. Note
that using external antennas is not an issue in BriMon since we
are not particularly concerned about the form-factor of each
node.

Now, recall that a physical span length is about 125m in
the worst case, and a data-span length can thus be about 250m
maximum. Given a link range of 100m or so, this implies
that we have a network of at most about 3-4 hops. In such
operation, the links will be quite stable over long durations of
time, with close to 0% packet error rate.

This then answers most of our questions with respect to
routing. The protocol used can be simple, only needing to
deal with occasional node failures. We need to run the rout-
ing protocol only occasionally. And time synchronization can
effectively assume the presence of a routing tree, which has

1Within a span, it is reasonable to expect several pairs of nodes
with LOS between them.

remained stable since the last time the routing algorithm was
run.

With this high level description, we now move on to the
detailed design of each of the four components of BriMon.

4 Event Detection in BriMon
Event detection forms the core of BriMon. It is needed

since it is difficult to predict when a train will cross a bridge
(trains can get delayed arbitrarily). It needs to go hand-in-
hand with a duty cycling mechanism for extending battery
lifetime, and thus minimizing maintenance requirements.

In the description below, we first assume that the nodes are
synchronized (possibly with some error). And we assume that
we have a routing tree, that is, each node knows its parent and
its children. Once we discuss time synchronization and rout-
ing, it will become apparent as to how the system bootstraps
itself. At the core of our event detection mechanism is the
ability to detect an oncoming train before it passes over the
bridge. We seek to use the 802.15.4 radio itself for this.

Event detection model: Our model for event detection
is depicted in Fig. 2. (For convenience, Appendix A gives
a glossary of the various terms/notations we use). We have
an 802.15.4 node in the train which beacons constantly. Let
Dd denote the maximum distance from the bridge at which
beacons can be heard from the train at the first node (node-1
in Fig. 1), if it were awake. Assume for the time being that
the node can detect this instantaneously, as soon as the train
comes in range; we shall later remove this assumption. We de-
note byTdc the maximum time available between the detection
of the oncoming train, and data collection. ThusTdc = Dd/V
whereV is the speed of the train (assumed constant).

Figure 2. Detecting an oncoming train

In our design, all nodes duty cycle, with a periodic
sleep/wake-up mechanism. One node per data-span is des-
ignated as theheadnode. This is typically the node which the
train would pass first2 (node-1 in Fig. 2). This head node has
the responsibility of detecting an oncoming train. During its
wake-up period, if it detects a beacon from a train, it sends out
a commandto the rest of the nodes in the network to remain
awake (and not go back to sleep), and start collecting sensor
data. So the other nodes have to listen for this command dur-
ing the time they are awake.

Let us denote the duration of the sleep/wake-up/check cy-
cle asTcc which consists of a durationTsl of sleep time and a
durationTw of awake time. ThusTcc = Tsl +Tw. We now have
to determine whatTw andTcc have to be. Clearly we would
like to have as large aTcc as possible to reduce the duty cycle.
We derive this now.

Note that we have to work under the constraint (C0) that an
oncoming train must be detectedin time for data collection:

2We assume for now that vibration measurements are triggered
only by trains going in one of the two possible directions.

all nodes must be awake and ready to collect data by the time
the train enters the data-span.

We ensure constraint C0 by using two sub-constraints.
SC1: If the head node detects an oncoming train at the be-
ginning of one itsTw windows (i.e. as soon as it wakes up),
then it should be able to convey the command to the rest of
the nodes within the sameTw. And SC2: there must at least
be onefull Tw duration between the time the train is in range
and the time data collection is due: that is, the train is between
point P and the head node in Fig. 2.

Clearly, SC1 and SC2 ensure that C0 is satisfied. Now, SC1
determinesTw and SC2 determinesTcc, as we explain below.

SC1 says that the windowTw should essentially be suffi-
cient for the head node to be able to convey a command. De-
note the time taken by the protocol for command issue asTpc.
That is, within this time, all nodes in the network would have
learnt of any command issued by the head node. In addition
to Tpc, Tw should also include any possible clock differences
between the various nodes (i.e. due to synchronization error).
Let us denote byT∆ the maximum possible clock difference.

In our design, we choose to work with the worst case pos-
sibleT∆, and assume that it is known. The worst caseT∆ can
be estimated for a given time synchronization mechanism.

With such an approach, the head node should wait for a
duration ofT∆ before starting its command issue, to ensure
that the other nodes will be awake. Thus,Tw should at least be
T∆ +Tpc. Now, from the point of view of the non-head nodes
in the network,Tw should include an additionalT∆. This is
because it could have been the case that the other nodes in
fact were awakeT∆ earlier than the head node. Thus we have
Tw = 2T∆ +Tpc.

Using SC2, we can fix the relation:Tcc ≤ Tdc−Tw, as we
explain now. Fig. 3 argues why this condition is both neces-
sary and sufficient for ensuring SC2. In the figure, we con-
sider various possibilities for the occurrence of the time win-
dow Tdc, with respect to the time-line at the head node.t0 is
the start of the firstTw window, before the end of whichTdc
starts. IfTdc starts (the train comes within range) at or before
t0, command issue happens during the firstTw (this is case (a)).
Otherwise,Tdc starts aftert0 but beforet1, and command is-
sue happens in the secondTw (this is case (b)). Clearly in both
cases, we have a fullTw window when the train is in range,
and before data collection is due.

Figure 3. Train detection by head node:Tcc ≤ Tdc−Tw

Since we wantTcc to be as large as possible, we haveTcc =
Tdc−Tw as the optimal value.

Incorporating detection delays: One aspect which the
description above has not considered is the delay which would
be involved in detecting the train once the head node wakes
up, and the train is in range. Suppose the period of the bea-

cons from the train isTb. And suppose we defineDd such that
the packet error rate (of the beacons) from the train to the head
node is at most 20%. Then we can surely say that within 5
beacon periods, the probability that the train goes undetected
is extremely small (< 10−3). So it would work in practice to
set the detection delayTdet to be 5Tb.

Now, to incorporateTdet in our sleep/wake-up mechanism,
we need to add the following feature: the head node has to
be awake for a durationTdet ahead of the other nodes in the
network. So for the head node,Tw = Tdet+T∆ +Tpc. Note that
the non-head nodes still haveTw = 2T∆ +Tpc.

The above is the essence of our event detection mechanism.
In this, we have three important parameters:Dd, Tpc, andT∆.
We now describe detailed experiments to the maximum possi-
ble Dd (i.e. how soon we can detect the oncoming train). The
next section (Sec. 5) then looks at the other two important pa-
rameters:Tpc, andT∆, in the context of our synchronization
mechanism.

