
energies

Review

Brine-Dependent Recovery Processes in Carbonate
and Sandstone Petroleum Reservoirs: Review of
Laboratory-Field Studies, Interfacial Mechanisms
and Modeling Attempts

Adedapo N. Awolayo 1, Hemanta K. Sarma 1,* and Long X. Nghiem 1,2

1 Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada;
adedapo.awolayo@ucalgary.ca (A.N.A.); Long.Nghiem@cmgl.ca (L.X.N.)

2 Computer Modelling Group Ltd., Calgary, AB T2L 2M1, Canada
* Correspondence: hemanta.sarma@ucalgary.ca; Tel.: +1-403-220-3065

Received: 6 October 2018; Accepted: 29 October 2018; Published: 2 November 2018
����������
�������

Abstract: Brine-dependent recovery, which involves injected water ionic composition and strength,
has seen much global research efforts in the past two decades because of its benefits over other oil
recovery methods. Several studies, ranging from lab coreflood experiments to field trials, indicate
the potential of recovering additional oil in sandstone and carbonate reservoirs. Sandstone and
carbonate rocks are composed of completely different minerals, with varying degree of complexity
and heterogeneity, but wettability alteration has been widely considered as the consequence rather
than the cause of brine-dependent recovery. However, the probable cause appears to be as a
result of the combination of several proposed mechanisms that relate the wettability changes to
the improved recovery. This paper provides a comprehensive review on laboratory and field
observations, descriptions of underlying mechanisms and their validity, the complexity of the
oil-brine-rock interactions, modeling works, and comparison between sandstone and carbonate
rocks. The improvement in oil recovery varies depending on brine content (connate and injected),
rock mineralogy, oil type and structure, and temperature. The brine ionic strength and composition
modification are the two major frontlines that have been well-exploited, while further areas of
investigation are highlighted to speed up the interpretation and prediction of the process efficiency.

Keywords: smart waterflooding; low salinity waterflooding; potential determining ions; interfacial
mechanisms; sandstone and carbonate rocks; wettability alteration; oil-brine-rock interactions

1. Introduction

The life cycle of petroleum reservoirs typically undergoes three modes of oil recovery: primary
recovery uses the reservoir natural energy; secondary recovery mainly uses an injection of water or gas
for maintenance of pressure; while the tertiary waterflooding or enhanced oil recovery (EOR) utilizes
diverse forms of injection fluid [1,2]. The recovery performance depends on several factors; such
as fluid type, reservoir management strategies, reservoir heterogeneities and drive mechanisms [3].
Almost all light-to-medium gravity oil reservoirs go through a water injection cycle to produce some
portions of the oil left behind after the depletion of the reservoir natural energy due to the ease of water
injection, water availability, small capital investment, and operating costs among other benefits [4]. It is
estimated that after the first two stages of production, the average oil recovery can only reach 10–50%
of the original oil in place (OIIP) and a considerable amount remains trapped underground [5,6].

The brine-dependent recovery process (which is also referred to as smart or low salinity
waterflooding) has gained recognition as an emerging improved and enhanced oil recovery (I/EOR)
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technique to extract more oil in sandstone or carbonate reservoirs. The process has drawn industry
attention not only because it is virtually identical to conventional waterflooding but also serves an
upgrade as it delivers higher recovery and displacement efficiency. While the process necessitates
additional surface facilities for water sourcing and disposal, it has more favourable economics
and environmentally friendlier than other I/EOR techniques. During conventional waterflooding,
the nearest accessible water supply has always been sourced for water injection, which implies that
seawater is often used for offshore applications and brine-dependent recovery, and keen attention
is paid to only the ionic content of the water to ensure compatibility. The potential of this recovery
process was first noted in the late 1950s in sandstone reservoirs [7–9] but gained significant interest
in the 1990s when the Morrow research group [10–15] published experimental findings on outcrop
and Berea sandstone rocks. Meanwhile, the recovery process was only identified in carbonate rocks
when an unexpected, remarkable success was reported during seawater injection into the Ekofisk
mixed-wet fractured chalk reservoir, significantly leading to high oil recovery [16–19]. Since these
early studies, a significant volume of research studies at laboratory-scale and a few limited field-scale
trials [20–22] have been conducted in both sandstone and carbonate rocks. Many of the published
studies showed a positive response [11,13,21,23–34], which translates into additional oil production,
but a few others showed no benefit [28,35–40]. Generally, an increase in oil recovery as high as 30%
in laboratory experiments and a decrease in residual oil saturation ranging from 2–50% in field trials
have been reported as compared to conventional water injection.

Despite its success, this process has only been explored on two major frontlines: ionic strength and
composition modification [23]. The mineralogical differences between sandstone and carbonate rocks
appear to dictate the performance of brine-dependent recovery in the different rocks. For sandstone
rocks, the presence of clay minerals and injected water salinity level as less as 2000 ppm and as
high as 7000 ppm gives optimum performance [32,33,41–43]. Meanwhile, a salinity range between
20,000–33,000 ppm appears to work well in carbonate rocks [44]. There were cases where the salinity
range of 5000–10,000 ppm resulted in improved oil recovery [26,37,45–47], but this has been attributed
to the presence of dissolvable minerals [45,48]. In addition, on the composition modification front,
the process performance is optimum using injected water with less multivalent ions for sandstone
reservoirs and more potential determining ions (PDIs) for carbonate reservoirs. PDIs (like Ca2+, Mg2+,
and SO4

2−) are those ions whose concentration in the aqueous solution controls the polarity and
density of electrical charge on the mineral surface and influence interactions between oil and the rock
surface [49]. Aside reporting oil recovery factors and residual oil saturation from displacement and
imbibition tests, most experimental studies focused on collection of a plethora of laboratory data (such
as, produced brine composition and pH, pressure differential, water cut and breakthrough, contact
angle/wettability index, zeta (ζ) potential, oil-brine interfacial tension, surface relaxation and adhesion,
etc.) to explain the recovery mechanisms [23,25,26,30,50–59]. The major consensus reached is that
wettability alteration is considered as a consequence rather than as a cause of the processes underlying
brine-dependent recovery process. Several different mechanisms have been proposed to justify the
wettability shift towards less oil-wetness as will be discussed further in this paper. Despite all the
research efforts, there appears to be no unanimity about the recovery mechanism. There have been
inconsistencies in the report of many experimental studies. In addition, the some of the proposed
mechanisms could only explain cases that showed a positive response and failed to explain cases with
no significant benefit. Nonetheless, there are ongoing studies to reconcile how the wettability alteration
occurs, as it is required for any dominant mechanism to elucidate and predict both successful and
failed cases of brine-dependent recovery.

Despite this shortcoming, few modeling works [60–72] have been performed to simulate
pore-to-surface-scale mechanisms that have been proposed to explain the complex oil-brine-rock
interactions. Even so, a correct representation of the pertinent mechanisms in a mathematical model
is required for an accurate prediction of fluid flow. Most modeling attempts to present solutions to
the mathematical equations describing brine-dependent recovery process have explored numerical
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approximations, while a few have attempted the application of analytical solutions [69,70,73,74].
The practical value of these models lies in the fact that they aid to improve interpretations of
the process and help conduct fast sensitivity computations. This review addresses the subjects of
current interests about gathering information on past and recent developments, and challenges of
brine-dependent recovery processes in sandstone and carbonate rocks. There have been several recent
summaries that discussed different aspects of this subject [75–83]; hence, this review builds upon
these summaries to further explore the published data to build theoretical understanding and identify
potential opportunities for further investigation. Overall, the outcome of this review will potentially
be of immense benefit to the oil industry.

The first part of the review will focus on describing the different systematic observations from
laboratory experiments and field studies, taking into consideration the critical factors affecting the
process performance. In the second part, the proposed fundamental mechanisms with its associated
contradiction and resolutions will be discussed. The second part will be followed by outlining the
major modeling attempts, including their potential challenges and lessons learned. Finally, a summary
of the major compatibility issues associated with the injection water and the possible remediation will
be presented and conclude with main highlights and potential opportunities for further investigation.

2. Laboratory Experimental Studies

Ever since waterflooding has been introduced to recover hydrocarbons left after the primary
recovery process, numerous attempts to investigate the fundamental mechanism have been made in
order to understand, design and optimize the displacement process [84,85]. The driving mechanism
was then seen more as a physical process, and less attention was paid to the process chemistry. It was
not until 1950 when some researchers [8,9] noted an improved production after freshwater injection
during core experiments, which they credited to sweep efficiency as a result of clay swelling and
pore throat plugging. However, the process chemistry considering the quality of the injected brine
did not generate significant attention until the 1990s. The earliest comprehensive study undertaken
by Morrow and colleagues [11–14,86,87] demonstrated the effect of oil-brine-rock interactions on
improving oil recovery in a clay-rich rock formation and presented additional oil recovery from the
brine-dependent process due to salinity gradient and wettability shift. Since then, numerous studies
have been conducted with most tests showing positive results [13,21,23–34], while no response was
observed in other tests [28,36–40].

Because of the large size of subsurface rocks with diverse mineralogical contents occupied by
complex reservoir fluids, systematic investigations are usually conducted at all levels (from the
molecular scale to macroscale, see Figure 1) in no particular order to completely understand and
reliably predict subsurface processes. The scale of investigation often determines the type and degree
of effects that are observed about gaining a complete knowledge of the process. As such, a systematic
investigation of brine-dependent recovery has been explored at molecular scale (from atomic to
nanometric level) through Atomic Force Microscopy (AFM), scanning electron microscopy (SEM),
nuclear magnetic resonance (NMR) and ζ-potential. At micro-scales, experiments (such as coreflooding,
spontaneous imbibition, chromatographic and contact angle tests) typically investigate crude oil and
brine flowing through or occupying pore spaces in the order of micrometres up to centimetres. Then,
mechanisms and integrated effects can be further examined in a more magnified view at the macro-scale
level through field trials and implementation.

Most of the laboratory evidence to support improvement in oil recovery during the
brine-dependent process is mostly presented at different reservoir conditions through coreflood
experiments (at microscale), in both secondary and/or tertiary mode, and augmented by spontaneous
imbibition experiments. Some of the coreflood experiments are performed at low flooding rate
(<3.53 × 10−6 m/s or 1 foot/day) on short core samples, which often results in the erroneous
estimation of residual oil saturation, because the fluid movement and production are susceptible
to capillary end-effects [88]. Meanwhile, increasing the injection rates to reduce the capillary
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end-effects did not lead to remobilization of trapped oil in many studies [25,89,90], which emphasized
the positive impacts of the injected brine on improved oil recovery. Spontaneous imbibition, on
the other hand, is not only used to determine the initial wetting state but also to quantify the
associated wettability changes when invading brine enters the pore-space [11,91,92]. This has
reportedly yielded higher imbibition rate and total oil production with the invading brine in both
secondary and tertiary mode [11,13,31,48,93]. Moreover, for wettability assessment, a lower rate and
smaller extent of imbibition often indicate oil-wetting nature, while higher rate and larger extent
of imbibition are indicative of water-wetness [13]. Determination of the rock surface wettability
inferred/directly measured through different techniques at both molecular and micro scales such as
contact angle measurements [25,26,94–96], chromatographic test [57,59,97], electrokinetic (ζ-potential)
measurements [51,56,98–100], NMR [25,101,102], AFM [54,103,104], etc., has reported data consistent
with a change to more water-wet conditions.

 

ζ

 

−

ζ

Figure 1. R&D-to-Field sketch of the systematic investigation for brine-dependent recovery design and
implementation (adapted from Sarma [105]).

The chromatographic test is a technique centred on the chromatographic partitioning of two
water-soluble compounds, an adsorbing ion (like PDIs) and a non-adsorbing tracer ion (like SCN−),
with the aim to calculate the water-wet fraction after the rock samples are exposed to various brines.
The ratio of the area between the relative effluent concentration of the two water-soluble compounds
and the corresponding area of completely water-wet cores are then related to the wetting conditions
(0—oil-wet and 1—water-wet) of the rock samples [106]. The contact angle measurement is used
to quantitatively express the degree of wetting when a solid surface is in contact with two fluids as
measured through the denser fluid. The oil-wetting condition is often considered to be greater than
115◦, water-wetting as less than 75◦ while intermediate/neutral wetting is considered to be between
both extremes [107]. AFM is used to directly measure intermolecular adhesion forces between two
surfaces by generating force-distance curves, which provide valuable information about hydrodynamic
interactions between deformable surfaces, the nature of each force, surface energies and indirect clues
of surface mineral chemistry [108]. The ζ-potential measurement is used to evaluate the electrokinetic
behaviour of two interfaces in contact; the positive magnitude of one interface as compared to the
negative magnitude of the other interface often result in electrostatic attraction between the two
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interfaces and consequently rupture the thin water film layer and lead to less water-wetness, and
vice versa [109]. NMR is often based on T2 relaxation time and surface relaxivity of fluid samples
in a porous rock to determine different rock properties, especially pore occupancy and wettability
because the relaxation time of the wetting phase is shorter than the bulk fluid phase [47,101,102].
These different scales of investigation have been well tested, though some were more tested compared
to others, many of which will be discussed below. However, studies [25,30,110–112] that reported
interfacial tension measurements were not highlighted in this review because changes in the brine-oil
interfacial tension observed is considerably less to associate the recovery process to IFT reduction
compared to those associated with gas-dependent recovery processes and alkaline waterflooding.

Based on these previous studies, various aspects of the experimental method have been
investigated, including reservoir and the injected brine parameters, to identify the optimum condition
for brine-dependent process performance. The important parameters which have been given much
attention in the literature in recent years, include the injection brine composition and ionic strength,
connate water composition and saturation, rock type, clay content and type of clays present in the
rock material, temperature, initial wettability of the rock surface, and crude oil composition and its
acid/base number, as summarized below.

2.1. Connate Water Content and Saturation

Most oil reservoirs initially contain formation water, which is highly saline and more often contains
a high concentration of multivalent ions. Table 1 compares the variation in water compositions in
different regions with successful brine-dependent recovery field application, such as the Endicott,
Ekofisk and Arabian Gulf. The Ca2+ concentration is usually high in the formation water and can be a
factor of more than ten as compared to that of Mg2+ [113,114]. The composition, salinity and saturation
of the connate reservoir water can significantly influence the initial rock wetting state, which in turn
based on its interactions with the injected water affects the efficiency of oil recovery.

Table 1. Different common formation water and seawater contents applied during brine-dependent
recovery process (adapted from [21,25,79,115].

Ions
Seawater (ppm) Formation Water (ppm)

Endicott Ekofisk North Sea Arabian Gulf Endicott Ekofisk North Sea Arabian Gulf

Na+ 10,812 10,345 18,043 11,850 15,748 59,491
K+ 386 391 0 110 0 0

Ca2+ 402 521 652 320 9258 19,040
Mg2+ 1265 1093 2159 48 607 2439
Ba2+ 0 0 0 7 0 0
Sr2+ 7 0 11 24 0 0
Fe2+ 0 0 0 10 0 0
Cl− 18,964 18,719 31,808 17,275 42,437 132,060

HCO3
− 147 122 119 2000 0 350

SO4
2− 2645 2305 4450 63 0 354

CO3
2− 0 0 27 0 0 0

TDS 34,628 33,498 57,269 31,707 68,051 213,734
Ionic Strength 0.688 0.659 1.146 0.541 1.453 4.317

pH 7.7 6.5

2.1.1. Sandstone Rocks

It was documented that a reduction of initial water saturation results in a shift towards
oil-wetness [11,15]. Xie and Morrow [92] observed that a decrease in initial water saturation (in
the range 9.6–31.2%) systematically increases the imbibition rate for weakly water-wet rocks. Tang and
Morrow [13] observed a similar oil recovery and imbibition rate from a high-saline water injection
and a low-saline water injection in cores aged in crude oil with no initial formation brine. The authors
emphasize that the presence of initial water play a key role in the mechanism by which oil recovery can
be affected by salinity. Zhang and Morrow [116] observed improved oil recovery in both secondary
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and tertiary injection modes in oil-aged sandstone rocks and reported better response to oil recovery in
the secondary mode as initial water saturation increases. Meanwhile, Sharma and Filoco [35] reported
that the connate water salinity primarily controls the oil recovery efficiency, similar to observations
made by Tang and Morrow [12]. With varying connate water salinities (0.3%, 3% and 20% NaCl) and
the injected water salinity of 3% NaCl, the oil recovery was higher when the connate water salinity
was reduced. This was attributed to wettability alteration from water-wet conditions to mixed-wet
conditions. This is in line with the fact that as injection salinity increased; the electrostatic repulsion
reduces, leading to the electrical double layer contraction, which would result in less stable water
layer films. In another study, Lager et al. [24] argued that multivalent ions must be initially present
to promote an oil-wetting state of clay mineral surfaces through cations bridging mechanisms. They
reported that no positive response was observed in cores (where multivalent ions were removed from
the mineral surfaces, prior to ageing in oil and high saline brine with no multivalent ions) flooded
with the same brine of lower salinity. The argument of the initial presence of multivalent ions and
its effect on rock wettability was further supported by numerous studies [11,32,95,117,118], though
other key parameters were also identified. Similarly, Buckley et al. [119] observed that the initial brine
composition influences the wetting alteration and Ca2+ ions are specifically involved in ion-binding
mechanisms for highly acidic oil. Meanwhile, the apparent wettability was independent of brine
compositions for less acidic crudes [120].