4.1 Radio range experiments
The distanceDd essentially captures the distance at which

beacons sent from the train can be received at the head node.
Measurements in [11] indicate that if we use external anten-
nas connected to 802.15.4 radios, we can achieve radio ranges
of a few hundred metres in line-of-sight environments. How-
ever, [11] does not consider mobile 802.15.4 radios. Hence we
performed a series of careful experiments with one stationary
node and one mobile node3.

We note that we usually have about a 1kmapproachzone
ahead of a bridge. This is straight and does not have any
bends. This is true for most bridges, except in hilly regions.

For our experiments too, we use a line-of-sight setting. We
used a 900m long air-strip. We mounted the stationary node
on a mast about 3m tall. We placed the mobile node in a car,
and connected it to an antenna affixed to the outside of the car
at a height of about 2m. Both nodes were connected to 8dBi
omni-directional antennas.

The mobile node beacons constantly, every 10ms. It starts
from one end of the air-strip, accelerates to a designated speed
and maintains that speed (within human error). The stationary
node is 100m away from the other end (so that the car can pass
the stationary node at full speed, but still come to a halt before
the air-strip ends).

For each beacon received at the receiver, we note down the
sequence number and the RSSI value. We marked out points
on the air-strip every 100m, to enable us to determine where
the sender was when a particular beacon sequence number
was sent4. Fig. 4 shows a plot of the RSSI as a function of
the distance of the mobile sender from the receiver.

An immediate and interesting observation to note in Fig. 4
is the pattern of variation in the RSSI as we get closer to the
stationary node, for all mobile speeds. Prior to the study, we
did not anticipate such a specific pattern since previous mea-

3We intentionally describe these experiments here, and not in a
later section, since the results of these experiments were used to drive
our design in the first place.

4We had a person sitting in the car press theuserbutton of the
Tmote sky whenever the car passed a 100m mark; this gives us a
mapping between the mote’s timestamp and its physical position.

-95

-90

-85

-80

-75

-70

-65

-60

-55

-50

-45

 0 50 100 150 200 250 300 350 400 450 500

R
S

S
I (

dB
m

)

Distance (m)

20kmph
40kmph
60kmph

Figure 4. RSSI vs. distance betn. sender & receiver

surement studies have not really reported any such observa-
tion [15, 16, 11]. Any RSSI variations observed are generally
attributed to unpredictable environmental aspects. In ourex-
periment however, the pattern is entirely predictable: these are
due to the alternating constructive & destructive interference
of ground reflection which happens at different distances. The
exact distance at which this happens depends on the heights
of the sender/receiver from the ground. Such variations can
be eliminated by using diversity antennas, but the Tmote sky
hardware does not have such a facility.

We observe from Fig. 4 that we start to receive packets
when the mobile is as far away as 450m, and this is more
or less independent of the mobile’s speed. The RSSI mea-
surements versus distance also have implications for the link
range in the (stationary) network on the bridge. If we follow
a threshold-based link model, with a threshold of−80dBm,
as described earlier, we can have link ranges as high as 150-
200m.

For the same set of experimental runs, Fig. 5 shows plots of
the error-rate versus distance. The error-rate is measuredover
time windows of 5 packets. To determineDd, as discussed
earlier, we look for the point where the error rate falls to about
20%. From Fig. 5, we find thatDd is about 400m. This too is
irrespective of the mobile speed.

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

E
rr

or
 R

at
e

(%
)

Distance (m)

speed=20kmph
speed=60kmph

Figure 5. Error rate vs. distance betn. sender & receiver

In Fig. 5, we see that for mobile speed of 20kmph, we see
some packet errors at about 100m. This is because of the RSSI
dips we explained in Fig. 4. We note that the 60kmph line does

not show such packet errors at this distance. This is because
at this higher speed, the mobile quickly moves away from the
region of the RSSI dip. We observed similar behaviour for
higher speeds of 70kmph and 80kmph too.

During all these experiments, the transmit power at the mo-
bile node was 0 dBm, the maximum possible with the CC2420
chips. We also tried an experiment with an 802.11 transmit-
ter, which allowed transmission at 20dBm. Now, it is possible
to detect transmissions from an 802.11 sender at an 802.15.4
receiver since they operate in the same frequency (2.4GHz).
For this, we can use the CCA (Clear Channel Assessment) de-
tection at the 802.15.4 receiver, as explained in [17]. We used
such an arrangement for our experiment, and determined the
range to be at least 800m. At this distance, we were limited
by the length of the air-strip, and the range is likely more than
800m. In this experiment too, we saw no significant effect of
the mobile’s speed on this range.

What this likely implies is that we can further improveDd,
if we have a built-in or an external amplifier for the CC2420
chip. We expect that with the use of an external amplifier at
the train’s node, we can have a range of the order of 800m
or more. (Note that the additional power consumption at the
train’s node is not a concern).

To summarize the above measurements, when the train is
coming at a speed of 80 Kmph, and withDd = 800m, we have
Tdc = 36s.

4.2 Frontier nodes
One other mechanism we propose to further increaseTdc is

the use offrontier nodes. Frontier nodes are essentially nodes
placed upstream of the sensor network (upstream with respect
to the direction of the train). These nodes do not participate
in any data collection, but only serve to detect the oncoming
train much earlier.

Figure 6. Using frontier nodes to increaseTdc

An example in Fig. 6 illustrates the use of frontier nodes.
Tdc is effectively doubled. Note that depending on the timing,
it could be the case that the head node directly learns of train
arrival, instead of the frontier node telling it.

A relevant alternative to consider here, to extend network
lifetime, is to simply have additional battery installed ateach
of the nodes instead of having additional infrastructure in
terms of a frontier node. Note however that adding a fron-
tier node improves the battery life ofall nodes uniformly by
decreasing the duty cycle, and hence is likely more beneficial.

It is possible to extend the concept of frontier nodes to have
more than one frontier node to detect the oncoming train even
further earlier. But the incremental benefit of each frontier
node would be lesser. Further, each frontier node also adds
additional maintenance issues. In practice we expect not more
than 1-2 frontier nodes to be used.

We now move on to the issue of time synchronization.

5 Time Synchronization
The next important aspect we look at in BriMon design

is the time synchronization. This aspect is related close to
the periodic sleep/wake-up and event detection: two of the
parameters in event detection,Tpc andT∆, are both related to
time synchronization, as we explain now.

There are two separate questions here:howto do time syn-
chronization (i.e. the time-sync protocol), andwhenthe pro-
tocol should be run. We first focus on the protocol.

5.1 How to do time synchronization?
When an 802.15.4 nodeA sends a message to nodeB, it

is possible forB to synchronize its clock to that ofA. This
is explained for the Tmote platform in [18]. Thus intuitively
it is possible for the entire network to synchronize itself to
the head node’s clock when a message goes (possibly over
multiple hops) from the head node to the other nodes.

Now, in our commandissue from the head node (Sec. 4)
too, the message exchanges involved are exactly the same: a
message has to go from the head node to the other nodes. In
fact, the same protocol message sequence can be used for syn-
chronization as well as for command issue. Only the content
of the messages need to be different: for synchronization we
would carry time-stamps, and for command issue, an appro-
priate byte to be interpreted at the receivers. In fact, the same
set of messages can carry both contents (piggybacking one
functionality on the other).

Our goal in designing this message sequence for time syn-
chronization and/or command issue is to minimizeTpc since
this directly translates to a lower duty cycle. We following
the guiding principle of optimizing for the common case. The
common case in our setting is that packet losses are rare, due
to the stable link quality, as explained in Sec. 3.

The protocol consists of simple steps in flooding, and
builds on the knowledge of the current routing tree (pro-
vided by the routing layer). (1) The head node sends a com-
mand/sync message to its children in a broadcast packet. (2)
When a node receives a command/sync message, if it has chil-
dren in the routing tree, it forwards it on.

We have made an important design choice above: there are
no acknowledgments in the protocol. Instead, we simply use
multiple retransmissions (say, 2 or 3) for each message. We
design it this way for several reasons.

First, ACKs and timeouts are likely to increase the overall
delay, especially when a node has to wait for ACKs from mul-
tiple children. On the other hand, the retransmissions can be
sent quickly. Second, since in our network we design such that
the links are of good quality, it is appropriate to treat packet
losses as corner cases. Third, for the command message, ab-
solute reliability is not necessary. If once in an odd while a
train’s vibration measurement is missed, it is alright in our
application. And last, as an added advantage, just sending a
message is much easier to design and implement than having
to deal with ACKs and timeouts and the resulting corner cases
in the periodic sleep/wake-up mechanism.

The next design choice in the flooding is what exactly is
the MAC scheme each node follows while transmitting. Here
the choice is quite non-obvious, as we found out the hard way.
We initially used the straightforward mechanism where each

node uses carrier-sensing before transmitting any message
(i.e. CSMA/CA). However, we found that this did not quite
work well, even in test cases involving networks of just six
nodes. We found that there were several instances where all
of the retransmissions5 were getting lost, and as a result, nodes
not successfully synchronizing (or receiving commands).

There was no significant wireless channel errors, so that
could not be the reason for the packet losses. We ruled out the
possibility of wireless hidden nodes too: such packet losses
occurred even when all the nodes were within range of each
other. As we delved deeper into the possible reason, the an-
swer surprised us: the packet losses were happening at the
receiver’s radio buffer! That is, lack of flow-control was a
significant issue.
The issue of flow control

To gain an in-depth understanding of the various delays
in the system during transmission & reception, we conducted
the following experiment. We sent a sequence of packets, of a
pre-determined size, from one mote to the other. We had suffi-
cient gap (over 100 ms) between successive packets to ensure
that no queuing delays figure in our measurements. We also
disabled all random backoffs. We recorded time-stamps for
various events corresponding to each packet’s transmission as
well as reception. These events, termedS1, ...,S6 at the sender
andR1, ...R5 at the receiver, are listed in Tab. 1.

Table 1. Events recorded to measure various delays

For an eventSi or Ri , denote the time-stamp ast(Si) or t(Ri)
respectively. Tab. 2 tabulates the various delays correspond-
ing to these events. The different rows in Tab. 2 correspond
to experiments with packet sizes of 44, 66, and 88 bytes (in-
cluding header overheads) respectively. The delay values in
the table are the averages over several hundred packets; the
variance was small and hence we omit it. Given the average
delay value, we then calculate the speed of SPI/radio transfer;
these values are also shown in the table.

We note that the radio speed is close to the expected
250Kbps at both the sender and the receiver, for all packet
sizes. (It is slightly higher than 250Kbps at the sender
side, because our measurement of the[t(S5)− t(S4)] delay

5We used 3 transmissions: 1 original + 2 retransmissions in our
implementation.

Table 2. SPI, Radio delays in tx/rx

marginally underestimates the actual delay on air.) However, a
significant aspect we note is that the SPI speed at the receiver
is much lower, only about 160kbps, which is much slower
than the radio! This means that packets could queue up at the
radio, before getting to the processor. To make matters worse,
the CC2420 chip used in the Tmote hardware which we used,
has an on-chip receive buffer of just 128 bytes [19].

Furthermore, since the time-sync packet sent by a node to
its children isbroadcast, implementing filtering at the radio
is not an option (the TinyOS 2.0 software we have used does
not yet implement filtering at the radio even for unicast pack-
ets). This means that all packets have to come to the micro-
controller, even those not destined for this node. For instance,
a node’s sibling’s broadcasts, its parent’s sibling’s broadcasts,
may all reach the micro-controller! All these put together
mean that flow-control at the link layer is an issue in this plat-
form.

In Tab. 2, a few other aspects we note are the following.
At the sender side, the SPI bus shows slightly higher speed
than the radio; and this SPI speed increases with packet size,
which suggests a fixed overhead for each such transfer. We
also note that there is an almost constant overhead for each
packet due to software processing: about 1.45ms at the sender
side, and 0.45ms at the receiver side. The table also shows the
total average per-packet time taken at the sender & receiver.
We can see that the total delay can be as high as over 2.5 times
the over-the-air radio delay.

The experiment above essentially means that flow-control
is required. But this is absent in a CSMA/CA based flooding
mechanism. This explains the packet losses we observed. It is
worth noting that other time synchronizing approaches suchas
FTSP [13] have not reported such a problem with CSMA/CA,
because they do not have synchronization messages sent back-
to-back. In contrast, we need to send the synchronization mes-
sages as quickly as possible, to minimizeTw, and thus achieve
very low duty-cycling.
TDMA-based flooding

The issue of flow-control arises essentially due to the use of
a radio which is faster than the processor’s (or bus’s) capabil-
ities. To circumvent this issue, we use the approach of having
a TDMA-based flooding mechanism. The idea is to have the
head node come up with a schedule, based upon which each
node in the network will transmit. The schedule ensures that
only one node in the network transmits at a time, and that the
time-slot duration for each packet is sufficient for successful
reception (including all delays listed in Tab. 1).

The head node can embed the schedule information too in
the time-sync (or command) messages. This works as follows.
As mentioned in Sec. 3, the time-sync mechanism assumes

Figure 7. Test network used for measuringTpc

that we already have a routing tree. The routing protocol will
in fact ensure that the entire tree information is known at the
head. The head then computes the schedule using a depth-first
traversal of the routing tree. For instance, in Fig. 7, one pos-
sible schedule is 1, 5, 9, 10, 3, 4. Note that only non-leaves
have to transmit. Also, note that the schedule is arranged so
that each node gets to know both the synchronization infor-
mation as well as its slot assignment before it has to transmit
its synchronization packet.