In contrast, Suijkerbuijk et al. [114] found an obvious dependency of similar less acidic crudes on
initial brine compositions and further reported that cores aged with Ca2+-rich formation brine became
less water-wet compared to those aged with the same concentration of Mg2+-rich formation brine
(wettability to oil-wetness in the order Na+ < Mg2+ < Ca2+). Several other studies (like [8,100,121]) have
shown that in the absence of multivalent ions, positive benefits are still observed when the brine salinity
is reduced. Li [122] reported higher incremental recovery in the absence of initial water saturation
during secondary and tertiary injection modes for the weakly water-wet core. They concluded that
with same rock wettability, oil recovery increased with lower initial water saturation while at same
initial water saturation, oil recovery increased with reduced water-wetness. Gamage and Thyne [123]
reported that 6–8% more oil was produced in the secondary mode when the water saturation was
low compared to a tertiary mode with the same low saline brine in Berea sandstone while 10–22%
more oil was produced for Minnelusa rock. Rezaeidoust et al. [124] proposed that the initial pH of
the connate water also plays a critical role; with reduced pH, the adsorption of organic material in
the oil onto clay minerals is promoted [41,125,126]. The authors stated that the positive response from
brine-dependent recovery was doubled when CO2 was present, as the presence of CO2 decreased
the initial pH. This was supported by numerous studies (such as [12,21,33,41,95,118,124]) that further
established a link between an increase in effluent brine pH and improved oil recovery as low saline
brine is injected, which indicates wettability changes. A few other studies (such as [24,33,124,127])
have reported constant pH through the flooding process rejecting the claim of a link between the pH
gradient and observed oil recovery.

2.1.2. Carbonate Rocks

In contrast to sandstone rock, an increase in initial water saturation up to 34% leads to an
increase in imbibition rate in Chalk as reported by Viksund et al. [128]. It was reported that the scaled
imbibition curves for chalk in the absence of initial saturation closely agrees with that of sandstone
rock. Strand et al. [97] reported twice the oil recovery observed using similar salinity brine in the core
with the initial saturation of 9.1% than that of 14.8% initial water saturation, even though much of
the improved recovery was attributed to the presence of sulfate in water injected into 14.8% water
saturated cores. Similarly, Puntervold et al. [129] compared the effect of a range of initial water
saturations (high—30–50%, low—10% and no water saturation—0%) on oil recovery and observed
that the cores became less water-wet as the water saturation decreases. This led to reduction in the
imbibition rate and it was proposed that at low water saturation, high oil saturation increases the
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amount of crude oil surface-active materials such that the oil can easily adsorb on the rock surface. In
a subsequent study, Puntervold et al. [130] observed no difference in oil recovery when two cores were
initially saturated with deionized water at 22% and 10% water saturation, respectively and flooded
with similar brines at 90 ◦C and 130 ◦C. The authors further proved through chromatographic tests
and spontaneous imbibition that a small amount of sulfate in the formation brine can significantly
improve the rock water wetness and oil recovery. A similar study conducted on Stevns outcrop
chalk reported that when initial sulfate was removed from the core by flooding with distilled water
prior to aging, the effect of sulfate on the oil recovery was greater compared with core plugs where
the sulfate was initially present [131]. Furthermore, Shariatpanahi et al. [113] conducted additional
studies on impacts of sulfate present in the initial brine on the initial wetting state and confirmed that
increasing sulfate concentration to 2 mmol/L increased oil recovery and decreased water-wetness. The
improvement in oil recovery and water-wetness was reported to increase as the aging temperature
decreased (130–50), while no noticeable improvement was observed as the sulfate concentration was
increased beyond 2 mmol/L in the initial brine. In addition, Zhang et al. [93] reported that increasing
Ca2+ concentration in the initial brine has a very marginal effect on the rock wetting condition. In a
recent study by Shariatpanahi et al. [132], it was shown that increasing Ca2+ concentration decreased
the water-wetness while Mg2+ in the formation brine makes the rock more water wet.

2.2. Crude Oil Composition

Crude oil usually contains both acids and bases that are ionizable and exhibit surface activity [133].
The ionizable acidic and basic surface-active groups of the crude oil form as a result of the presence of
typical hetero-elements (like nitrogen, oxygen, and sulphur) found in oil [134]. Petroleum bases are
identified as heterocyclic aromatics with nitrogen atom, quantified by basic number (BN); while the
quantity of carboxylic materials in crude oil are used in characterizing petroleum acids, quantified by
acid number (AN). The carboxylic group and the nitrogen-containing bases, as mostly found in crude
oil heavy end fractions, i.e., asphaltene and resins, plays such a vital role on the rock initial wetting.
The polarity and the chemical properties of crude oil as determined by its ionizable acidic and basic
surface groups can influence rock wettability [119].

2.2.1. Sandstone Rocks

Various earlier studies [134–138] have described the role of heavy fractions, asphaltenes or acid
and basic components in crude oil on rock wetting state. However, not all crude components have been
reported to be influential in altering the preference of the rock towards oil wetting. Denekas et al. [134]
presented that sandstones seem not to have any selective affinity for a specific type of polar product,
as both the acidic and basic components of the crude oil alters the rock wettability. The authors also
established a trend of increased wettability effect as the boiling point and molecular weights of the
crude oil fractions increased, which was similar to observations made by Cuiec [135]. Elsewhere,
Ehrlich [136] showed that removing the acid fraction of the crude oil subjects the Berea sandstone rock
to preferential oil wet nature. Many authors have also found that the basic component is strongly
adsorbed on the surface of glass [137,138] and quartz [139], whereas the acidic component (stearic acid)
is not. Meanwhile, several other authors (such as: [87,135,138,140–144]) have declared the prominence
of the heavy fractions, especially asphathene, in promoting sandstone rock affinity to oil. This was
further supported by further studies [135,145], where it was highlighted that asphathene was the
most highly retained fractions of the crude oil when comparing the fraction of the oil before and after
with sandstone rock. In contrast, Johansen and Dunning [146] demonstrated that propane fraction
precipitates from Rio Bravo, Tatums and Bartlesville Dewey promoted the oil wettability of a glass
surface. While Ehrlich [136] showed that deasphalted propane precipitates lower the affinity of the oil
towards the Berea sandstone rock.

Many of these studies, as discussed above, were conducted in the absence of interstitial water,
however as pointed out by Cuiec [135], same rock/crude-oil interactions would have occurred in the
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presence of interstitial water but more impact would be on the kinetics and the distribution of retained
oil fractions. A number of studies were conducted by Buckley and coworkers [119,147–149] on the
relationship between wettability and oil composition, where they categorized the variety of ways
the functional groups in oil can rapidly interact with the rock surfaces to alter the rock wettability
in the absence of water as polar interactions. Yildiz and Morrow [14] ascribed the difference in oil
recovery when similar low saline brine was injected into two different oils (Moutray and Alaskan)
to the wettability difference created by crude oil. Similarly, Jadhunandan and Morrow [11] carried
out a wettability and coreflood experiment on two different oils and reported that the oil with higher
asphaltene content and acid number showed higher sensitivity to wettability changes under brine
composition changes and distinctly higher recovery efficiency. Tang and Morrow [12] observed that
the addition of light components to the crude oil led to decrease in water wetness of the rock through
spontaneous imbibition. This was further affirmed by Buckley et al. [119] that increasing the proportion
of poor asphaltene solvent in the oil can decrease the water wetness. The crude oil/brine/rock
interaction through which the wettability was altered was categorized surface precipitation, where
destabilization and precipitation of asphaltene resulted in more adsorption of asphaltene and less
water wet conditions. Meanwhile, for the acid/base interactions, Buckley et al. [119] emphasized that
the functional groups in both the crude oil and rock phases can behave as acids and bases depending
on the salinity of the brine composition and the interaction pH to adsorb oil at the rock surface.
They observed that three oils with increasing ratio of base to acid numbers resulted in less water
wetting nature as the basic component in the oil adsorbed onto the acidic silica surfaces. It was
further stated that a combination of oil compositional characteristics (G-AB parameters—API gravity,
acid and base numbers) is required to give a qualitative indication of the extent to which oil alters
wettability [148]. Similar observations on base/acid ratio were made by Skauge et al. [150] as they
reported an increase in contact angle (more water-wet behavior) with increase in base/acid ratio. It
was proposed that as the base number increased, the number of positive sites at the oil/water interface
would increase and consequently enhance its electrostatic attraction towards the negatively charged
quartz/water interface.

In another study, Lager et al. [24] stated that there is no direct correlation between improved
recovery by low saline brine and acid number of crude oil as some of the best coreflood experiments
were carried out on crude oil with low acid number (AN < 0.05) as opposed to different studies
(especially alkaline flooding) that showed that high acid number is necessary to induce wettability
reversal. Jackson et al. [75] also found no correlation between improved oil recovery and acid number
by collating data sets from different sources (see Figure 2). Rezaeidoust et al. [124] compared oil
recovery from two opposite crude oils and stated that the oil with high basic content gave lower
recovery, indicating less water wetness during high saline secondary recovery. They acknowledged
that the basic component is strongly adsorbed to the negatively charged quartz as compared to
the acidic component during high saline water injection. However, both oils gave quite similar
recovery during the tertiary low saline injection and concluded that both basic and acidic components
in the crude oil contributed to the adsorption onto clay minerals. Furthermore, Fjelde et al. [120]
conducted flooding experiments in packed columns with reservoir rock and reported that polar oil
components were more retained when using oil with the highest base/acid ratio and the retention
was not dependent on brine salinity. In contrast, Suijkerbuijk et al. [114] could not clearly correlate
asphaltene stability, acid and base numbers to wettability changes as oils with varying asphaltene
content and acid and base numbers gave diverse oil-wetting behavior. Meanwhile, observations from
both interfacial tension and contact angle experiments indicate that acid structures/types are more
important than acid concentrations, as oil enriched in phenols, alkyl and cyclic acids had more impact
on silicate surface wetting whereas more complicated aromatic ring-structured acids did not affect
the rock wetting state [151]. In a recent study, Mwangi et al. [152] observed that the AN alone is not
sufficient to predict the effect of crude oil on wettability as different acids do have opposite effects.
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It was reported that long-chained acids decreased water wetting as salinity was reduced, while the
short-chained acids increased water wetting under the same conditions.

 

Figure 2. Collection of data showing lack of correlation between improved oil recovery and acid
number (AN) of the crude oil (see more information about the plotted data in Jackson et al. [75]).

2.2.2. Carbonate Rocks

In contrast to their observations on sandstone rocks, Denekas et al. [134] confirmed that limestones
seem to be more sensitive to basic products containing nitrogen. Many other authors [153–155]
have expressed contradictory opinions about the above assertion that indicate the possibility of the
chemisorption of the acid components (most notably naphthenic acids) of crude oils on the basic
carbonate surface. The differences in opinions could be as a result of increased decarboxylation of
carboxylic material in crude oil at elevated temperatures, catalyzed by the presence of formation
itself (CaCO3), and leading to a reduction in acid number compared to basic number over geological
time [156]. In a different study, Standnes and Austad [91] reported that acid number is a crucial
wettability factor for carbonate rocks as the imbibition rate and water-wetness was observed to decrease
as the AN increased in the absence of initial water (see Figure 3). The authors didn’t observe any
correlation between the imbibition rates and the asphaltenes content and stated that the functional acid
groups did not dominate the asphaltene fraction of the oil. In several tests performed on chalk wetting
properties using oils with different AN (0.17–2.07 mg KOH/g) and synthetic seawater, an increased
water-wetness as the AN decreased was reported by Zhang and Austad [157]. Austad et al. [45] also
compared imbibition rate of limestone cores aged in two different crude oils, imbibed in formation
water and reported that the imbibition rate decreased as the AN increased, while the contribution from
BN was ignored. In a similar study, the imbibition rate was observed to further increase as the brine
was switched to brine of higher sulfate concentration with increased AN [158].

A wider range of organic compounds were investigated for carbonate rock adsorption and
wettability by Thomas et al. [159]. Fatty acids were observed to strongly and nearly irreversibly adsorb
to the carbonate surface, whereas aromatic and branched carboxylates and long chain acids were
moderately adsorbed and alcohols, amines, short-chain acids were weakly-adsorbed/non-adsorbed.
It was also stated that the overall structure of the compound determined its adsorption strength,
for example, the small size of the carboxyl group and long straight chains of the fatty acids lead
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to formation of a closely-packed hydrophobic layer, thereby providing multiple attachment sites to
stabilize the adsorption and make the carbonate surfaces oil-wet. Standnes and Austad [91] also claim
that carboxyl groups are the most active polar functional groups of crude oil in adsorbing organic
material onto the chalk surface. Several other authors [152,160–163] have shown that long chain acids
are the most effective among researched acidic species to alter the carbonate rock to a more oil-wet state.
Despite that the effect of basic materials on wettability was not widely studied, Puntervold et al. [129],
observed that an increase in the amount of natural bases led to decrease in water-wetness as AN was
held constant. It was suggested that the natural base forms a large molecular weight acid-base complex
to be in equilibrium with the carboxylic materials in the oil, thereby preventing the carboxylates from
adsorbing to the rock. In many of the discussed studies, it is well agreed that the AN and BN of
the crude oil, associated with the presence of long chain acids, play a significant role in wettability
alteration of carbonate surfaces.

 

 

Figure 3. Effect of acid number (AN) on spontaneous imbibition of brine into chalk cores saturated
with different crude oil (reproduced from Standnes and Austad [91] with permission).

2.3. Rock Mineral Composition

Different rock types have varying mineral compositions that affect the rock’s surface area, grain
structure, crystalline texture, and reactivity towards diverse ions in brines and this reflects the
heterogenous nature of the reservoir and difference in their responses towards brine-dependent
recovery processes. Therefore, understanding the effect of rock properties as it influences the initial
wetting state and response to brine-dependent recovery is essential for valid comparison.