In the above mechanism, we have consciously chosen a
centralized approach. Given the size of the network we ex-
pect (up to 12 nodes), the fact that the schedule is centrally
computed and conveyed in a packet is not an issue. (In fact,
the O(n) DFS computation, and having a one-byte slot infor-
mation per node, can accommodate larger networks too, of
say 100-200 nodes).
Measuring Tpc

We have implemented the protocol on our Tmote sky plat-
form. We used 3 retransmissions from each node, to be on the
safer side. We determine the slot size as follows. A slot needs
to accommodate 3 packets. And each packet involves the time
taken for reception. The total packet size was 42 bytes, which
has a total delay at the receiver, of about 4ms. So we used a
slot time of 12ms. This resulted in negligible packet losses.

A slot time of 12ms givesTpc = 12× 6 = 72ms, for the
test network of 12 nodes shown in Fig. 7. This is because,
in this network, the six non-leaf nodes need to transmit one
after the other. We observed this value ofTpc experimentally
too, in our prototype implementation. Recall that we expect
a data-span to have at most 12 nodes, and not more than 3-4
hops. Our test network is designed to resemble a data-span
with two physical spans. In the test, all of the 12 nodes were
placed within range of each other, but we artificially imposed
a routing tree on them. For a six-node network, we can expect
Tpc to be much lesser, about 36ms.

5.2 When to do time synchronization?
We now turn to the question ofwhenwe should run the

above time-sync/command protocol. The command to collect
data is issued only when a train is detected. With respect to the
synchronization protocol, there is the question of how often
we should synchronize. For our CC2420 platform, the answer

is simple. We just run the synchronization mechanism during
each wake-up period. This does not incur any additional over-
head since anyway all nodes are awake forTw = T∆ + Tpc, in
expectation of a potential command from the head node. And
if nodes are awake and listening, the power consumption in
the CC2420 chips is the same as (in fact slightly higher than)
that of transmitting [20].

We can now estimateT∆ too. It is the sum of the possi-
ble clock drift in one check cycle (Tcc), andTerr, the error in
the synchronization mechanism. We estimatedTdc = 36s in
Sec. 4.1. SinceTcc < Tdc, the worst caseTdri f t can be esti-
mated as 20× 10−6 × 36s = 0.72ms. Here we have used a
worst case clock drift rate of 20ppm [14].

In the same experiment above, where we estimatedTpc, we
also measured the worst case error in our synchronization to
be at most 5-6 clock ticks over the 3-hop, 12-node network.
This is about 6× 30.5µs≃ 0.18ms. The overallT∆ is thus
about 0.9ms. It is worth noting that this is much smaller than
Tpc.

In our prototype implementation, we have also tested (in-
lab) that the time-sync and periodic sleep/wake-up mecha-
nism indeed work stably: we have tested for several hours
(close to 1 day) at a stretch.

6 Routing
We have noted above that both the event detection (com-

mand) mechanism and the time-sync protocol depend on the
existence of a routing tree rooted at the head node. The crux
of our routing mechanism is the fact that we use stable links.
That is, unlike in [16], we do not have a situation where we
have to distinguish between links of error rates in-between
0% and 100%. In fact, the RSSI and LQI variability measure-
ments in [11] suggest that trying to make such distinctions in
a dynamically varying metric can produce unstable behaviour
(in the 802.15.4 platform).

Routing phases: In designing the routing, we make the
design decision of using a centralized routing approach, with
the head node controlling decisions. We have the following
simple steps in routing. (1)Neighbour-discovery phase:The
head node initiates this phase, by periodically transmitting
a HELLO. Nodes which hear the HELLO in turn periodi-
cally transmit a HELLO themselves. After some time, each
node learns the average RSSI with its neighbours, which we
term the link-state. (2)Tree construction phase:The head
node now starts constructing the routing tree. The construc-
tion goes through several stages, with each stage expanding
the tree by one hop. To begin with, the root node knows its
own link-state, using which it can decide its one-hop neigh-
bours. Now it conveys to each of these chosen one-hop neigh-
bours that they are part of the network. It also queries each
of them for their link-state. Once it learns their link-state, it
now has enough information to form the next hop in the net-
work. And this process repeats until all possible nodes have
been included in the network. In each link-state, based on the
RSSI threshold, as described in Sec. 3, links are classified as
good or bad. The root first seeks to extend the network using
good links only. If this were not possible, it seeks to extend
the network using bad links.

Although simple, the above mechanism has two properties

essential for us. (1) The head nodeknows the routing tree
at the end of the two phases. This is essential for our time
synchronization and command mechanisms (e.g. to send a
command to the nodes in the network to start collecting data,
after detecting an oncoming train). It is also essential when
it is time for the head node to gather all data from the nodes
in the network, before transferring it to the train. (2) More
importantly, the head nodeknows when the routing protocol
has ended operation. We stress that this is a property not
present in any distributed routing protocol in the literature, to
our knowledge. And this property is very essential for power
efficient operation: once the head node knows that routing has
ended, it can then initiate duty cycling in the network. Such
interfacing between routing and duty cycling is, we believe,
an aspect which has not really been looked at in-depth in prior
work.

When to run the routing protocol? Like with the time-
sync protocol, we also need to answer the question ofwhen
to run the routing protocol. The routing protocol can be run
infrequently, or whenever a failure is detected. Now, how to
detect failures in the network? A node can detect itself to be
disconnected from the current routing tree, if it fails to receive
the time synchronization messages for a certain timeout. It
can then cease its duty cycling, and announce that it has been
orphaned. This announcement, if heard by a node connected
to the routing tree, is passed on to the head node. The head
node can then initiate the above routing protocol again.

We wish to stress that such a laid-back approach to fixing
failures is possible because we are relying upon stable links.
We also once again stress that scaling is not an issue since we
consider each data-span to be an independent network.

In order to build tolerance to failure of the head node, one
can provision an extra head node. An alternative would be to
have one of the other nodes detect the head node’s failure (say,
on failure to receive synchronization messages for a certain
timeout period), and take-over the head’s functionality.

Benefits of a centralized approach: A centralized ap-
proach has several benefits, apart from the simplicity in de-
sign and implementation. For example, recall from Sec. 5 that
Tpc is proportional to the number of non-leaf nodes in the net-
work. So we need to minimize the number of non-leaf nodes.
A centralized routing approach can optimize this much more
easily as compared to a distributed approach. Similarly, any
load balancing based on the available power at the nodes is
also more easily done in a centralized routing approach.

Routing protocol delay: Since we expect to run the rout-
ing protocol only infrequently, the delay it incurs is not that
crucial. But all the same, we wish to note that in our proto-
type implementation, the routing phases take only about 1-2s,
for the test network shown in Fig 7. This is much smaller
compared to say, the duration of data collection (40s) or data
transfer (Sec. 7).