2.3.1. Sandstone Rocks

Sandstone rocks are composed of many different minerals primarily of the silica type (most
commonly quartz, feldspar, and clays) that are negatively charged at the typical reservoir pH range.
Typical clay minerals include swelling clays like smectite (montmorillonite) and non-swelling clays
like kaolinite, chlorite, and illite [52,164]. The importance of clay content and type has been widely
studied amidst all the silica type minerals of sandstone rocks and has been identified to be significant
by acting as cation exchangers in promoting the adsorption of oil polar components to the rock surface.
Early studies by various researchers [7–9,165–167] have related the improvement in oil recovery with
low saline brine to the presence of clay in both synthetic and natural cores, which is accompanied with
clay swelling and pressure drop increment. Further investigation conducted by Tang and Morrow [13]
reported no increase in oil recovery as low saline brine was injected into sandstones with destroyed
clay structure through firing and acidizing. Meanwhile, sandstone cores with higher clay content
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exhibited higher imbibition rate and oil recovery. Similarly, Wickramathilaka et al. [168] suggests that
higher incremental recovery by low saline brine was achieved by cores of higher total clay content.
It was also suggested that based on no significant difference in responses to imbibition and waterflood
by two sandstone rocks of widely different clay content, different pore geometry and concomitant clay
mineral distributions may have impacted the results. Austad et al. [52] argued that brine-dependent
recovery is more favored by clay minerals with high cation exchange capacity (CEC), which varies in
the following ascending order of clay types: kaolinite > chlorite > illite > smectite [52,75,164,169,170].
Several other studies worked on the premise of the necessity of clay minerals for optimum performance
of brine-dependent recovery, without identifying the clay minerals type(s) that had a greater impact
on flooding performance. Zhang and Morrow [116] identified the significance of the type of clay
mineral and attributed the lack of response to low saline brine in a block of Berea sandstone samples
to the presence of chlorite, serving as baffles to inhibit kaolinite mobility and contact with the oil,
similarly observed by Ligthelm et al. [32]. Similar observations were made by Tong et al. [171] as
electron micrographs showed coating of grain surfaces by chlorite and no response in oil recovery was
observed even though pressure changes was observed. Researchers at BP [172,173] later published a
correlation that suggested that oil recovery with low saline brine increased as the kaolinite content
increased. Kaolinite was considered effective, because of its high surface charge density and pH
dependency of its surface charge [174], which makes its surface electric effect much greater when
compared to other clay minerals. Similarly, Rezaeidoust et al. [42] observed a decrease in oil recovery
from 6% to 2% when clay content reduced from 16 wt.% to 8 wt.%.

In a pore-scale study conducted by Lebedeva and Fogden [175], low saline brine injection was
observed to improve recovery in quartz sandpacks with kaolinite-coated mineral, ascribing that the
oil-wetness wettability due to kaolinite was altered to more water-wetness. Hassenkam et al. [103] also
stated results from AFM experiments on sandstone minerals model surfaces (like silica, illite and mica)
that the carboxylic acid is less adhered onto the amorphous silica and mica surfaces during exposure
to low saline brine, while the adhesion was the same on illite during exposure to both low and high
saline brines. Improvement in oil recovery has also been demonstrated with other clay mineral types
(like chlorite, Illite, and muscovite) in the absence of kaolinite [118]. Likewise, several other studies
(like [29,104,176,177]) have observed oil recovery improvement in clay-free sandpacks and sandstone
cores. It was proposed that oil component adsorption on quartz surfaces [54] and the presence of
anhydrite/dolomite cementing the quartz matrix [104,176] may have triggered wettability alteration
that led to improvement in oil recovery. Lee et al. [178] conducted small angle neutron scattering
experiments (SANS) to identify and characterize the presence and structure of water layers using
different sandstone particles and reported a more amplified sensitivity in water layer thickness with
clay surfaces than silica surfaces. Hilner et al. [54] also stated that the decrease in adhesion observed
through AFM on quartz is at least one order of magnitude less than on clay surfaces, because of the
much lower surface charge on quartz compared to the type of clay minerals usually found in sandstone.
Brady et al. [179] stated that the quartz surface site is composed of a Si site (>SiOH) while clay like
kaolinite is composed of an Al and Si site (>Al:SiOH) as illustrated in Figure 4. The main difference
is that kaolinite possesses more negatively charged sites at higher pH and its Al site can acquire a
H+ to become positively charged at low pH, while quartz surfaces are negatively charged above a
pH of 2. Both mineral surfaces showed a similar trend with increasing pH and NaCl brine salinity.
Therefore, it is possible to observe improved water-wetness due to low saline brine injection on quartz
grain, but the presence of clays can either increase pore surface charge or provide a higher surface
area and an anchor point for the oil compounds to further increase the effect of wettability changes.
In addition, cores particles solely containing different clay types, such as kaolinite, illite, chlorite and
montmorillonite, have been reported to show similar electrostatic behavior with quartz-dominated
Berea sandstones [56,180]. In several other studies (like [33,38,116]), it was reported that sandstone
reservoir rocks responded better to low saline brine than outcrop rocks, which demonstrated that
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different sources of sandstone show varying responses to brine-dependent recovery due to different
pore geometries and grain structures [168].

 

−

Figure 4. Possible oil-clay electrostatic attraction bridges that can influence oil adhesion onto the clay
surface based on surface complexation reactions at the oil surface site (top), kaolinite edge (middle

left) and quartz edge (middle right) (adapted from Brady et al. [179]).

2.3.2. Carbonate Rocks

On the other hand, carbonate rocks are primarily composed of calcite (CaCO3) and dolomite
(CaMg(CO3)2), with a variety of other minerals like anhydrite/gypsum (CaSO4), magnesite
(MgCO3), Aragonite (CaCO3), apatite (phosphate source), quartz, siderite (FeCO3), evaporite, pyrite,
etc. [181,182]. Carbonate rocks often experience different post-depositional chemical/physical changes,
which results in corresponding changes in rock properties, such as surface area, reactivity, permeability,
porosity, faults, fractures, and wettability. Studies by various authors (like [183–185]) have shown that
mechanical properties (such as strength, yield, and bulk modulus) of chalk is weakened (decreased)
when flooded with seawater containing SO4

2− ions, which can enhance compaction and cause a minor
change in permeability as compared to distilled water and seawater without sulfate. The resulting
large-scale heterogeneity often generates complex fluid flow paths, which has been shown to increase
oil displacement through ionically-modified brine injection from the matrix blocks by well-connected
induced fractures [186], compared with non-connected fractured cores. Meanwhile, it has been
shown that the surface area and the reactivity towards PDIs in the injected brine vary for different
carbonates. Several parametric studies have demonstrated that chalk (a pure biogenic calcite) is
highly reactive to PDIs as their adsorption can change the surface charge of the rock and alter rock
wettability [31,57,59,93,106,158,187–189]. The degree of sulfate ions adsorption was found to be
different depending on the chalk type [131,183,190] and proportional to the surface area of the specific
chalk [183]. Further studies by Fathi et al. [28] suggested that NaCl-depleted seawater is more reactive
to the chalk surface as its imbibition rate and ultimate oil recovery increased relative to ordinary
seawater and further improvement was observed when NaCl-depleted seawater was spiked by
sulfate [191], while increasing NaCl concentration led to decrease in oil recovery. However, limestone,
which is less homogeneous than chalk with smaller surface area, has been reported to have a similar
affinity towards PDIs, although the reactivity is less than it is for chalk [23,32,34,97]. As for chalk,
NaCl-depleted seawater appeared to be an even better wettability modifier in limestone than ordinary
seawater [34,39].
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On the other hand, injection of low saline brine in chalk cores did not result in additional
recovery [28,37,45]. In the same study, Austad et al. [45] reported oil recovery improvement when
limestone cores containing anhydrite was flooded with low saline brine. The study indicated that the
improvement in oil recovery recorded by Yousef et al. [47] on limestone core was as a result of anhydrite
dissolution that led to in-situ generation of SO4

2− ions. The authors claimed that the presence of
anhydrite is essential for the success of brine-dependent recovery in cases where injected brine contains
little/no SO4

2− ions. Meanwhile, Romanuka et al. [46] conducted spontaneous imbibition experiments
on limestone cores (primarily calcite) and showed that brine dilution contributed to an incremental
recovery up to 2–4% OOIP, whereas NaCl-depleted seawater had no recovery benefit. Zahid et al. [37]
also reported a substantial increase in oil recovery with diluted seawater on carbonate cores free
of dolomite/anhydrite, and suggested that rather than anhydrite dissolution, calcite mineral rock
dissolution leading to fines migration was the plausible mechanism for the incremental recovery.
Dolomite core, which predominantly contains dolomite, has been reported to have a similar surface
reactivity towards PDIs in the injected brines, however is weaker compared to chalk and limestone
cores [46,99,132,192]. Shariatpanahi et al. [132] reported that the presence of sulfate ions (either through
the injected brine or anhydrite dissolution [46]) is essential to observe oil recovery benefits and the
brine salinity was suggested to be low to increase surface reactivity of dolomites to PDIs. The degree
of improvement in oil recovery and wettability alteration has been observed to differ based on the
mineral composition, grain structure, deposition and crystallographic origin of carbonate rocks [99]. In
the study by Mahani et al. [99], it was observed that adhesion between carbonate rocks and oil varies
in the following descending order: dolomite > calcite crystal > limestone > chalk for the same type of
brine and oil, which signifies that rock surface reactivity is the reverse order (see Figure 5). Likewise, it
was reported that limestone showed negative ζ-potential in all tested brines, while dolomite showed
more positive ζ-potential, which was related to higher charge density on dolomite, because of the
presence of Mg2+ in its crytaline lattice.

 

−

−
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ζ

−

ζ

ζ
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Figure 5. Comparison between ζ-potential of chalk, calcite, limestone and dolomite in different brine
salinity (plotted in log-scale) at reservoir pH of 7 (left) and in 25 times diluted seawater at pH range
6–11 (right) (reproduced from Mahani et al. [99] with permission).

Additionally, different types of outcrop chalk cores were reported to have a diverse degree of
reactivity towards SO4

2− ions with its associated oil recovery benefits due to their mineral depositions
and compositional differences [131]. Like outcrop sandstones, outcrop limestones acted completely
different from reservoir limestone in wettability alteration studies, which showed that diverse sources
of rock could influence the systematic investigation of brine-dependent recovery process. Two outcrop
limestones were tested, both showed water-wet conditions and appeared nonreactive towards PDIs as
seawater flooding at high temperature couldn’t modify the wettability and improve oil recovery [193].
Contrary to outcrop limestones, outcrop dolomite responds to ionically-modified water in the same
way as reservoir dolomite cores [132]. In an electrokinetic study by Al Mahrouqi et al. [50], it was
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reported that natural carbonate yielded a more negative ζ-potential than synthetic calcite, due to
the presence of impurities (such as clays, organic matter, anhydrite apatite, or quartz), which yield
a negative ζ-potential compared to pure calcite. Similarly, it was reported that synthetic calcite and
pre-aged calcite rock exhibited positive ζ-potential at a low pH range and negative potential at a higher
pH (above pH of 10), which was attributed to positive species (like Ca2+ and CaHCO3

+) and negative
species (like CO3

2−) prevalence at the rock surface at lower and high pH respectively. Meanwhile,
natural calcite and post-aged calcite rock exhibited negative ζ-potential, which was attributed to the
organic materials adsorption on the calcite surface, giving it the negatively charge surface [194,195].

2.4. Temperature and Pressure

Due to the reactive nature of the brine-dependent recovery process, reservoir temperature is a
key factor that affects the activation energy required for the chemical reaction at the oil–brine and
brine–rock interfaces leading to the wettability alteration process. The influence of temperature can
be categorized into two-fold, as it affects rock wettability through the interaction of oil polar organic
compounds and the reactivity of ionic species in the brine or sensitivity of the ionic strength with the
rock surface. Pressure is mostly identified to impact the oil polar organic compounds interaction with
the rock surface due to changes in the solubility of the asphaltenic content of the crude oil. As the
reservoir pressure reduces towards bubble point pressure, the asphaltene solubility decreases, resulting
in surface precipitation and adsorption of the crude oil onto the rock surface [119,148].

2.4.1. Sandstone Rocks

The AN of crude oil is known to be dependent on reservoir temperature, which decreases as the
temperature increases because of decarboxylation of the acidic components of the oil. Like the catalytic
effect of CaCO3, presence of clay minerals or clay metallic oxides [156,196–198] has been identified
to promote the thermal degradation of crude oil but to a lesser extent compared to CaCO3 [156].
The reduction in AN could possibly lead to an increasing base/acid ratio, which has been reported
to result in less water-wetness [119,150]. There appears to be no temperature limitations to where
improvement in oil recovery due to brine-dependent recovery can be observed, though, most studies
have been conducted at temperatures below 100 ◦C. As it relates to initial rock wettability, Jadhunandan
and Morrow [11] reported that the rock water-wetness decreased as the aging temperature increased
with many other key variables held constant. Zhou et al. [199] recovered less oil for sandstone core
plugs aged at 80 ◦C compared to 25 ◦C and stated that short-term imbibition rates systematically
decreased with increase in aging time and temperature. Rezaeidoust et al. [42] suggested that aging
temperature had more impact on oil recovery compared to displacement temperature, as they only
observed improved oil recovery by aging at 90 ◦C. It was stated that large hydration energy of Ca2+ and
Mg2+ develops as temperature increases, which will increase the reactivity of both ions towards clay
mineral surface and cause ion-binding to oil polar compounds. However, displacement temperature
has been reported to play a significant role in improving oil recovery; typically as the displacement
temperature increases, the rate and extent of imbibition on Berea sandstone increases [12,86]. The only
exception that showed no temperature effect reported by Tang and Morrow [12] was when refined oil
was used in place of crude oil, which was attributed to overall effect of COBR interactions rather than
a single rock/brine interaction.

In another study by Agbalaka et al. [121] using low saline (1–2 wt.% NaCl) and high saline
(4 wt.% NaCl) brines at low to elevated temperatures, additional oil recovery was obtained in both
secondary and tertiary modes with reduction in brine salinity (from 4 to 1 wt.%) and further increased
at elevated temperatures compared to low temperatures. The observed increase in recovery at elevated
temperature was initially suspected to be due to additional reduction in fluid viscosity with increase
in temperature. However, wettability characterization using the Amott–Harvey wettability index
showed an increasing trend as the brine salinity reduces and temperature increases, which indicates
increasing rock water-wetness. However, several other studies [43,118,200] have shown an opposite
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temperature-dependence where higher incremental oil recovery was observed for low–intermediate
temperatures rather than higher temperatures with the same brine/oil/rock. Aksulu et al. [41]
observed that the pH gradient decreased as temperature increased to further support the claim that
the desorption of Ca2+ from the clay mineral surface is an exothermic chemical process [200]. It was
suggested that increase in displacement temperature will increase the reactivity of ion-binding divalent
cations and cause a proton transfer that will reduce the pH (which indirectly indicates a decrease
in water-wetness) [41]. In the electrokinetic study conducted by Vinogradov and Jackson [201], the
ζ-potential of the three different reservoir sandstones in low saline brine (0.01 M NaCl) was observed
to be negative and the negative magnitude decreased (more positive ζ-potential) with increasing
temperature, which was accompanied by reduction in pH for unbuffered experiments. While for high
saline brine (>0.5 M NaCl), the ζ-potential and pH remained constant; independent of temperature
(beyond 0.3 M ionic strength [202,203]). The temperature dependence of ζ-potential was associated
with the temperature dependence of pH as it is well known to control the surface charge of metallic
oxides of sandstone rocks. Aside from a decrease in pH with increasing temperature owed to enhanced
dissociation of water molecules, it was hypothesized that ion exchange occurred with a proton from the
silanol group being replaced by a Na+ ion from the solution [204]. Meanwhile for higher ionic strength,
Vinogradov et al. [58] suggested that maximum packing of Na+ counterions within the diffuse layer is
achieved at 0.3 M and further increase in ionic strength will have no effect on the counterion density,
thereby leading to constant ζ-potential.

2.4.2. Carbonate Rocks

In contrast to sandstone rocks, the thermal degradation of crude oil is more promoted in
the presence of calcite as substantially greater amounts of a lower carbon number hydrocarbon
is formed at a high temperature [156]. Over geological time, the thermo-catalytic effect of calcite
on the decomposition of carboxylic acids in crude oil will significantly result in reduction in AN as
the temperature increases. Because of the affinity of the carboxylic materials to carbonate surfaces
compared to other polar materials that are naturally present in crude oil, the AN strongly dictates the
wettability state of carbonate rocks, which implies that the water-wetness increases as the temperature
increases. This might explain the reason why high temperature carbonate reservoirs appear to be
more water-wet compared to low temperature reservoirs, contrarily to most sandstone reservoirs [205].
However, Zhang and Austad [157] argued that the observation is not a temperature effect, rather it is
the reduction in carboxylic acids. Typical reservoir examples mentioned by Zhang and Austad [157]
in decreasing order of water wetness are: Yates dolomite Texas field (30 ◦C, AN—1.0 mg KOH/g) >
Valhall chalk North sea field (90 ◦C, AN—0.3–0.5 mg KOH/g) > Ekofisk chalk North sea field (130 ◦C,
AN—0.1 mg KOH/g). It was further reported that cores aged at three different temperatures (40, 80
and 120 ◦C) with similar AN crude oil show insignificant differences in chromatographic wettability
test, which suggests that aging temperature have a minor impact on chalk rock wettability, provided
the oil–rock–brine system reaches chemical equilibrium during aging [157]. The authors claimed that
decarboxylation is a slow process and cannot be achieved in the aging period considered in their
experiments. Like observations made in sandstone rocks, aging temperature has been observed to
affect the wetting conditions of carbonate surface aged at 25 and 50 ◦C [206]. The core aged at 50 ◦C
was observed to reach an intermediate wetting state earlier compared to the core aged at 25 ◦C in a
contact angle measurement conducted using a synthetic brine solution (1 wt.% NaCl). Another factor
where temperature plays a role in brine-dependent recovery is the dependence of the reactivity of
brine ionic species on temperature.

A systematic series of studies has been conducted by Austad and colleagues [27,31,57,93,106,188]
to investigate the effect of temperature on the activity of PDIs in the injected brine. The reactivity
of SO4

2− towards the chalk surface was observed to increase in a chromatographic wettability test
due to increased sulfate adsorption as temperature increased from 20–130 ◦C, with a linear increase
between 40 and 100 ◦C and drastic increase above 100 ◦C [27,31]. The authors further support the
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improvement in water-wetness by reporting an increase in oil recovery by spontaneous imbibition as
the temperature increases for experiments with the same sulfate concentration in the injected brine.
The ultimate oil recovery from spontaneous imbibition of chalk cores at two different temperatures
(100 and 130 ◦C) for a fixed condition (same oil AN, initial water and varying sulfate concentration
in seawater) was observed to be smaller at 100 ◦C compared to 130 ◦C. It was stated that further
increase in the amount of sulfate in the imbibing brine at 100 ◦C could only partly compensate for the
significant difference in recovery [188]. Strand et al. [57] investigated the effect of Ca2+ and SO4

2− ions
on wettability modification of chalk surfaces at varying temperatures (90 and 130 ◦C) and reported
increase in both imbibition rate and oil recovery as the temperature increased. The improvement
in recovery was further verified through a chromatographic wettability test performed at varying
temperature (23–130 ◦C), where adsorption of SO4

2− and co-adsorption of Ca2+ increased as the
temperature increased, while at any given Ca2+/SO4

2− ratio, sulfate adsorption as well as the front
dispersion increases with temperature. It was also reported that beyond 100 ◦C the sulfate adsorption
reduces as the Ca2+/SO4

2− ratio increases. The given explanation is that the solubility of CaSO4

drastically reduces above 100 ◦C, possibly because of a decrease in hydrogen bonding between the
sulfate ions and water molecules. Therefore, as the bond breaks, sulfate has the tendency to leave the
aqueous phase either by adsorption onto rock or precipitation of CaSO4. With decrease in solubility
and increase in Ca2+ ion, sulfate will precipitate above 100 ◦C. Zhang et al. [93] showed, in a similar
study, that increasing Ca2+ concentration increased oil recovery as temperature increased from 70 to 100
◦C and further when temperature was increased to 130 ◦C, however, the impact was reduced and even
vanished due to precipitation of CaSO4. The overall theme in these studies [27,31,57,188] is that higher
affinity of sulfate observed at higher temperatures results in displacement of the negatively charged
carboxylic oil groups on the rock surface, alters the wettability to more water-wetness and increases the
degree of the water-wetness. In another study conducted by Zhang et al. (2007), the interplay between
Ca2+ and Mg2+ was investigated through the chromatographic wettability technique at different
temperatures and reported that affinity of Ca2+ towards the chalk surface was higher compared to
Mg2+ at low temperatures. However, Mg2+ strongly adsorbed and even substituted Ca2+ at higher
temperatures and the degree of substitution increased with temperature, with 70 ◦C appearing as the
threshold temperature for Ca2+/Mg2+ substitution. In addition, spontaneous imbibition experiments
showed that adding Mg2+ ions resulted in a higher incremental oil recovery than by adding Ca2+

ions at 100 and 130 ◦C. The reactivity of Mg2+ observed at 130 ◦C significantly surpassed the effect of
spiking sulfate in the injected brine with Ca2+. It was then proposed that instead of Ca2+ co-adsorbing
with SO4

2− at the chalk surface, Mg2+ becomes active and less hydrated at higher temperature, and
displaces Ca2+ to bound to the surface, because Mg2+ has smaller ionic radius and larger hydrated
radius compared to Ca2+ [27,59,62,189]. An identical temperature-dependent interaction was reported
between PDIs and limestone, though the reactivity was less than for chalk surfaces as previously
mentioned [34,97].

Another temperature-dependent effect was observed for the non-active salt (NaCl) on oil recovery
by Fathi et al. [28] using NaCl-depleted seawater, while maintaining the concentration of PDIs. It was
reported that as the elevated temperature increased (from 100–120 ◦C), imbibition rate and oil recovery
significantly increased for NaCl-depleted seawater compared to when NaCl was spiked 4 times in
the seawater. In a later study, it was reported that spiking sulfate concentration in NaCl-depleted
seawater increased oil recovery as the temperature increased (70–120 ◦C) while spiking Ca ion above
100 ◦C did not result in additional recovery [191]. Like the electrokinetic study in sandstones, the
measured ζ-potential of intact carbonate rocks in low saline brine environments was reported to
increase with temperature; however, the pH remained constant irrespective of temperature or ionic
strength. Instead, the equilibrium concentration of calcium resulting from carbonate dissolution was
observed to increase as temperature increased with low saline brine and remained constant with
high saline brine, while equilibrium concentration of other PDIs remained constant irrespective of
temperature. Hence, temperature dependence of the ζ-potential is correlated to have a Nernstian
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linear relationship with the temperature dependence of the equilibrium calcium concentration (PDI
for the calcite surface) [49]. Similarly, Mahani et al. [207] reported that as temperature increases in the
range of 25–70 ◦C for low saline brine, the oil and rock ζ-potentials shift towards the point of zero
potential (either from more positive to less positive values or from more negative to less negative
values). This shift with increasing temperature was negligible for higher salinity. The increasing
trend of rock ζ-potentials towards a less negative value for low salinity brine was ascribed to more
presence of divalent cations adsorbing to the rock surface. Meanwhile, for low saline brine injection
that depended on he presence of anhydrite minerals because of little/no sulfate ions in the injected
brine, it has been shown that the dissolution of anhydrite decreases with temperature [34,45]. Whereas
surface reactivity leading to wettability alteration as well as imbibition rate and ultimate oil recovery
increases as temperature increases, which could somewhat be counterbalanced by a lesser amount
of sulfate available for adsorption due to reduced dissolution. For this reason, Austad [79] proposed
that the optimum temperature window for success of low salinity brine injection is probably between
90–110 ◦C. In addition, Zhang and Sarma [26] studied the effect of lowering brine salinity and spiking
SO4

2− ions concentration on wettability alteration and oil recovery of reservoir limestones at varying
temperatures (70, 90, 120 ◦C). The authors argued that, at 70 ◦C, lowering brine salinity is more efficient
than increasing the SO4

2− ions concentration, while at 90 and 120 ◦C, reducing brine salinity and
increasing SO4

2− concentration resulted in a similar magnitude of wettability alteration and higher
oil recovery.

2.5. Injected Brine Composition and Salinity

The effect of injected brine salinity and composition on wettability alteration and oil recovery
improvement has been studied using both ionically-tuned and diluted versions of formation water or
seawater (common injection water sources as shown in Table 1).

2.5.1. Sandstone Rocks

Lowering brine salinity was observed to have improved oil recovery benefits by Yildiz and
Morrow [14], where it was shown that low saline brine (2 wt.% CaCl2) gave 5.5% higher oil recovery
than high saline brine (4 wt.% NaCl + 0.5 wt.% CaCl2) with Berea sandstone core aged in Moutray
crude oil. The difference in recovery for Alaskan crude oil was 15% and imbibition tests further
indicated that the high saline brine showed less water-wet conditions than the low saline brine. Tang
and Morrow [13] observed improved oil recovery benefits with the injection of 10 and 100 times
diluted formation brine. In another study, Tang and Morrow [208] studied the effect of cation valency
and their salinity on oil recovery using injected brines containing different cations like monovalent
(Na+), divalent (Ca2+), and trivalent (Al3+). It was reported that the rate and extent of imbibition is
in the following descending order at relatively high salinities (1 wt.% solutions): Na+ > Ca2+ > Al3+,
while the water-wetness decreased as the cation valency increased. However, the impact of cation
valency became less significant at lower salinities, while the waterflood recovery, rate, and extent of
imbibition were observed to increase with reduction in salinity. The study suggests that increase in
salinity and/or ion valence decreased the Debye length and compressed the electrical double layer,
which promoted adsorption of crude oil and decrease water-wetness. In addition, the presence of
higher valence cations could promote the adsorption of negatively-charged polar compounds onto the
negatively-charged sandstone rock surface by ion-binding, thus decreasing the rock water-wetness,
and leading to lower recovery. Improved oil recovery was observed with the dilution of injection
brine compared to the injection of higher salinity brines in several other studies (such as [11,12,116]).
Researchers at BP [24,172,209] observed that injection of seawater to displace higher saline formation
brine in sandstone cores did not result in improve oil recovery and suggested that improved oil
recovery is only observed below injected brine salinities of 5000 ppm. An evidence to support this
claim ensued when McGuire et al. [21] observed a lack of response to oil recovery when the brine
salinity was higher than 7000 ppm in various single-well chemical tracer tests (SWCTT) conducted.
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Based on conclusions made from field trials [21,210], Webb et al. [209] showed that using low salinity
brine in the range of 1000–4000 ppm, which was less than 5% of formation brine salinity, significantly
improved secondary and tertiary recoveries compared to higher salinity brines (such as seawater and
5600 ppm brine). Zhang et al. [127] observed that the low salinity brine that was about 5% formation
brine salinity increased secondary and tertiary recovery beyond the recovery obtained for formation
brine. Meanwhile, there was a lack of response to injection of 8000 ppm NaCl brine, which indicated
that removal of divalent cations and salinity reduction to this salinity level was not sufficient. Further
reduction of NaCl brine (1500 ppm) resulted in a sharp increase in tertiary recovery and pressure drop,
while 4% additional recovery was obtained when low salinity brine (containing divalent ions) was
injected. Cissokho et al. [118] reported a clear threshold in injected brine salinity to be below 2000 and
above which no additional oil recovery can be observed.

Subsequent studies have almost all used low salinity brines with concentrations below 5000 ppm
(see [32,33,41–43]). However, Ligthelm et al. [32] suggested that there should be a lower threshold for
the reduced salinity, because a further reduction in brine salinity can cause the repulsive forces within
clay minerals to exceed the binding forces keeping clay particles intact. This can result in detachment
and migration of clay minerals as well as formation damage. Hence, optimum injection brine salinity
should exist that is low enough to cause wettability alteration and improved recovery, and high
enough not to impede fluid flow and reduce oil recovery through formation damage. Meanwhile,
Rezaeidoust et al. [124] opined that improved recovery and water-wetness associated with low saline
brine injection is not directly related to salinity gradient but rather the concentration gradient of the
most active cations (Ca2+ and/or Mg2+). A tertiary improved recovery was observed using pure
CaCl2 (25,000 ppm) as the formation brine and pure NaCl (40,000 ppm) of the same ionic strength as
the injected brine. It was proposed that reduction in salinity at a given pH will increase adsorption
of organic material onto clay surfaces but with an increase in pH, absorbed active surface cations
are desorbed, which will lead to significant desorption of organic material and the clay becoming
more water-wet. Jackson and colleagues [58,203] demonstrated that the ζ-potential at quartz surfaces
in contact with NaCl brine increases as the brine salinity increases and becomes constant within
experimental error at concentrations of beyond approximately 0.4 M. (23,400 ppm). It was argued that
the thickness of the double layer at this threshold salinity (0.47 nm) is comparable to the hydrated
radius of Na+ ion (0.358 nm [62]); further increase in brine salinity will not further decrease the double
layer thickness because of the finite size of the dominant ionic species. The effect of multivalent ions
was also tested in natural brines (seawater) compared to pure NaCl brine and the ζ-potential was
found to be the same in both sign and magnitude irrespective of brine composition. They concluded
that multivalent ions were not high enough in natural brines to cause charge inversion and that double
layer expansion will not occur until the brine salinity is reduced below this threshold salinity. A similar
trend was presented by Alotaibi et al. [95] and Nasralla and Nasr-El-Din [56], where ζ-potential of
sandstone rocks with differing clay contents were observed to decrease as the brine salinity was
decreased for all rock types, which suggests a thicker double layer with a lower salinity brine. Divalent
cations were also observed to result in less negative ζ-potential than monovalent cations at the same
concentration, which became more pronounced at high pH values [56,180]. Increased water surface
relaxation and a higher T2 water peak relaxation time than bulk oil and fully water-saturated core plug
observed from low saline brine (400–3000 ppm) treatment of intact sandstone samples provided by
NMR analysis, suggested a wettability change to more water-wetting state by stripping off adsorbed
oil from pore surfaces [101,211]. Different atomic scale AFM studies have also suggested a reduction
in adhesion of both polar and non-polar oil components to silica and natural quartz surfaces as brine
salinity reduces, rendering the surface less oil wet [54,103,177,212]. Hilner et al. [54] further stated that
adhesion was slightly constant in high saline brine solutions until a threshold value in the range of
5000 to 8000 ppm (Figure 6), below which adhesion decreased as brine salinity decreased, which fits
well with observations from core plug experiments and field tests.
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Figure 6. Adhesion force between the tip and the rock surface of data plotted as a function of
salinity for Sample 1 (left), sample 2 (middle) and line of fit for all samples (right) (reproduced
from Hilner et al. [54]).

2.5.2. Carbonate Rocks

In contrast to sandstone rocks, extensive laboratory studies, especially coreflooding and
spontaneous imbibition, from carbonate cores have shown that increasing divalent ions (particularly
PDIs, see Figure 7) and decreasing monovalent ion (Na+ and Cl−) concentrations in the injected brine
lead to an increase in the rate and extent of oil recovery [27,28,31,57,59,93,187,188]. The existence of an
interdependent interaction among multivalent ions in brine (Ca2+, Mg2+, SO4

2−, PO4
3− and BO3

3−)
at the rock-brine interface has been emphasized that can bring the rock-brine interface into a new
equilibrium state, thus improving water-wetness and recovery through various interfacial phenomena.

Earlier studies [31,157,187,190] have shown that SO4
2− can act as surface active agents that can

lower the surface charge of carbonate surface, facilitate the removal of negatively charged polar
components and change the contact angle to more water-wetness and improve oil recovery by
spontaneous imbibition. A significant increase in oil recovery was observed as the SO4

2− concentration
in injected brine is increased from 0 to 4 times the concentration in ordinary seawater and the affinity
of SO4

2− towards chalk surface has been shown to be temperature dependent [31,158]. The impact
of sulfate, as a PDI and wettability modifier on increased oil recovery, has been well examined and
reported by other researchers (such as [23,26,32,34,46,97,161,213–215]). In addition, several of these
studies have proved that a high SO4

2− concentration did not offer improved recovery; rather an upper
limit existed beyond which no improved recovery could be observed [31,94,96,131].