7 Mobile Data Transfer
We now discuss the last important component of BriMon.

The event detection mechanism triggers data collection at the
nodes. After the datacollectionphase, this data must reliably
be transferredfrom the (remote) bridge location to a central
server that can evaluate the health of the bridge. Most sen-

sor network deployments today do this by firstgatheringall
collected data to a sink node in the network. The data is then
transferred using some wide-area connectivity technologyto
a central server [2, 3, 4, 5, 6, 7].

We reject this approach for several reasons. First, in a set-
ting where the bridges are spread over a large geographical
region (e.g. in India), expecting wide area network coverage
such as GPRS at the bridge location to transfer data will not
be a valid assumption. Setting up other long-distance wireless
links (like 802.11 or 802.16) involves careful network plan-
ning (setting up towers for line of sight operation, ensuring no
interference, etc.) and adds further to maintenance overhead.
Having a satellite connection for each bridge is too expensive
a proposition. Manual collection of data via period trips tothe
bridge also means additional maintenance issues.

A more important reason is the following. Recall that we
can have bridges as long as 2km, with spans of length 30-
125m. This means that overall we could have as many as
about 200 sensors placed on the bridge, at different spans.
Even if we were to have somehow have a long-distance In-
ternet link at the bridge location, we would have togatherall
the sensor data corresponding to these many sensors at a com-
mon sink, which has the external connectivity. Such gathering
has to be reliable as well.

The total data which has to be gathered would be substan-
tial: 57.6Kb× 200≃ 1.44MB for each measurement cycle.
Doing such data gathering over 10-20 hops will involve a
huge amount of transfer time and hence considerable energy
wastage. Having a large network has other scaling issues as
well: scaling of the routing, synchronization, periodic wake-
up, command, etc.. Large networks are also more likely to
have more fault-tolerance related issues.

Keeping the above two considerations in mind, we con-
sider a mobile data transfer mechanism, where data from the
motes is transferred directly to the train. This then allowsus
to partition up the entire bridge into several data-spans with
independently operating networks. In each data-span, the des-
ignated head node gathers data from all the nodes within the
data-span. It then transfers the data gathered for the data-span
onto the train. Since we are dealing with networks of size
at most 12 nodes, data gathering time is small, and so is the
transfer time to the train itself. We eliminate the need for a
back-haul network in such an approach.

One subtle detail to note here is that we seek to transfer the
data collected for one particular train, not to the same train,
but to a subsequent train. In fact on the Tmote platform, it
is not possible to use the radio in parallel with the data col-
lected being written to the flash since there is a common bus.
We then need to have different trains for data collection and
the data transfer. The additional delay introduced in such an
approach is immaterial for our application.

The transport protocol itself for the data transfer can be
quite simple. In BriMon, we use a block transfer protocol
with NACKs for the data transfer from the head node to the
train. We use a similar protocol, implemented in a hop-by-hop
fashion, for the data gathering as well: that is, for gettingthe
data from the individual nodes to the head node.

There are a few challenges however in realizing our mobile
data transfer model. One, while one cluster head is transmit-

ting data of its cluster to the train, nearby cluster heads would
also be within contact range of the train and would be trans-
ferring their data. This would lead to interference if sufficient
care is not taken. In fact, the synchronization, routing, and
other operations of multiple spans could interfere with onean-
other. We can address this issue by using multiple channels,
as we explain below.

Using multiple channels: We take the approach of using
the 16 channels available in 802.15.4. There are at least eight
independent channels available [14]. We could simply use dif-
ferent channels on successive spans, and repeat the channels
in a cycle. For instance we could use the cycle 1, 3, 5, 7, 9,
11, 13, 15, 2, 4, 6, 8, 10, 12, 14, 16. This would ensure that
adjacent channels are at least 7 spans apart, and independent
operation of each data-span would be ensured. Note that the
train needs to have different motes, operating in the appropri-
ate channel, for collecting data from each data-span.

Reserved channel for event detection:The above ap-
proach works except for another subtle detail. We desig-
nate that the channel for event detection mechanism for all
data-spans is the same, and reserve one channel for this pur-
pose. So as the train approaches, the radio within it can con-
tinuously beacon on this reserved channel without having to
bother about interfering with any data transfer or other proto-
col operation within each data span. The head nodes of each
span listen on this channel for the oncoming train, and switch
to the allocated channel for the data-span after theTdet dura-
tion6.

Throughput issues: Another challenge to address in our
mobile data transfer mechanism is whether such transfer is
possible with sufficient throughput. The amount of data that
can be transferred is a function of the contact duration of the
train with the mote, which in turn is a function of the speed of
the train and the antennae in use.

In order to determine the amount of data that can be trans-
ferred using our hardware platform, we have conducted exper-
iments with a prototype. We have implemented the NACK-
based reliable block transfer protocol. Although simple con-
ceptually, the protocol involves some subtleties in implemen-
tation. We need to transfer blocks of data from the flash of
the sender to the flash of the receiver. As mentioned earlier,
in the Tmote platform, we cannot perform flash read/write si-
multaneously with radio send/receive because of a shared bus.
However, our protocol does parallelize flash write at the re-
ceiver, with flash read of the next block at the sender.

In our implementation, we use blocks of size 2240 bytes;
this is significant chunk of the 10KB RAM in the MSP430
chip of Tmote sky. And we have used packets of payload
116 bytes. So a block fits in 20 packets. In our data transfer
mechanism, the sender simply uses apausebetween succes-
sive packets to implement flow control. We compute the pause
duration as the excess total delay at the receiver side as com-
pared to the sender side. Using an extrapolation of Tab. 2, we
calculate the required pause duration for packets of payload
116 bytes (total 126 bytes) to be about 3ms (sender side de-
lay: 8ms, receiver side delay: 11ms). We use a value of 4ms,

6Such channel change takes only a few hundred micro-sec on the
CC2420 chips.

as a safety margin.
To get an estimate of the various delays involved in the

protocol, we first ran a data transfer experiment using an over-
all file size of 18 blocks. The total time taken was 6,926ms.
This consists of the following components. (1) A flash read-
time for each block of about 100ms. (2) A flash write-time
for each block of about 70ms. This is overlapped with the
flash read-time for the next block, except of course for the last
block. (3) The transmission + pause time for each packet is
about 12, resulting in an overall transmission + pause time
of 20× 12 = 240ms per block. So we expect a delay of
18× 100ms+ 1× 70ms+ 18× 240ms= 6190ms, which is
close to the experimentally observed delay of 6,926ms.

The above experiment thus gives an effective throughput
of 2,240×18×8/6926= 46.6Kbps. Note that this value is
much lower than the 250Kbpsallowed by the 802.15.4 radio,
due to the various inefficiencies: (a) various header overheads,
(b) the shared bus bottleneck mentioned above due to which
flash read/write cannot be in parallel with radio operation,and
(c) the use of a pause timer to address the flow-control issue.