Similarly, Ca2+ and Mg2+ are considered to be active towards the carbonate rock surface [187].
Strand et al. [57] observed that the efficiency of the wettability alteration due to brine-dependent
recovery is governed by the relative concentration of Ca2+ and SO4

2− in the injected brine. The authors
reported that increasing the Ca2+/SO4

2− ratio between 0.25 and 3 times the concentration in ordinary
seawater led to increased adsorption of SO4

2−, but decreased as temperature exceeded 100 ◦C.
Zhang et al. [93] also presented spontaneous imbibition of oil as evidence to show the symbiotic
interaction between Ca2+ and SO4

2− and the temperature-dependency of the interaction. Increasing
Ca2+ led to strong imbibition and increase in oil recovery, and beyond 100 ◦C, the recovery is less due
to precipitation of CaSO4. According to these studies, SO4

2− adsorbed onto the chalk surface lowers
the positive surface charge resulting in lesser electrostatic repulsion. Meanwhile, Ca2+ would gain
greater access to approach the surface to balance the electric charge as well as bind to the negatively
charged oil acidic groups. This helps to release the oil from the chalk surface. On the other hand,
Zhang et al. [59] presented ζ-potential experimental evidence to prove that Mg2+ has the potential to
increase positive surface charge like Ca2+ and investigation of the interplay between Ca2+ and Mg2+

through chromatographic test at different temperatures shows that Ca2+ was substituted by Mg2+ at
higher temperatures. It was then proposed that instead of Ca2+ co-adsorbing with SO4

2− at the chalk
surface, Mg2+ becomes active and less hydrated at higher temperature and displaces Ca2+ bound to
the surface. In contact angle measurement, it was shown that SO4

2− and Mg2+ were more efficient
in altering wettability and improving oil recovery [26,89,96,215]. The significant conclusion from the
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systematic series of studies conducted to investigate impact of PDIs on oil recovery is that none of the
PDIs could act alone in improving water-wetness, although in the different combinations, SO4

2− was
found to be present in the imbibing fluid [26,31,215].

The significance of polyatomic anions (e.g., phosphate (PO4
3−) and borate (BO3

3−)) as a possible
replacement for sulfate has been investigated due to their higher ion valency to lower surface charge
compared to sulfate SO4

2−. Researchers at ExxonMobil [53,216] found that replacing SO4
2− in the

injected brine by BO3
3− in coreflooding experiments performed on several limestone and dolomite

cores in tertiary mode resulted in higher recovery, whereas replacing with PO4
3− gave even higher

recovery. Meanwhile, softening the injected brine by depleting Ca2+ and Mg2+ in the formation
water also resulted in an increase in recovery due to rock dissolution. In addition, Meng et al. [111]
demonstrated that high concentration of PO4

3− in the injected brine can induce larger contact angle
alteration of limestone cores to a more water-wet condition, which was more pronounced when the
brine was ten times diluted. However, the effect of polyatomic anions has not been further investigated
due to the limitation of a higher likelihood of formation of precipitate that could potentially damage
the reservoir.

Aside the PDIs, Na+ and Cl− have been identified as non-active ions that are indifferent toward
carbonate surfaces. Fathi et al. [28] discovered that NaCl-depleted seawater gave a higher imbibition
rate and recovery relative to seawater, whilst spiking NaCl concentration in seawater by 4 times gave
a lower recovery. Furthermore, chromatographic tests showed that the water-wet fraction further
increased for chalk cores imbibed in NaCl-depleted seawater relative to seawater. In a later study, it was
reported that spiking SO4

2− concentration in NaCl-depleted seawater significantly increased recovery
and water-wetness, however spiking Ca2+ had no significant effect because the experiments were
conducted above 100 ◦C [191]. Awolayo and Sarma [39] has also shown that NaCl-depleted seawater
alters wettability towards more water-wetness relative to seawater in a contact angle measurement,
which was supported by improved tertiary oil recovery in coreflooding experiments on limestone
cores. These studies highlighted the impact both SO4

2− and the indifferent ions (Na+ and Cl−) have
on the injected brine to modify rock wettability. All charged surfaces in contact with a brine will
have an excess of ions close to the surface, which is usually called the double layer. If the double
layer consists of a lot of ions not active in the wettability alteration process like NaCl, the access of
the active ions, Ca2+, Mg2+ and SO4

2− to the surface is partly prevented. This approach of depleting
NaCl from seawater results in total brine salinity reduction because of a high concentration of the
indifferent ions in most brines. Another approach of reducing total salinity through brine dilution,
which failed to work in chalk cores [28,45,46], has shown tremendous positive benefits in a series of
experiments with middle-eastern limestone cores containing small amounts of anhydrite conducted
by Yousef and colleagues [25,48]. Seawater was diluted up to 100 times and the sequential flooding
experiments showed that the highest recovery was achieved by twice diluted seawater, followed by 10
times dilution, whereas 20 and 100 times dilution resulted in little/marginal recovery. The authors
reported a total incremental recovery of up to 19% OOIP and indicated that surface charge alteration
was more important than dissolution in the wettability alteration process.

Elsewhere, Austad et al. [45] injected sulfate-free diluted brine into carbonate cores containing
anhydrite and reported an incremental recovery up to 5% OOIP. The authors explained that sulfate
was continually generated in-situ because of anhydrite dissolution, which led to the wettability
alteration process. Romanuka et al. [46] carried out spontaneous imbibition experiments on different
mineralogical carbonate cores with/without evaporites and showed that brine dilution contributed to
an additional recovery of up to 20% OOIP. Zahid et al. [37] conducted another series of experiments
on carbonate cores free of dolomite/anhydrite, and observed no incremental recovery at room
temperature and reported additional recovery up to 18% OOIP at 90 ◦C. They proposed fines migration
and rock material dissolution as the plausible mechanisms for wettability alteration. Zhang and
Sarma [26] and Chandrasekhar and Mohanty [215] observed that the multi-ion exchange between
the active multivalent ions and mineral dissolution was the mechanism responsible for wettability
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alteration when the brine dilution approach was applied to middle-eastern carbonate cores. However,
in a few other cases in limestones [39,89], very little or negligible results were observed during
brine dilution. Results of lower/decrease in contact angle have also suggested that the wettability
of carbonate rocks is altered by either a reduction in the brine salinity and/or increasing PDI
concentrations [26,47,55,95,96,111,215].

Nyström et al. [217] carried out an electrokinetic study on the influence of the concentration
of monovalent (Na+) and multivalent (Ca2+, Ba2+ and La3+) cations on calcite particles. It was
reported that Na+ acted indifferent towards calcite surface, Ba2+ exhibited similar behaviour to
that of Ca2+ but of greater magnitude as the ζ-potential increased with concentration, while La3+

exhibited an opposite trend to that of the other divalent cations. In a different study, Jackson and
colleagues [50,51] reported that both Ca2+ and Mg2+ exhibited identical behavior, linearly increasing the
ζ-potential of intact limestones as their concentrations increased in the different NaCl brine solutions.
While increasing SO4

2− concentration reduced the magnitude of the ζ-potential, the gradient of the
linear trend however, is observed to be lower than shown for both Ca2+ and Mg2+. The gradient of
the linear trend between ζ-potential and Ca2+/SO4

2− decreases with increasing brine salinity (NaCl),
though at Ca2+ concentration, the ζ-potential becomes less sensitive to increase in brine salinity. The
ζ-potential of natural carbonate was observed to linearly increase as the concentrations of indifferent
ions (Na+ and Cl−) were increased. It was suggested that the presence of the indifferent ions could
change the magnitude, but not the polarity of the ζ-potential [50]. It was shown that diluting seawater
and adding SO4

2− to seawater as a way of modifying the injected brine decreases the ζ-potential by
double layer expansion and increasing negative charge on the calcite surface, which was correlated
to incremental recovery [51]. Kasha et al. [192] observed similar trends for the PDIs with ζ-potential
during an electrokinetic study on calcite and dolomite particles, though Mg2+ had a stronger effect on
surface charges compared to Ca2+ in high salinity brines and suggested that the point of zero charge of
carbonate rocks is not only a function of electrolyte pH but also PDI concentrations. Yousef et al. [48]
demonstrated that ζ-potential of the rock-brine interface decreases as the brine salinity decreases and
suggested that Ca2+ ions leave the rock surface in form of mineral dissolution and enter the brine
solution to re-establish chemical equilibrium. Jackson et al. [98] correlated improved oil recovery to
ζ-potential of rock–brine and oil–brine interfaces using a reservoir limestone core, and different crude
oils and brine solutions. The authors concluded that the potential for improved oil recovery by low
saline brine injection is increased when both interfaces possess the same polarity (ζ-potential sign),
such that the electrostatic repulsive force generated between the interfaces stabilizes the water film
on the rock surface. It was suggested that for a negatively charged oil-water interface, diluting the
brine salinity to produce a more negative/less positive rock–brine interface would be successful at
improving oil recovery. While for a positively charged oil-water interface, increasing the rock–brine
interface surface charge by increasing the PDI cation concentration would increase recovery, which
would have been responsible for failure of low saline brine to improve recovery in such cases.
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Figure 7. Comparison of spontaneous imbibition rates of PDIs in chalk conducted at 70, 100 and 130 ◦C.
Modified seawater without Ca2+ and Mg2+ was initially imbibed and Mg2+ or Ca2+ was later added in
a systematic variation of PDI concentrations (reproduced from Zhang et al. [59] with permission).

Mahani et al. [55] investigated the importance of brine composition, salinity and pH on
oil-brine-rock systems on different carbonate rock particles in different brine solutions. They observed
positive ζ-potential for formation water, negative for seawater, and more negative for diluted seawater,
which increased with increase in pH in the range 6.5–11. The low saline brine was influenced by a
large shift in ζ-potential with pH because of the presence of fewer concentrations of PDIs compared
to the concentration of H+ and OH−, which means any changes in later ion concentrations, would
strongly impact the EDL and ζ-potential. The changes in rock-brine ζ-potential from positive to more
negative was consistent with the observed decrease in contact angle and concluded that these changes
are predominantly due to phenomena occurring at the rock–brine interface and to a lesser extent at
the oil–brine interface. Meanwhile, the authors further claimed that pH does not directly control
the ζ-potential, but rather equilibrium concentration of Ca2+, because of the established relationship
between ζ-potential and concentration of Ca2+.

Other experimental evidence such as NMR has been used to test the hypothesis of improved
water-wetness by low saline brine injection. Yousef et al. [25] performed NMR measurements on
reservoir limestone cores, before and after low saline brine treatment, and reported a significant shift
in T2 distribution and surface relaxation by various versions of diluted brines. The influence of pore
cleaning was also investigated to solely ascertain the observed shift in T2 distribution to brine dilution.
An improvement in connectivity among macro and micro pores as a result of rock dissolution was
associated with the observed shift. In contrast, in an NMR experiment conducted with different
diluted seawaters, Zahid et al. [37] observed no significant changes in surface relaxation and no shift
in T2 distribution.

3. Field Application Studies

Promising achievements from laboratory studies have been the background for some pilot scale
field trials of low salinity waterflooding during the past few years. The encouraging feature of the
systematic experimental studies using sandstone and carbonate rocks, as discussed in the previous
section, has been reflected in the observations from several near-wellbore tests (like log-inject-log and
single well chemical tracer (SWCT)), inter-well scale tests and multi-well field scale, which emphasize
on the overall consistency between laboratory and field observations, as summarized in Table 2.
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3.1. Sandstone Reservoirs

Over the past decade, the majority of field applications of brine salinity reduction approach have
been conducted in sandstone reservoirs. Researchers at BP have been the front-runner, while those from
several other oil companies (e.g., Shell, Statoil, Total, and Eni) have conducted field implementation as
well. Webb et al. [210] evaluated the impact of low saline brine on recovery using the log-inject-log field
test on a giant Middle Eastern clastic reservoir. Multiple passes of pulse neutron capture logs were run
to quantify the saturation during each brine injection cycle through a producing well. They injected
three different brines in sequence (connate brine—250,000 ppm, intermediate saline brine—170,000
ppm, low saline brine—3000 ppm and repeated the connate brine injection). There was no significant
difference in saturation when intermediate brine was injected over connate brine, which was used
to define the baseline residual oil saturation (Sor). However, injection of low saline brine led to 50%
and 10–20% reduction in Sor for the top and bottom-middle perforations respectively, which agreed
with previous laboratory tests. Another BP researcher, McGuire et al. [21] confirmed that favorable
laboratory results can be replicated in the field by performing four sets of SWCT tests in Prudhoe Bay
and Endicott fields of Alaska North Slope formation. The low saline brine reduced Sor by 8%, 4%, 4%
and 9% in these four tests, leading to 8–19% OOIP incremental recovery. The operational salinity level
for improved recovery was reported to be less than 5000 ppm as no benefit was observed during the
injection of brine with salinity of 7000 ppm. Seccombe et al. [173] further presented detailed analysis
of the three SWCT tests conducted in Endicott field validated against wireline log and coreflood data.
The reduction in Sor was observed to vary as a function of kaolinite clay fractions (increase from 9 to
17% as clay fraction increases) and further confirmed the optimum slug size for improved recovery as
0.4 pore volume (PV). Another attempt was made by Seccombe et al. [218] to demonstrate improved
oil recovery beyond near wellbore to consider area and vertical sweep effects by conducting inter-well
tests using a producer and an injector placed approximately 317 m apart. It was reported that, after 1.6
PV injection of low saline brine, about 10% of the total pore volume of the swept area was additionally
recovered and the result agreed with increment recovery-clay content relationship established with
previous coreflood data and single well tracer tests. Lager et al. [219] reported an inter-well field test
conducted in an Alaskan oil field involving one injector and two producers within a constrained well
spacing of approximately 366–518 m. It was found out that there was a significant drop in water cut
and oil production rate doubled during 12 months of low saline brine injection. However, the oil
recovery potential was low as confirmed by prior laboratory studies because the injected brine was
considered as non-optimum. The authors further conducted the SWCT test and reported a reduction
of Sor by 2% using non-optimized low saline brine and 10% using optimized low saline brine [219].

Elsewhere, in the Powder River basin of Wyoming, Robertson [220] published the comparison of
three Minnelusa field performances based on historical evidence of unintentional injection of low saline
brine. It was reported that the oil recovery trend in historical data appeared to increase as the salinity
ratios decreased, which corroborated laboratory corefloods using Berea outcrop material. Similarly,
from a large dataset of waterflooding in Wyoming fields available in public records, Thyne et al. [221]
published a comprehensive evaluation of historical low saline brine injection in 26 fields and compared
with laboratory corefloods. In contrast to Robertson [220], they found no correlation between dilution
and oil recovery. It was concluded based on historical field and coreflood data that no benefit was
associated with low saline brine injection. Another documented proof of historical low saline brine
injection, which was unintentionally implemented in the Omar Field in Syria for a period of ten years
starting from 1991, was published by Vledder et al. [222]. Observations made from measurements at
21 wells presented abundant field-scale evidence of improved water-wetness, as evident from the dual
steps in water cut development [223]. Low saline brine injection gave an incremental oil recovery of
10–15% OIIP compared to high salinity water flooding, which showed positive correlation with clay
content. These observations were supported by the spontaneous imbibition tests and a single well
log-inject-log test in an analogue field (Isba). Mahani et al. [223] also presented further evidence for
the positive response observed in Omar field and claimed a strong buoyancy force and high contrast
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between formation and injected water salinity was responsible for the decreased benefits of low saline
brine injection in the Sijan field.