Mobile data transfer experiment: To see if we are able
to achieve similar throughput under a realistic scenario, we
conducted the following experiment. The setup mimics the
situation where the header node (root node) of a cluster in
BriMon uploads the total data collected by all the nodes within
its cluster on to mobile node on a train. The data transfer is
initiated when the mobile node (on the arriving train) requests
the head node to transfer the collected data. The head node
then reads the data stored as files from flash and uploads them
one by one using the reliable transport protocol.

In this experiment, the head node was made to transfer 18
blocks of data, each of 2240 bytes. The total data transfer was
thus 18×2240= 40,320B. The head node as well as mobile
node were equipped with external 8dBi omni antennas, much
like in Sec. 4.1. The antenna of the head node was mounted
at a height slightly over 2m. The mobile node was fixed on a
vehicle and the antenna was at an effective height of slightly
less than 2m.

The head node (stationary) with the complete data of
40,320B in its flash, is initially idle. The mobile node is turned
off until it is taken out of the expected range from the head
node, and then turned on. The experiments in Sec. 4.1 show
that the range can be around 400m. So we started the mo-
bile node at a distance of 500m from root node. The vehicle is
made to attain a constant known velocity at this point of 500m,
while coming towards the head node. On booting, the mobile
node starts sending the request for data, every 100ms, until
it receives a response from the head node. The head node,
on receiving the request, uploads the data block by block, us-
ing the reliable transport protocol. The transport layer atboth
nodes takes a log of events like requests, ACKs, NACKs and
retransmissions, for later analysis.

Fig. 8 shows a plot of the block sequence number received
at the mobile node, versus the position of the mobile with re-
spect to the head node. We first note that although we con-
servatively estimated the contact range to be 400m, the data
transfer begins right at about 490m, irrespective of the mo-
bile’s speed. We next note that after the mobile is within 450m
from the head node, the rate of data transfer (slope of the line)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

-520 -500 -480 -460 -440 -420 -400 -380 -360

B
lo

ck
 n

um
. r

ec
d.

 a
t h

ea
d

no
de

Posn. of mobile with respect to the head node (m)

30kmph
50kmph
60kmph

Figure 8. Mobile data transfer measurement

is more or less constant. We have calculated this slope to cor-
respond to the same data rate (about 46Kbps) as in the sta-
tionary throughput test. The regions in each graph where the
slope is different from this rate correspond to instances where
a NACK was sent since some of the packets in a block were
lost.

Feasibility of mobile data transfer: Assuming the
throughput of about 46Kbps which we have been able to
achieve, it means that if we have 691.2Kb per data-span, as
estimated in Sec. 2, we need a contact duration of 691.2/46≃
15s. This is achievable with a contact range of about 330m
for a train speed of up to 80kmph. Or, with a contact range of
about 250m for a train speed of 60kmph.

Note from our discussions in Sec. 4 that in the worst case,
the head node detects the oncoming train only just before the
train passes over the span. Combining this observation with
the fact that data transfer starts right from about 490m (Fig. 8),
we have sufficient contact range, larger than the 330m require-
ment estimated above. So we can conclude that our data trans-
fer is achievable, with significant leeway. Our analysis above
has in fact been a worst-case analysis. For instance, the lee-
way would be much higher if we have only a 6-node network,
or if we use frontier nodes.

There are also other possibilities to further improve the ef-
fective data transfer throughput. One obvious performance
enhancement is the use of data compression. Another possi-
bility is use different hardware. We could use a mote which
allows simultaneous operation of the flash and the radio. Or
we could even use a completely different radio, say for ex-
ample the Bluetooth enabled Intel motes, as considered in [5].
These possibilities could give higher throughput than whatwe
have been able to achieve with 802.15.4 in our prototype.

Another possibility to increase the effective amount of data
which can be transferred to a train is to employ the following
trick. We could have one data transfer to a receiver in the front
coach of the train, and another in a rear coach sufficiently far
apart from the front coach. This is feasible since trains are
often about 1km or more long.

8 Related Work
Prior to BriMon, several projects have looked at the issue

of automated structural health monitoring. The work in [21,7]
uses MEMS-based sensors and Mica2/MicaZ motes to study
vibrations in buildings. It focuses on data compression tech-

niques, reliable data transfer protocol, and time synchroniza-
tion. The work in [6, 8] has looked at bridge monitoring in-
depth. They have presented extensive studies of hardware, the
required data sampling rate, and data analysis.

BriMon builds on this body of prior work in structural
monitoring, and the techniques of data compression, data
transfer protocol, data analysis, etc are complementary toour
contributions. The novel aspects in our work are the event de-
tection, mobile data transfer, as well as the integration ofthese
aspects with low duty cycling. These have not been consid-
ered in earlier work.

Low duty cycling by itself is not novel by any means.
B-MAC [22], SCP-MAC [20] and AppSleep [23] are MAC
protocols to achieve low duty cycling. Since these protocols
have been designed without anyspecificapplication in mind,
they are necessarily generic. For instance, SCP-MAC uses
complex schedule exchange mechanisms with neighbouring
nodes. This is designed for an arbitrary traffic pattern, and
hence does not apply (optimally) in our setting.

Similarly, mobile data transfer too is not novel by itself.
The ZebraNet [9] and DakNet [10] projects too have used
similar strategies. There is a growing body of literature inthis
context for 802.11 (WiFi) [24, 25]. With respect to 802.15.4
too, [26] presents some preliminary measurements indicating
that mobile data transfer in 802.15.4 is feasible, and that the
throughput is independent of the speed. Our measurements in
Sec. 4.1 are in broad agreement with these.

In contrast to the above work on low duty cycling or mo-
bile data transfer, our primary goal is to integrate the requi-
site functionalities for a specific application. BriMon inte-
grates vertically withall aspects relevant to bridge monitor-
ing. It usesonly the necessary set of mechanisms, thus sim-
plifying the design. We use extensive application information
and cross-layer optimizations across the four functionalities
of event detection, mobile data transfer, time synchronization,
and routing. To our knowledge, we are the first to have care-
fully looked at the interaction between such network protocol
functionalities.

9 Discussion
We now present several points of discussion around the

system design described so far.
Lifetime estimation: It is useful to get an idea of how

well the system we have designed is able to achieve our goal
of minimal maintenance. For this, we estimate the time for
which a set of batteries will last, before requiring replacement.
Consider the sequence of events depicted in Fig. 9. We have
a data collection phase, followed by a data gathering phase
(data goes from each node to the head node). Then when the
next train arrives, the data is transferred to the moving train.