For some Norwegian Continental Shelf fields like Snorre, Heidrun, and Gullfaks, laboratory
studies and SWCT tests have been carried out over the past few years and more are being considered
for a possible pilot. Hegre [224] presents details of a proposed low salinity pilot in Heidrun after
laboratory corefloods showed an average of 9% reduction in Sor as seawater was diluted hundred
times. The plan was to inject low saline water (500–3000 ppm) into two wells in the Lower Tilje
Formation and observe expected response in three producers. Despite laboratory corefloods only
indicating a low potential of 2% of OOIP by diluted seawater injection by using Snorre cores, a SWCT
test was performed and showed no significant reduction in Sor. The explanation was that the clay
mineral acted as water-wet because of the buffering effect of the high presence of plagioclase feldspar
on the formation water. In addition, the low content of organic acid in the Snorre oil ensured that
the reservoir was already close to optimum wetting conditions, such that low saline water could
not significantly improve recovery [36]. Furthermore, Abdulla et al. [225] documented two recent
SWCT tests conducted in the giant Kuwait Burgan oilfield. The tests were implemented in two
reservoir formations with the least clay content and good quality rock. They observed an average of 3%
reduction in Sor and no injectivity problem during injection of low saline brine. Additional tests were
planned for other parts of the Burgan field with reservoir rock containing high clay content to further
corroborate the established trend of recovery performance with clay content. In the same giant Burgan
oilfield, Al-Qattan et al. [226] reported another SWCT tests performed on Wara reservoir considering
the radius of investigation of 4.8 m around the wellbore. They documented that low saline brine
injection reduced Sor by 3% as compared high saline brine injection. Thereafter, a low saline polymer
was injected and further reduced Sor by 4%, which was consistent with the laboratory corefloods.
Researchers at Eni reportedly conducted a log-inject-log test in the Congo oil field to corroborate the
performance of low saline water injection in laboratory experiments, but not much information about
the results was published [227]. Instead, Callegaro et al. [20] detailed a SWCT test conducted in a West
Africa complex onshore reservoir to evaluate Sor after each injection of seawater, low saline water and
surfactant. It was reported that despite high recovery potentials observed during laboratory corefloods,
no significant recovery was observed during low saline water injection. The possible explanation for
the discrepancy between lab and field tests was because of lower clay content and low Sor obtained
after seawater injection, which allowed minimal impact from low saline brine. However, surfactant
proved effective by reducing Sor by 6–7%. In another SWCT tests conducted on the giant North Africa
oil field, a reduction in Sor in the range of 5–11% was observed [228].

Another account was given by Zeinijahromi et al. [229] and Zeinijahromi et al. [230] on
the historical injection of low saline brine into Zichebashskoe and Bastrykskoye fields in Russia,
respectively, to majorly provide pressure maintenance. Little improvement in recovery was observed
for both field cases because the low saline brine was injected below the water-oil contact. Meanwhile,
Akhmetgareev and Khisamov [231] evaluated a historical injection of low saline water sourced from the
nearest Karma river in the Pervomaiskoye oil field in the Republic of Tatarstan, Russia. They observed
that more than one-third of the wells were not potentially effective, which is similar to conclusions
made by Zeinijahromi et al. [229]. However, wells in the seven pilots evaluated showed that 5–9%
OOIP incremental recovery and reduced water cut, which was ascribed to wettability alteration and
formation damage of clay particles. Furthermore, because of the positive response from laboratory
tests, other fields have been considered for field trials and implementations including Clair Ridge field
in the UK and West Salym field in West Siberia, Russia [232–234].

3.2. Carbonate Reservoirs

There are a few field-scale projects in carbonate reservoirs that are reported in the literature.
The fractured chalk Ekofisk reservoir, North Sea, has been flooded with seawater since 1987 following
a successful waterflood pilot [17,235]. Over the first three years, oil production steadily increased
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from 11,130–22,258 m3/day, with an increasing trend and after ten years, production level reached
46,106 m3/day. The significant increase in oil rates has been accompanied by a drop in producing
Gas-Oil ratio (GOR) and reduced water breakthrough [18,236]. About two-thirds of the increase in
production was ascribed to seawater injection response and the recent prognosis estimated recovery to
be slightly above 50% of OOIP [16,79,189,236]. The tremendous success recorded till date shows the
potential for seawater to improve water-wetness of chalk through spontaneous imbibition and viscous
displacement. This positive response seen in Ekofisk stimulated interest to investigate the potential of
brine-dependent recovery in the fractured chalk Valhall field, North Sea.

A single injector waterflood pilot test was implemented by early 1990 to evaluate the potential
of seawater injection and its success recommended the feasibility of an economic waterflood scheme
with its associated risks. Sea water injection only began in 2006 and the response revealed a varying
performance in different part of the reservoir. Some wells showed no oil production benefit with rapid
water breakthrough and increase in water-cut, while others showed increase in oil production, decrease
in GOR and reduced water cut [237,238]. This regional response was attributed to matrix/fracture
dominance on water movement. A systematic study conducted by Webb et al. [213] on Valhall core
showed that seawater improved water-wetness and oil recovery significantly compared with formation
water. A further comparison between both brine-dependent field applications revealed that seawater
injection performed less for Valhall as compared to Ekofisk. The difference in performance was ascribed
to temperature and wetting conditions, as the wettability alteration process is temperature-dependent.
The deeper Ekofisk field reservoir (130 ◦C) has a significantly higher reservoir temperature than
Valhall (90 ◦C) [239]. In addition, Ekofisk field is more oil-wet compared to Valhall field as reflected
by the acid numbers of their crude oils, about 0.35 and 0.1 mg KOH/g for Valhall and Ekofisk,
respectively [189,239].

The above listed field projects have majorly explored the ionic composition modification, while the
only field application of ionic salinity reduction (low salinity waterflood) was reported in Saudi Arabia
Upper Jurassic carbonate reservoirs by Yousef and co-workers [22,47]. Yousef et al. [22] reported two
field trials with two single well chemical tracer (SWCT) tests using various dilutions of field seawater.
The distance of investigation for the SWCT was considered as up to 6.1 m. around the wellbore. For
well A, a slug of seawater and twice diluted seawater was sequentially injected, while for well B, a slug
of seawater, twice diluted and ten-times diluted seawater was sequentially injected and after each
injection cycle, three different tracers were injected to estimate the residual oil saturation (ROS).

They observed from the two field trials that diluted seawater gave 7% ROS reduction at well A
beyond conventional seawater injection, while at well B, 3% reduction in ROS beyond conventional
seawater was achieved by twice-diluted seawater and a further 3% reduction beyond twice-diluted
seawater was achieved by ten-times diluted seawater injection. They concluded that the total
reductions in ROS from well A and B are comparable and the field trials are in agreement with
their previous experimental studies [47].
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Table 2. Summary of main field implementations of brine-dependent recovery in sandstones and carbonates.

Authors Field Attributes Reservoir Temp. (◦C) Formation || Injected Brine (ppm) Benefits

Sandstone reservoirs

Webb et al. [210]
Giant Middle Eastern clastic

Clay: <5%
Oil Viscosity: 0.46–50 cP

77 220,000 || 3000 25–50% Sor reduction

McGuire et al. [21]

Alaska North Slope Prudhoe Bay field
Oil Viscosity: 0.8 cP

Distance of Investigation: 3.9–4.2 m,
2.6–2.7 m, and 4.6 m

Endicott Field Clay: 7%

66
103
103
99

23,000 || 3000
23,000 || 3000
7000 || 2200

28,000 || 1500

8% Sor reduction and 18% incremental recovery
4% Sor reduction and 15% incremental recovery
4% Sor reduction and 8% incremental recovery

9% Sor reduction and 19% incremental recovery

Seccombe et al. [173]

Endicott Field

99
Clay: 7% 28,000 || 1500 9% Sor reduction
Clay: 12% 28,000 || 10 11% Sor reduction
Clay: 14% 28,000 || 180 17% Sor reduction

Lager et al. [219] Alaskan Oil Field 16,640 || 2600 2% Sor reduction

Robertson [220]

Minnelusa field
Oil Viscosity: 15.2 cP

West Semlek 62 60,000 || 10,000 27.5% Sor reduction
North Semlek 60 42,000 || 3304 32.5% Sor reduction

Moran 93 128,000 || 7948 31.5% Sor reduction

Thyne et al. [221] Wyoming Minnelusa fields 68–75 Range (1134–261,982) || Range
(300–6000) no significant benefit

Vledder et al. [222]
Omar Oil Field (Isba)

Clay: 0.5–4%
Oil Viscosity: 0.3 cP

90,000 || 500 10–15% incremental recovery

Skrettingland et al. [36] Snorre field (Upper Statfjord formation)
Clay: 10–20% 90 34,020 || 440 no significant benefit

Abdulla et al. [225] Burgan Oil field 140,000 || 5000 3% Sor reduction

Al-Qattan et al. [226] Burgan Oil field (Wara formation)
Distance of Investigation: 4.6 m 54–57 148,000 || 692 3% Sor reduction

Callegaro et al. [20,228]

West African Oil Field
Oil Viscosity: 0.6 cP

Distance of Investigation: 3.7 m
North African Brown Field

Oil Viscosity: 6–8 cP
Distance of Investigation: 4 m

88
76

Range (27,000–87,000) || 200
39,000 || 1000

no significant benefit
5–11% Sor reduction

Zeinijahromi et al. [229,230] Bastrykskoye
Zichebashskoe 25 316,489 || 1986

248,529 || 848

Akhmetgareev and Khisamov [231] Pervomaiskoye
Oil Viscosity: 5.8 cP 252,738 || 848 5–9% incremental recovery
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Table 2. Cont.

Authors Field Attributes Reservoir Temp. (◦C) Formation || Injected Brine (ppm) Benefits

Carbonate reservoirs

Austad [79] Ekofisk reservoir, North Sea 130 68,050 || 33,498 Ultimate recovery above 50% of OOIP with
two-thirds ascribed to seawater injection

Barkved et al. [237],
Griffin et al. [238] Valhall field, North Sea 90 Increase in oil production, decrease in GOR and

reduced water cut

Yousef et al. [22] Saudi Arabia Upper Jurassic
Oil Viscosity: 0.691 cP 100 57,670 || 5767

57,670 || 28,835 || 5767
7% Sor reduction
6% Sor reduction
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4. Proposed Underlying Recovery Mechanisms

Considering the huge research studies, several physicochemical recovery mechanisms have
been proposed, while majority of the observed trends attributed the primary cause to wettability
modification, either to a more water-wetting or mixed wetting state [35,94,121,240] by varying PDIs
and/or decreasing injected brine salinity. There is a lack of consensus on the prevalent mechanism
responsible for changing the wettability. This is because of the complex nature of the oil-brine-rock
interaction, as well several conflicting observations from various suggested mechanisms. It is quite
apparent from these studies that either there are several mechanisms synergistically involved to
increase the oil recovery or the right mechanism has not yet been identified. However, the inclination
of this research study based on reviewed papers is that the primary cause of improved oil recovery is
directly or indirectly linked to the wettability alteration. The different proposed mechanisms appear to
establish various similarities and differences in modified water impact on carbonates and sandstones,
which is the crude oil adsorption onto positively charged calcite surfaces and negatively charged silica
surfaces [44].

4.1. Proposed Mechanisms in Sandstone Rocks

4.1.1. Swelling of Clay and Fines Mobilization

Early experimental studies have associated improved recovery observed during exposure of
sandstone cores to low saline brine or fresh water with swelling of clay and fines migration [7–9,166,241].
Bernard [8] reported higher oil recovery only when accompanied by a high pressure drop (consistent
with permeability reduction) with sandstone cores containing swelling clays, e.g., montmorillonite.
In addition, Tang and Morrow [13] noticed an improved oil recovery, increase in pressure drop and
production of fines when diluted brine was injected into sandstone cores containing kaolinite. It was
further reported that firing the cores, which stabilized the fines and increasing Ca2+ content did
not improve oil recovery. Then, Tang and Morrow [13] proposed that the crude oil adsorbed onto
fines-coated rock surface is mobilized with the detachment of mixed-wet fines during low saline brine
injection rendering the mineral more water-wet due to exposure of the water-wet surfaces beneath
the detached fines (see Figure 8). Bedrikovetsky and his colleagues [70,74] developed an analytical
model based on torques balance and mass balance to describe the relationship between the static
equilibrium of clay particles and salinity, which was also used in the study by Akhmetgareev and
Khisamov [231]. The torque balance is distorted when the detaching torque of drag and lifting forces
exceeds the attaching torque of electrostatic and gravity forces, resulting in fines detachment and
migration during the arrival of low saline brine. This hypothesis implies that clay tends to hydrate
and swell in a less saline environment. A less-saline solution expands the electrical double layer
and destabilizes clay. Clay is also destabilized by divalent cations, because of their ability to lower
the electrostatic repulsive force by decreasing the ζ-potential. Thus, in any of these brine solutions,
clay swelling, and detachment are triggered, which upon dispersion, flow with water to occupy and
block smaller pores or pore throats. When this occurs, the fines are not necessarily produced in the
effluents, but they force the injected fluid to redirect its path from invaded areas to upswept areas,
thereby resulting in improved microscopic sweep efficiency and improved oil recovery. Relating to
plugging of pores, it has been suggested to cause subtle permeability reduction and formation damage,
but rather a decrease in relative permeability to water and increase in fractional flow of oil [242–244].
Several research studies have also observed evidence of fines migration associated with improved
oil recovery (such as [20,29,242,243,245–248]), whereas there are several other studies where fines
production and/or permeability reduction did not result in improved oil recovery (such as [43,118]).
However, many cases (such as [24,32,95,116,127,249]) note oil recovery improvement without fines
migration, which question the veracity of this mechanism. A possible explanation could be that the
working condition varied with mineralogy and lithology (e.g., concentration of swelling clay higher
than non-swelling clay) or fines migration with its associated permeability reduction is not always
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linked with the improved recovery observed during low saline brine injection. Another possibility
is that the fines released do not appear in the effluent or show substantial increase in pressure drop
because released fines could adhere to the oil as pickering emulsion or separately migrate and reattach
to other surrounding pore walls downstream [179,242].

 

 

−

−

Figure 8. A sketch of proposed wettability alteration by “fines mobilization” in sandstones, showing
organic components adsorption to potentially mobile fines forming mixed-wet fines (left upper),
stripping of mixed-wet fines during low saline brineflood (right upper), and residual oil mobilization
through fines detachment (lower) (reproduced from Tang and Morrow [13] with permission).

4.1.2. pH Gradient

Increase in effluent pH during low saline brine injection was earlier observed in the study by Tang
and Morrow [13], which was attributed to a combination of carbonate dissolution and ion exchange.
Carbonate dissolution is a relatively slow process that depends on the carbonate mineral fraction and
often results in excess hydroxyl ions (OH−) in aqueous solution. On the other hand, ion exchange
reaction is much faster, occurs between the mineral surface and the brine phase, where cations adsorbed
on the mineral surface is exchanged with H+ from the aqueous phase, thereby leading to decrease
in aqueous H+ and an increase in OH− (pH). Later, McGuire et al. [21] proposed that the increased
oil recovery observed in some corefloods experiment is associated with a significant increase in pH,
which possibly generate in-situ surfactants from the crude oil. It was suggested that low saline brine
flooding shows similar behavior to alkaline flooding, where the organic acids in the crude oil are
saponified as they contact the low saline brine and as a result, lower the oil-water interfacial tension,
and subsequently increase the capillary number and mobilization of the trapped residual oil. The
authors also claimed that reducing the concentration of divalent cations in the injected brine could
inhibit the surfactants precipitation encountered in a high saline environment, thereby increasing the
efficiency of the in-situ surfactants to increase recovery. The lack of oil recovery response to increased
Ca2+ concentration in the injected brine observed by Tang and Morrow [13] was ascribed to sensitivity
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of Ca2+ to promote/inhibit the surfactants precipitation. Similar increase in effluent brine pH have
been observed by several authors [21,33,52,118,124,250], while there are reports showing improved
recovery with lack of change in pH (such as [24,29,127]). Several other experimental observations also
indicate that higher effluent brine pH does not always result in increased oil recovery [43,67,118]; in
such instances the pH increase was explained to be a resultant combination of calcite dissolution and
ion-exchange [67]. However, these conflicting evidences cast doubts on the pH gradient proposed
by McGuire et al. [21]. Even though, reduced oil-brine IFT has been observed for low saline brine,
but not to ultra-low values identified with alkaline flooding. While the pH gradient observed in
many successful corefloods is often within 1–3 pH unit range and achieved at a pH below 7, unlike
in alkaline flooding where pH is usually 11 to 13 and needs to be greater than 9 for saponification
to occur. The saponification process also requires a high AN, whereas successful waterfloods have
been achieved with low AN crude oil and no correlation could be established between the improved
recovery and AN (see Figure 2; [24,75]). Similarly, Zhang et al. [127] also noticed a slight rise and drop
in effluent pH during low saline brine injection and found no clear relationship that exists between
pH and oil recovery. Meanwhile, a local pH increase at the water-clay interface was proposed by
Austad et al. [52]. The authors suggested that clay minerals are better cation exchangers due to their
large surface area and CEC compared to quartz and are negatively charged in the reservoir natural
state (pH 5–6). As shown in Figure 9, at the initial conditions, when clay particles are exposed to high
saline brine solution, the high divalent cations in the brine establish a thermodynamic equilibrium
with the rock surface to enhance the adsorption of both acidic and basic organic materials onto the
clay surface. Austad and colleagues [41,52,124] reported an inverse pH dependence of adsorption
of both acidic and basic materials on clay minerals based on an adsorption test, i.e., at low pH, the
adsorption is higher. The moment low saline brine is injected; the existing equilibrium is disrupted
causing the adsorbed divalent cations to be substituted at the rock surface. The substitution process
is facilitated by the dissociation of the surrounding water molecules into H+ and OH− ions. The H+

ions adsorb onto the clay surface because of its higher affinity towards clay compared to other cations
and the OH− ions in solution increase the pH locally near the clay surface, which can also react with
the adsorbed acidic/basic materials (acid-base reaction) and release them from the surface. The low
salinity condition is reflected in Equation (1) where exchange of the divalent cation, Ca2+ by a higher
affinity ion, H+ takes place and a reversal of the equation will result in the initial existing equilibrium
state of the reservoir:

Clay − Ca2+ + H2O ⇔ Clay − H+ + Ca2+ + OH− (1)

Hence the hypothesis considers that the removal of Ca2+ from the injection brine as a way to
reduce brine salinity is favorable because pH increase becomes more significant. In support of this
claim, Rezaeidoust et al. [124] reported an increase in recovery when pure CaCl2 brine was replaced
by a similar ionic strength brine (pure NaCl) and that a low saline brine of NaCl (containing a lower
affinity cation, Na+) showed largest pH gradient (3 units). This implies that pH increase depends on the
affinity of the injected brine cation, consistent with several studies that showed improved recovery with
a diluted NaCl brine injection, although not all observed the anticipated pH increase [32,33,43,245,249].
Austad and colleagues [41,52] further claim that in a buffered system where improved oil recovery
is observed, the effluent pH might hardly increase, but it does not mean that the desorption of the
organic material due to a local pH increase in the neighbourhood of the clay surface is not taking place.
It was quoted that the activity of H+ in the bulk solution as described by pH measurements differs
from activity of H+ in the neighborhood of water-minerals interface (2–4 pH units difference). Rather
than seeing a local pH increase as a major effect, Rezaeidoust et al. [44] proposed that organic materials
are desorbed from clay surface by a salting-in effect. As it is well known that the solubility of organic
compounds in aqueous phase is strongly affected by brine salinity and compositions: adding salts to
the brine solution can drastically decrease organic material solubility (salting-out) while the solubility
can be increased by removing salts (salting-in). Meanwhile inorganic cations like Ca2+, Mg2+, and Na+,
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present in the brine can break water structure around organic molecules, and decrease the solubility of
organic molecules. The relative strength of these cations to decrease organic material is reflected in the
order of their hydration energy. Thus, a reduction in brine salinity below a critical level can increase
the solubility of the organic material in aqueous phase. The hypothesis was further verified in a
desorption/re-solubilization study of 4-tert-butyl benzoic acid in an aqueous kaolinite suspension that
carboxylic acid remained adsorbed in a high saline solution and less adsorbed in a low saline solution.
This hypothesis has been largely ignored and remains comparatively under-investigated, probably
because it is somehow associated with pH gradient. Based on these studies, it can be hypothesized
that pH is likely to increase locally but the effect may be offset in the reservoir due to the presence
of pH buffers e.g., CO2. It has also been suggested that clay minerals with high CEC are effective at
improving oil recovery, yet Kaolinite, which has lower CEC compared to other clays, is often associated
with improved recovery. Several studies have observed improved recovery in the absence of clay
minerals, especially quartz/silica, which the proposed local pH increase mechanism could not explain.

 

 

Figure 9. An illustration of proposed mechanism of wettability alteration by “pH gradient” for
basic (upper) and acidic (lower) oil components desorbed from clay mineral surfaces through
acid/base-proton transfer, yielding a pH increase (reproduced from Austad et al. [52]).

4.1.3. Multi-Component Ionic Exchange (MIE)

Lager et al. [24] suggested that there are different possible interactions, e.g., cation exchange, anion
exchange, ligand exchange, protonation, water bridging, cation bridging, hydrogen bonding, van der
Waals interaction, by which organic materials can adsorb on the rock based on the various organic
functional groups present in the crude oil. The organic material or organo-metallic complexes are often
attached to the clay minerals through the most dominant adsorption interactions (see Figure 10) due
to the presence of divalent ions (Ca and Mg) in high saline formation brine, which are removed and
replaced during injection of low saline brine by cationic ion exchange of uncomplexed cations at the
clay surface. The evidence of MIE came from measured effluent brine composition during low saline
brine injection in coreflood experiments and field tests and the authors noticed a reduced multivalent
cation (especially Mg2+) concentration in the effluent compared to those in the low saline brine [24,219].
This hypothesis was validated in another experiment, when all Ca2+ and Mg2+ was removed from the
clay mineral surfaces, the low saline NaCl brine injection yielded no additional recovery compared to
the high saline brine and subsequent flooding with low saline brine containing Ca2+ and Mg2+ also
yielded no recovery. Meanwhile, an additional 5% recovery was observed during low saline brine
flooding of cores initially containing Ca2+ and Mg2+ ions. The authors suggested that for low saline
brine to result in improved recovery, clay minerals must be present alongside Ca2+ and Mg2+ in the
initial high saline brine, while either acidic or basic organic components must adsorb to clay mineral
surfaces through any of the adsorption interactions.
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Figure 10. Proposed dominant adsorption interactions between organic oil materials and clay mineral
surfaces associated with suggested mechanism for wettability alteration by “MIE” (adapted from
Lager et al. [24]).

The authors argued that low saline brine did not improve recovery in the study by Tang and
Morrow [13] after the core was acidized and fired as the CEC of the clay minerals was destroyed,
which prevented ion exchange. They also claimed that basic organic components are strongly adsorbed
which was the reason why no direct correlation exists between the oil acid number and the amount
of oil recovered. It was also stated that due to a lack of clay minerals, low saline brine could not
seem to work on carbonate reservoirs as earlier predicted. However, a mechanism of similar nature is
proposed for wettability modification in carbonates without the need for clay presence, which will be
discussed in the subsequent section. The MIE hypothesis was rebutted by Austad et al. [52] that the
change in Mg2+ concentration observed by Lager et al. [24] was not necessarily caused by MIE, but by
precipitation of Mg (OH)2 as a result of a local pH increase

Despite this shortcoming, MIE has been well explored and modelled. Alagic and Skauge [245]
found that Mg2+ and Na+ was less in the effluent during successful low saline NaCl brine corefloods.
They suggested that Mg2+ was retained in aged samples while Ca2+ was eluted, which is consistent with
MIE, though more elution of Ca2+ occurred due to calcite dissolution. Nasralla and Nasr-El-Din [56]
also showed evidence that cations at the rock surface are leached and replaced by cations from single
cation (Ca2+, Mg2+ and Na+) brine solutions in dry sandstone cores and injection of NaCl brine
solution yielded higher oil recovery compared to CaCl2 and MgCl2 brine at the same concentration
level. Omekeh and colleagues [67,251] observed that Ca2+ was much more eluted compared to the
monovalent ion (K+) in the effluent analysis of a static test conducted by mixing the crushed minerals
and low saline brines. They also developed a numerical model that integrated ion-exchange into
transport model, which was used to predict different experimental cases on the premise of Ca2+

desorption. No Ca2+ desorption was observed where low saline brine did not improve recovery for a
core saturated with no divalent ions [24,32], no desorption was also observed for cases where divalent
ions were initially present but low saline brine did not improve recovery [36,95] and desorption was
also observed where divalent ions were initially present and low salinity did improve recovery [95].

Similarly, Fjelde et al. [252] observed that Mg2+ and Ca2+ were retained by the rock while K+ was
more in the effluent during successful low saline brine injections. They used the model developed
by Omekeh et al. [67] and predicted that Ca2+ adsorption during low saline brine injection altered
wettability to less water-wet, gave earlier water breakthrough and oil production over a longer period
than high saline brine injection. In contrast, Dang et al. [63] proposed that the replacement of Na at the
surface by Ca in low saline brine is the premise for the wettability shift towards water-wetness and
improved oil recovery, which predicted the coreflood results of Fjelde et al. [252] and Rivet et al. [40],
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similarly implemented by Kadeethum et al. [253]. The MIE mechanism alone does not explain the
numerous studies where the above conditions were not met but improved recovery was still observed.

4.1.4. Electrical Interactions

Electrostatic interaction is considered because the rock, brines, and crude oil, all contain charged
ions and based on Derjaguin–Landau–Verwey–Overbeek (DLVO) theory, the electrostatic interactions
acting on the oil-brine-rock system, comprising of the rock-brine and oil-brine interfaces, leads to
the development of the electric double-layer (EDL). An EDL is a structure of ions with two parallel
layers of charge, that appears on portions of rock mineral or oil surface that are exposed to brines
in the pore space. Close to the charged surface is the stern layer, where counter-ions are attached,
and this layer is surrounded by the diffuse layer, composed of co-ions and counter-ions that are not
attached and move freely under the influence of thermal motion and electric attraction in the adjacent
bulk fluid. The thickness of this EDL, also known as Debye length, is dependent on the electrical
charges at rock–brine and oil–brine interfaces (often evaluated by ζ-potential) as a function of pH,
brine salinity and ion valency. The concept of electrical double layer expansion (DLE) was suggested
by Ligthelm et al. [32] as they argued that MIE was a secondary cause that decreased ionic strength
and valency rather than a primary cause to wettability alteration. It was stated that during low saline
brine injection, with reduced divalent cations, the EDL at both interfaces expand, resulting in increased
electrostatic repulsion between the two interfaces (see Figure 11). When the repulsive force exceeds the
binding forces involved in oil adsorption interaction with the clay surface, the water layer thickens and
the oil polar components desorb, yielding improved water-wetness and oil recovery. This was verified
by conducting a series of corefloods with injection of brines of similar ionic strength, with/without
divalent cations and lower salinities. It was observed that oil recovery slightly increased when injecting
purely NaCl brine after flooding brine containing both monovalent and divalent ions with similar
ionic strength and a significant increase in recovery was observed when NaCl brine was diluted 100
times. Similarly, Lee et al. [178] reported a general trend of thicker water layer of both the clay and
silica surfaces when the brine salinity is reduced from 0.1 to 0.001 M (i.e., 6000 to 60 ppm). The authors
claimed that there is broad variation in water layer thickness for divalent ions compared to monovalent
ions. As NaCl brine salinity was reduced from 0.1 to 0.001 M, the water layer size increased from
10.8 to 11.8 Å, while for similar reduction in MgCl2 concentration, the water layer thickness increased
from 8.1 to 14.8 Å. This suggested that high concentration of divalent cations on sandstone minerals
can lead to significantly thinner water layer than monovalent cations and reducing the concentration
of divalent cations can further increase water layer thickness of the mineral surface. Nasralla and
Nasr-El-Din [249] studied the effect of pH on low saline brine injection and noticed that reducing
the pH of the low saline brine increases the ζ-potential of both rock-brine and oil-brine interfaces,
thereby reducing the EDL expansion prompted by low saline brine, similarly observed by Takahashi
and Kovscek [254] and Buckley et al. [255]. They concluded that for low saline brine injection to be
successful, the pH must be high enough to increase the electrostatic repulsion forces between the two
interfaces. The pH gradient theory discussed above also makes a similar prediction. Several other
studies have also demonstrated that the ζ-potential at mineral surfaces decreases as the brine salinity
reduces [56,58,203,249,256], with NaCl brine giving lesser ζ-potential reduction than divalent cations
brines [56,256] and ζ-potential becomes constant within experimental error at concentrations beyond
0.4 M (23,400 ppm) [58,203].

The disjoining pressure, which is the sum of electrostatic, structural, and Van der Waal forces, and
surface complexation models have been used to further support DLE theory. Brady and colleagues [179,
257,258] considered that clay surface charge is dictated by sum of clay edge and basal plane charges
and in most clay minerals, such as kaolinite, the clay edge is more dominant while basal plane can be
non-existent except in cases of impurities. As such, oil adhesion differs between the clay edges and
basal planes, where the latter is independent of pH and cation exchange results from lattice substitution;
while the former varies with pH because of its acid-base functionality. It was predicted that there are
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four attraction bridges that are important for kaolinite-oil adhesion, which involved the linking of
kaolinite edges with protonated positively charged nitrogen base groups and with both positively and
negatively charged acidic groups respectively produced through Ca2+ binding and deprotonation, as
shown in Figure 4. Positive benefits could be observed from low saline brine interaction to generate
repulsion for weakened oil adhesion of positively charged oil base groups to kaolinite edges at pH < 5
while at higher pH, the electrostatic interaction is controlled by the competition between negatively and
positively charged acid groups towards kaolinite edges. The authors suggested that this might explain
the insensitivity of the effectiveness of low saline brine injection to oil acid number noted by lager
et al. At low acid number, when the carboxylate sites existing at the oil-brine interface are minimal,
improved oil recovery can be observed by decreasing the [>Al:SiO−

⇔
+HN<] attraction bridge, which

would result in high pH. Meanwhile, at high acid number, low Ca2+ concentration in the injected
brine will reduce Ca2+ coordination to abundant carboxylate and reduce the [>Al:SiO−

⇔
+CaOOC<]

attraction bridge. Moreover, because high pH will result in the deprotonation and Ca2+ binding of
carboxylic groups, low saline brine was predicted to be more effective at switching the oil/kaolinite
edge interaction to repulsion in a narrow range of pH 5−6. They proposed that the integration of pH
gradient and DLE to be responsible for wettability alteration during low saline brine injection. Several
studies have also shown the disjoining pressure (at small distances, where it is most effective) become
more positive as the brine salinity is reduced [100,179,254,259]. Positive disjoining pressure indicates
repulsion, which increases the thickness of water film and results in increased water-wetness (see
Figure 11). Despite many studies attributing improved recovery to DLE, it has also failed to explain
why the positive response is not always observed with reduced salinity or ionic strength.