Figure 9. Estimating node lifetime in BriMon

We assume that we use a battery, or a series of batteries of
sufficient voltage, say 6V (at least 3V required for the Tmote

sky motes, and at least 5V for the accelerometers). For ex-
ample, this can be achieved by using 4 AA batteries in series.
The various current values shown are rough estimates derived
from the data specification sheets of the accelerometer and
Tmote sky respectively. We also verified many of these val-
ues using a multimeter in our lab.

In Fig. 9, we can estimateTcoll , Tgather, andTtrans f er as fol-
lows. Tcoll starts when the train is detected and extends until
20 sec after it has crossed the span. Hence it depends on when
exactly the train is detected, train speed, the train’s length, and
the span length. Assuming the worst case when the train is de-
tected very early (Tdc before it enters the span), and assuming
train speed to be 60kmph, train length to be 1km, and data-
span length to be 250m, we have:

Tcoll = 36s+(250m+1km)/(60kmph)+20= 131s
We assume that once collected, the data is truncated to only

the last 40s of data (which is of interest).
Then we estimateTgather to be the time it takes for this

data to be gathered at the head node. Now, pushing 40s
worth of collected data over one hop toward the root takes
57.6Kb/46Kbps= 1.25s. In Fig. 7, there is one head node,
4 nodes one-hop away, 5 nodes two-hops away, and 2 nodes
three-hops away. Thus if we transfer the collected data hop-
by-hop, one after another, the total time taken would for this
would be(1×0+4×1+5×2+2×3)×1.25s= 32.5s. For
Ttrans f er, we use the value of 15s, as estimated in Sec. 7.

Now, usingTw = Tpc+2T∆ +Tdet will work for both head
nodes as well as non-head nodes (see Sec. 4). Recall that
Tpc = 72ms (for a 12-node network),T∆ ≃ 1ms, andTdet =
5Tb = 50msfor an inter-beacon period ofTb = 10ms. We take
Tw = 125msas an upper bound on the above estimate.

Assuming that we have data collection once per day7.
There are thus at most 1day/Tcc ≃ 2400 durations ofTw and
Tsl. So the total energy drawn, expressed inmA× sec, at 6V,
can be estimated as:

Tcoll ×50mA+Tgather×20mA+Ttrans f er×20mA+2400×
Tw×20mA+2400×Tsl ×10µA
= 6550 (collect) + 650 (gather) + 300 (trans f er) +
6000(wakeup)+864(sleep)mAsec
= 14364mAsec≃ 4mAh

The AA batteries have about 2500mAh capacity. Hence
we can expect that the lifetime in this setting would be about
2500/4≃ 625days, which is over 1.5 years.

We note that in the above equation, the main components
to the overall energy consumption are the data collection and
the periodic wake-up. In fact, if we have further infrequent
data collection, say once a week, in the above estimation the
periodic wake-up will constitute an even larger fraction ofthe
power consumption. So it was indeed useful that we sought to
minimize the wake-up duration in our design!

Measurements on a bridge:Most of the experiments we
have presented above have used an air-strip (or have been per-
formed in lab). This was convenient since the air-strip was
nearby. However, we also tested our prototype on a road

7Measuring once a day is sufficient for long-term bridge health
monitoring. Also note that we need not collect data for every passing
train; we can easily build logic to look only for trains with certain ids
in their beacons.

bridge on a nearby river8. We had two ADXL 203 accelerom-
eter modules integrated into our system at that time. Prior to
our trip to the bridge, we thoroughly tested the accelerometer
modules in-lab, using calibrated shake-tables. At the bridge,
we used two motes for data collection, and a separate sink
(head) node.

We were successfully able to measure the vibrations on the
bridge induced due to passing traffic. We observed a domi-
nant free vibration frequency of about 5.5Hz. The amplitude
of forced vibration we observed was as high as 100 milli g
(vertical). For healthy bridge spans, the expected amplitude is
about 30 milli g. So our measurement indicates the need for
maintenance operations on that span.

The above measurement on the bridge, as well as the pro-
totype implementations of the various functional components,
gives us a measure of confidence in the overall design.

Wider applicability: We have designed BriMon specif-
ically for railway bridge monitoring. This environment is
particularly challenging since most bridges are away from
an urban environment (poor wide area network connectivity).
More importantly, train traffic is sporadic and unpredictable.
On the other hand, road bridges are likely to have constant
and/or predictable (time-of-day related) traffic patterns. How-
ever, even in such scenarios, we believe that many of our
mechanisms are likely to find applicability. For instance, we
use our event detection mechanism to trigger data transfer,to
a designated mobile node. This would be applicable in road
bridges too. Also applicable would be the consideration of
multiple channels, splitting up the set of nodes into multiple
independent networks, and the resulting architecture withthe
time synchronization and routing functionalities integrated.

Apart from structural monitoring, our event triggering and
data transfer approaches are also likely to find applicability in,
say road-side pollution monitoring. MEMS-based sensors are
currently still evolving in this domain [27].

Ongoing and future work: Admittedly, many aspects of
our work require further consideration. While the prototype
implementation and detailed experimentation have given usa
measure of confidence in our design, actual deployment on
a railway bridge is likely to reveal further issues. Relatedto
the issue of fault-tolerance, while we have outlined a possible
approach to deal with head node (see Sec. 6), we have left
optimizations in this regard for future consideration.

On application specific versus generic design:BriMon
is a case study in application specific design. We have con-
sciously taken this approach. Our methodology has been to
start from scratch, and pay full attention to the application re-
quirements, and design the required mechanisms. And impor-
tantly, we designonly the required mechanisms, thus keeping
the design relatively simple and, arguably, optimal.

Literature in protocol design for sensor networks is abun-
dant. We have not tried to retro-fit any protocol designed in
a generic fashion into BriMon. Our approaches to time syn-
chronization and routing are two cases in point.

Although we have not sought to generalize our solutions at
this stage, this is not to say that generality is impractical. But

8The logistics for doing the same on a railway bridge are more
involved.

we believe that in complex systems, generality emerges from
in-depth studies of specific systems.

On layered versus integrated design:Along the same
vein as above, we have also paid little heed to traditional pro-
tocol layering. Cross layer interactions are well known in
wireless systems in general. We have intentionally taken an
integrated approach. Once again, this is not to devalue the
benefits of layering. But we believe that the right protocol lay-
ering and interfacing will emerge from specific in-depth sen-
sor network system designs such as ours. Hence we have not
tried to retro-fit the layering which currently exists for wired
networks, in our system.

10 Conclusion
This paper presents the design of BriMon, a wireless sen-

sor network based system for long term health monitoring of
railway bridges. The paradigm we have followed is that of
application specific design. We believe that this is the right
way to understand the complex interaction of protocols in this
domain.

In the design of BriMon, we identify the requisite set of
functionalities from the application’s perspective, and we pro-
pose mechanisms to achieve these. We build on several as-
pects of prior work in automated structural monitoring. Our
novel contributions are three fold: (1) an event detection
mechanism which enables low duty cycling, (2) a mobile
data transfer mechanism, and (3) the interfacing of these two
mechanisms with the time synchronization and routing func-
tionalities.

Our design choices have been based on application require-
ments as well as on several measurement studies using proto-
type implementations. Based on preliminary measurements,
we estimate that our current design should be deployable with
minimum maintenance requirements: with the battery lasting
for over 1.5 years.

11 References
[1] George Iype. Weak, distressed, accident-prone.http:

//www.rediff.com/news/2001/jun/25spec.htm, 25
Jun 2001. The Rediff Special.

[2] Alan Mainwaring, Joseph Polastre, Robert Szewczyk,
David Culler, and John Anderson. Wireless Sensor Net-
works for Habitat Monitoring. InACM International
Workshop on Wireless Sensor Networks and Applica-
tions (WSNA), 2002.

[3] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David
Culler, Neil Turner, Kevin Tu, Stephen Burgess, Todd
Dawson, Phil Buonadonna, David Gay, and Wei Hong.
A Macroscope in the Redwoods. InSenSys, Nov 2005.

[4] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh,
Omar Marcillo, Jeff Johnson, Mario Ruiz, and Jonathan
Lees. Deploying a Wireless Sensor Network on an Ac-
tive Volcano.IEEE Internet Computing, Mar/Apr 2006.

[5] Lakshman Krishnamurthy, Robert Adler, Phil Buon-
adonna, Jasmeet Chhabra, Mick Flanigan, Nandakishore
Kushalnagar, Lama Nachman, and Mark Yarvis. Design
and Deployment of Industrial Sensor Networks: Experi-

ences from a Semiconductor Plant and the North Sea. In
SenSys, Nov 2005.

[6] Sukun Kim. Wireless Sensor Networks for Structural
Health Monitoring. Master’s thesis, U.C.Berkeley, 2005.

[7] Jeongyeup Paek, Krishna Chintalapudi, John Cafferey,
Ramesh Govindan, and Sami Masri. A Wireless Sensor
Network for Structural Health Monitoring: Performance
and Experience. InEmNetS-II, May 2005.

[8] Manuel E. Ruiz-Sandoval.Smart Sensors for Civil In-
frastructure Systems. PhD thesis, University of Notre
Dame, Indiana, 2004.

[9] Pei Zhang, Christopher M. Sadler, Stephen A. Lyon, and
Margaret Martonosi. Hardware Design Experiences in
ZebraNet. InSenSys, Nov 2004.

[10] Alex Pentland, Richard Fletcher, and Amir Hasson.
DakNet: Rethinking Connectivity in Developing Na-
tions. IEEE Computer, Jan 2004.

[11] Bhaskaran Raman, Kameswari Chebrolu, Naveen Mad-
abhushi, Dattatraya Y Gokhale, Phani K Valiveti,
and Dheeraj Jain. Implications of Link Range and
(In)Stability on Sensor Network Architecture. InWiN-
TECH, Sep 2006.

[12] Exploration of Sensor Network Field deployment on a
large Highway Bridge and condition assessment.http:
//healthmonitoring.ucsd.edu/documentation/
public/Vincent_Thomas_Testing.pdf.

[13] Miklos Maroti, Branislav Kusy, Gyula Simon, and Akos
Ledeczi. The Flooding Time Synchronization Protocol.
In SenSys, 2004.

[14] Hoi-Sheung Wilson So, Giang Nguyen, and Jean Wal-
rand. Practical Synchronization Techniques for Multi-
Channel MAC. InMOBICOM, Sep 2006.

[15] Jerry Zhao and Ramesh Govindan. Understanding
Packet Delivery Performance in Dense Wireless Sensor
Networks. InSenSys, Nov 2003.

[16] Alec Woo, Terence Tong, and David Culler. Taming the
Underlying Challenges of Reliable Multihop Routing in
Sensor Networks. InSenSys, Nov 2003.

[17] Nilesh Mishra, Kameswari Chebrolu, Bhaskaran Ra-
man, and Abhinav Pathak. Wake-on-WLAN. InThe
15th Annual Interntional World Wide Web Conference
(WWW 2006), May 2006.

[18] Dennis Cox, Emil Jovanov, and Aleksandar Milenkovic.
Time Synchronization for ZigBee Networks. InSSST,
Mar 2005.

[19] Chipcon.Chipcon AS SmartRF(R) CC2420 Preliminary
Datasheet (rev 1.2), Jun 2004.

[20] Wei Ye, Fabio Silva, , and John Heidemann. Ultra-Low
Duty Cycle MAC with Scheduled Channel Polling. In
SenSys, 2006.

[21] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi,
Deepak Ganesan, Alan Broad, Ramesh Govindan, and

Deborah Estrin. A Wireless Sensor Network For Struc-
tural Monitoring. InSenSys, Nov 2004.

[22] Joseph Polastre, Jason Hill, and David Culler. Versa-
tile Low Power Media Access for Wireless Sensor Net-
works. InSenSys, Nov 2004.

[23] Nithya Ramanathan, Mark Yarvis, Jasmeet Chhabra,
Nandakishore Kushalnagar, Lakshman Krishnamurthy,
and Deborah Estrin. A Stream-Oriented Power Man-
agement Protocol for Low Duty Cycle Sensor Network
Applications. InEmNetS-II, May 2005.

[24] Vladimir Bychkovsky, Bret Hull, Allen Miu, Hari Bal-
akrishnan, and Samuel Madden. A Measurement Study
of Vehicular Internet Access Using In Situ Wi-Fi Net-
works. InMOBICOM, Sep 2006.

[25] Richard Gass, James Scott, and Christophe Diot. Mea-
surements of In-Motion 802.11 Networking. InWM-
CSA, Apr 2006.

[26] Michael I. Brownfield and Nathaniel J. Davis IV. Symbi-
otic Highway Sensor Network. InVehicular Technology
Conference, Sep 2005.

[27] Sensor Network Testbed Proposed.http://www.
calit2.net/newsroom/article.php?id=28. CalIT2
Newsroom.

A Glossary of Terms
Dd distance from span, at which the train can be detected
V the speed of the train
Tdc = Dd/V the maximum time between train detection

and when the train is on the span (i.e. when data collection
is due)

Tcc the period of the sleep/wakeup/check cycle
Tsl the duration of sleep inTcc
Tw the duration of wakeup inTcc
Tpc the time taken by the protocol for command issue (from

the head node to the rest of the nodes in the network)
Tdri f t the maximum drift possible between any two nodes
Terr the maximum error in clock synchronization
T∆ = Terr + Tdri f t the maximum clock difference possible

between any two nodes
Tdet the time taken by the head node to detect train arrival,

once it is in range
Tb the train beaconing period