 

−⇔
−⇔

−

 

 

Figure 11. A schematic illustration of the EDL expansion in sandstone reservoirs for original high
saline condition (left) and low saline condition (right) with corresponding changes in surface charge
distribution shown (bottom). The blue and red lines represent the electrical potential distribution
under high saline and low saline brine, respectively (adapted from Awolayo et al. [62]).
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4.2. Proposed Mechanisms in Carbonate Rocks

4.2.1. Rock Dissolution

The rock dissolution theory postulates that reduced concentration of PDIs (such as Ca2+, Mg2+

and SO4
2−) in the injected brine compared to the initial high saline brine disturbed the existing

equilibrium and causes dissolution of these PDI source-rock minerals like CaCO3, CaMg(CO3)2 and
CaSO4, thereby re-establishing a new equilibrium with the injected brine. During this process, the
release of adsorbed polar components accompanies the dissolved minerals, which consequently result
in increased water-wetness and improved oil recovery as illustrated in Figure 12. This concept
was proposed by Hiorth et al. [65] through geochemical thermodynamic modelling of various
experimental studies (such as spontaneous imbibition and electrokinetic tests, see [57,59,93,188,260])
on chalk that the surface charge dependence of disjoining pressure could not describe the oil recovery
improvement observed in relation to pore water chemistry and temperature. They argued that
PDI cations will promote oil wetting because they increased the rock surface charge while SO4

2−

did not show the strong temperature-dependence that was observed in many studies. Then, they
reiterated that due to the calcite surface being thermodynamically unstable, dissolution occurs, and
the amount dissolved correlates linearly with the improved production, particularly when the calcite
was preferentially dissolved exactly where the oil wets the calcite. In a study with limestone cores,
Yousef et al. [25,47] attributed the improved connectivity between micropores and macropores during
NMR experiments on low saline brine injection at reservoir conditions to microscopic dissolution of
anhydrite. Austad et al. [45] injected sulfate-free diluted brine into limestone cores containing anhydrite
and reported an incremental recovery of 5% OOIP. They explained that sulfate was continually
generated in-situ because of anhydrite dissolution, and this led to the wettability alteration process.
Several other experimental studies have ascribed the observed improved recovery in carbonates during
low saline brine injection to rock dissolutions of different minerals [29,37,53,215].

Austad et al. [261] strongly opposed the calcite dissolution mechanism proposed by
Hiorth et al. [65] by questioning the applicability of the geochemical model to calculate the chemical
equilibrium between calcite and seawater and the corresponding compositions at the considered
temperature range. It was argued that calcite dissolution is contradictory to published experimental
results, where it was discussed that an increase in aqueous Ca2+ increases oil recovery and will suppress
chalk dissolution due to common ion effect, which means that decreased dissolution increases oil
recovery, and then at high temperature there is no increase in oil recovery with increased dissolution.

 

−

−

 

Carbonate rock

Aqueous brine

Crude oil

Figure 12. An illustration of the proposed mechanism of wettability alteration by “dissolution” showing
an oil-wetting state with oil attachment before dissolution (top) and the water-wetting state after
dissolution (bottom) (adapted from Hiorth et al. [65]).

Furthermore, it was argued that wettability alteration does not depend on the bulk mineral
dissolution due to buffering of aqueous solution and equilibration at field-scale. This implied mineral
dissolution is not considered to be contributing at a reservoir scale, hence ranked as a secondary
cause [55,99,262,263]. Despite these studies, Awolayo et al. [181] claimed, by using a geochemical
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model to predict performance history of low saline brine injection into different rock minerals, that
the interplay between mineral dissolution and surface charge alteration is vital to improved recovery
and their relative contribution depends on brine composition, mineral constituents, and temperature.
Aqueous pH was also reported to be controlled by interaction between injected brine and minerals
present, majorly the resultant effect of mineral dissolution and precipitation. The authors concluded
that mineral dissolution/precipitation cannot be exempted in modelling low saline brine injection at
both core and field scale as it affects the concentrations of the PDIs available to adsorb.

4.2.2. Surface Ion Exchange

The pristine structure of carbonate mineral surfaces is composed of metal ions (such as Ca2+,
Mg2+, etc.) coordinated to oxygen atoms from carbon atoms (such as CO3

2−). Because of the reactive
nature of the carbonate mineral surface, the surface is hydrated by the dissociation of chemisorbed
water molecules resulting in a surface composed of hydroxylated cationic sites and protonated anionic
sites, which are stabilized by the dissociated hydroxyl ions (OH−) and protons (H+) respectively.
The stabilization of the surface site depends on the brine composition as well as the pH. At low pH
below 6–8, the excess H+ ions and probable dissolution will make the positively charged cationic sites
dominate and the overall surface positively charged. Meanwhile at a high enough pH, excess OH−

ions will change the surface to more negative charge. In representative reservoir conditions, carbonate
rock surface is positively charged in the pH range (6.5–7.5) of the surrounding high saline formation
brine (consisting low concentration of negatively charged ions like CO3

2− and SO4
2− and high amount

of positively charged Ca2+) while the polar components of oil have a predominantly negative surface
charge, resulting in a high bonding energy between polar carboxylic materials and carbonates [97].

The adsorption of the negatively charged carboxylic component of crude oil onto the mineral
surface causes a change in the rock wettability (preferentially oil/mixed-wet). Under the influence
of modified brine with more PDIs, SO4

2− competes with the polar component, and adsorb onto the
carbonate rock surface, lowering the rock surface charge. This creates an electrostatic repulsion and
causes the bond between the rock-brine interface and oil-brine interface to rupture. Then, Ca2+ ions are
co-adsorbed to the rock surface and its excess concentration at the site bind to the negatively charged
carboxylic groups in oil and release the oil in the form of Ca2+-carboxylate complexes, resulting
in improved water-wetness and oil recovery (Figure 13). This mechanism is analogous to the MIE
described for sandstones in the previous section, except this mechanism revolves around the adsorption
of the active ions unto the rock surface resulting in release of the attached oil and was first proposed
by Austad and colleagues in different carbonate rocks [27,31,44,57,59,93,97,188,189] and several others
have presented evidence to support this mechanism [215,264]. As discussed earlier, temperature seems
to influence the activity of these PDIs. At higher temperature (above 100 ◦C), Mg2+ has higher activity
and could substitute Ca2+ at the rock surface and cause the oil to be released as Ca2+-complexes. This
mechanism has also been linked with rock dissolution as sufficient SO4

2− is produced by dissolution
of anhydrite while Mg2+ is produced by dolomite dissolution. Similarly, this mechanism is somewhat
related to DLE as will be discussed below.
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Figure 13. An illustration of the proposed mechanism of wettability alteration by “MIE” in carbonate
reservoirs showing the polar oil component displacement from the carbonate rock surface through
PDIs competition. Original state (left), Low temperature state (right upper) and High temperature
state above 100 ◦C (left lower) (adapted from Zhang et al. [59]).

4.2.3. Electrical Interaction—DLE

This is like the DLE mechanism described in the previous section for sandstone reservoirs. EDL
expansion increases the electrostatic repulsion between rock-brine and oil-brine interfaces, resulting
in higher and/or positive disjoining pressure, creating a thicker and more stable water film layer
and resulting in more water-wet conditions (see Figure 11). Many authors [23,47,99,181,265] describe
this as “surface charge alteration” mechanism, which involves altering the rock surface charge to
create more electrostatic repulsive forces between the two interfaces and alter rock wettability toward
water-wetness. Monovalent ions consisting of Na+ and Cl– have been considered as non-reactive
towards the rock surface, which implies that they do not partake in the interaction at the carbonate
surface within the stern layer but are very sensitive in the outer diffuse layer and they might regulate
the admittance of the PDIs onto the rock surface [28,34,191]. At the initial reservoir conditions, the
high saline formation brine contains relatively lower PDIs compared to the high concentration of NaCl,
which implies that the initial positive charge at the rock-brine interface is maintained and much of Na+

and Cl– are retained at the diffuse layer. This will hinder the PDIs from interacting with the surface
of the rock and electrostatic attraction (low/negative disjoining pressure) between the two interfaces
and thinning of the water film layer. A significant change to the water chemistry will create much
better access through the double layer and enable the PDIs to attach specifically in the stern layer or
via the intermolecular coordination of water molecules, altering the surface charge at the interface.
NaCl-depleted brine has been shown to reduce the concentration of non-active ions in this layer so
that the active ions could enter easily to the surface (Figure 14). In this context, rock-surface charge
is reduced or even reversed towards negative from its initial condition of positive charge [107,266].
Such interaction can release adsorbed oil acidic components from the surface sites because of the
more stable water film layer that is developed due to lesser attraction (higher disjoining pressure)
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between the two interfaces. This was first proposed in chalk by Fathi and colleagues [28,191] and later
in limestones [34,39].

In addition, Yousef et al. [25] associated wettability changes to surface charge alteration in
combination with rock dissolution through electrokinetic and NMR analysis. NMR showed fast
surface relaxation and ζ-potential shifted towards more negative with successive dilution of seawater.
Alroudhan et al. [51] also observed a shift towards more negative when injected brine was diluted or
SO4

2– was added to the injected brine. They confirmed that both cases could improve oil recovery by
altering surface charge and expanding the EDL. Similarly, Mahani et al. [55] conducted ζ-potential
and contact angle measurements on different carbonate rocks and stated that the observed wettability
changes and improved recovery is primarily driven by surface-charge alteration due to electrostatic
interactions between crude oil and rock. Moreover, the phenomena are predominantly occurring at
the rock-brine interface. In place of sorption of SO4

2− to the rock surface, Brady and Thyne [267]
suggested, based on work of Goldberg and Forster [268] that maximum boron sorption to calcite
occurs at a pH of 9.5, that BO4

3− can coordinate with calcite positive surface site [>CaOH2
+], locally

decrease the charge to decrease oil adhesion through an electrostatic attraction bridge and thicken the
water film layer. In the same way, PO4

3− can also link and reduce oil adhesion, which was observed
by Sø et al. [269]. At relatively low concentrations, PO4

3− can electrostatically sorb to calcite surfaces
to convert the positively charged surface sites into neutral/negative, whereas at high concentration,
it can precipitate as calcium phosphate. These studies further acknowledge the improved recovery
observed and water wetness using PO4

3− and BO4
3− by various researchers and their likelihood to

precipitate at higher concentrations [53,111,216].
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Figure 14. An illustration of the proposed mechanism for wettability alteration by “DLE” in
oil-brine-carbonate rock system with DLVO disjoining pressure showing transition from an oil wetting
state (left upper) with crowded double layer-filled non-active ions (right upper) to water wetting state
(left lower) with double layer depleted non-active ions (right lower) (adapted from Fathi et al. [28],
Awolayo et al. [62]).

A combination of all these mechanisms are often believed to be involved in improving oil
production, because during the injection of low saline brine/ ion-modified brine, the thermodynamic
equilibrium existing among the ion species dissolved in the water film layer, ion species adsorbed on
the rock surface and the ion species that forms the rock matrix is disturbed. This triggers a reaction



Energies 2018, 11, 3020 39 of 66

involving connate-waterflood mixing, dissolution/precipitation, sorption and surface ion exchange,
while trying to establish a new equilibrium state, and favourably cause the rock-brine interface to
become less positively charged and repel the negatively charged oil-brine interface.

5. Modeling of Brine-Dependent Recovery

Reliable optimization of any recovery process requires the availability of a predictive tool, which
is a necessity to understand completely the principal mechanisms driving the recovery process. For
such a tool to be developed to simulate the recovery process, the mechanisms at play need to be
well grasped. However, despite various inconsistencies in the process mechanisms, several attempts
have been made to model this process and outlined below are the relevant works done thus far. The
phenomena of fluid flow during brine-dependent recovery process are often mathematically described
by a partial differential equation (PDE) or a system of several PDEs, with associated boundary and
initial conditions. The PDE describing process can be solved either analytically or numerically. Majorly,
the PDE solution is linked to the observed improved recovery by considering the influence of capillary
forces as a driver for wettability alteration, particularly, an increase in flow oil functions (e.g., relative
permeability, capillary pressure and residual oil saturation and a corresponding decrease in water flow
functions, are used to calculate the flow of each individual phase. The methodologies and application
of analytical and numerical approaches that are often made in modeling the brine-dependent recovery
process are summarized below.

5.1. Analytical Approach

Most of the recent modeling efforts have attempted to capture the brine-dependent recovery
process through numerical approximations, and to the best of our knowledge, very few studies have
explored the application of analytical solutions. This is because analytical solutions are often applied
to many practical problems of fluid flow, with certain simplifying conditions, involving insufficient
experimental data that could justify the use of a numerical model. Besides, analytical solutions can
guide in the design of experiments and benchmark the numerical models. In addition, the practical
advantage of analytical solutions lies in the fact that they offer quick estimation, improve interpretations
and are useful in conducting sensitivity analysis and computations of different displacement behavior
for different injection brine salinity and compositions.

Lemon et al. [270] captured the fine migration effects and permeability reduction by providing a
simple analytical induced-fines migration model to justify improved oil production associated with
low saline brine injection. The authors implemented a modified particle-detachment model, which
considered maximum retention function as related to the ratio of detaching and attaching torques, into
the quasi-2D Dietz model for waterflooding in a layered-cake reservoir and was validated using single
flow laboratory coreflooding experiments. They suggested that fines migration effects on oil recovery
are more pronounced with increased viscosity ratio and reservoir heterogeneity. Zeinijahromi et al. [70]
opined that this model considered single-phase environment with mobilization caused by increase
in flow velocity and extended the model to capture 3D modeling of fines-assisted waterflooding
by introducing two-phase flow equations with fines lifting and migration in the aqueous phase
and fines size-exclusion. The fines lifting is caused by water salinity changes and the alterations
in particle equilibrium by changes in both fluid velocity and salinity were captured, resulting in
reduction of relative permeability to water. The model typically involved integrating fines migration
and permeability reduction into two-phase black-oil model and was used to model fines-assisted
waterflooding in two heterogenous formations. It was highlighted that induced-fines migration was
more effective in improving sweep efficiency for large-scale heterogeneity with highly correlated flow
paths. This model has been applied to interpreting and predicting fines-assisted waterflooding in many
oil fields (such as Pervomaiskoye, Zichebashskoe, and Bastrykskoye fields) in Russia [229–231]. On the
other hand, Borazjani et al. [74] extended this model by simultaneously accounting for wettability
alteration and fines mobilization, migration, and straining, solved by using splitting procedure for
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hyperbolic systems. It was proposed that wettability alteration reduces residual oil and increased oil
displacement from the swept area, while induced-fines migration with permeability reduction in the
swept area decreased water flux and diverts the injected brine to unswept zones. The collective effects
were observed to improve oil recovery much more than their individual effects.

Venkatraman et al. [69] used the hyperbolic theory of conservation laws to develop analytical
solutions to the Riemann problem to explain the displacement process observed during fluid flow and
cation exchange reactions between flowing aqueous phase and sandstone solid phase. The analytical
solutions were used to predict effluent profiles of specific cases of three heterovalent cations (Na+, Ca2+

and Mg2+) and an anion (Cl−) for any constant initial and injection brine composition by using mass
equilibrium action laws, charge conservation equation and the cation exchange capacity equation.
The number and nature of shocks or rarefaction waves in the displacement as well as when they
occur was predicted to a reasonable accuracy, which becomes increasingly complex as the number
of cations in the system increases. The theoretical predictions compared well with experimental data
available at both the laboratory scale and the field scale and showed reasonable agreement with
numerical model predictions, developed using finite differences. Awolayo and Sarma [73] derived
an analytical expression based on the advection-reaction-dispersion equation (ARDE) theory for 1-D
single-phase flow, which considered a linear adsorption (retardation) to capture changes between ions
in aqueous phase and stationary solid phase in terms of sorption and surface complexation reactions.
The model was used to replicate histories of effluent ions from single-phase experiments and the
reactivity of PDIs towards carbonate rock surface was emphasized. The authors also predicted the
breakthrough composition of different ions during oil-brine displacement experiments and stated that
the wettability change was observed with a high retardation for PDIs, which resulted in improved oil
recovery. Various researchers have created a theoretical model based on DLVO theory of surface forces
to estimate the rock surface wettability through the stability of the water film layer separating the
rock and oil phase. The theoretical model evaluates the stability of the film by calculating disjoining
pressure isotherm and interaction potential that influences the water film thickness and the energy
barrier needed to be overcome to rupture the water film [62,100,179,207,214,259,271,272]. Alshakhs
and Kovscek [214] further estimated contact angle from the disjoining pressure and compared with
that from contact angle measurements.

5.2. Numerical Approach

As discussed above, analytical solutions are often difficult to obtain because of several
complexities that might be encountered during many practical applications of fluid flow in porous
media. The shapes of the reservoir boundaries might be irregular, the dependent variables in the
governing equations, initial and boundary conditions might be space-variant and non-uniformly
distributed, while the sink/source term in the governing equations might be a non-analytic function.
Hence, numerical technique provides a convenient, flexible, and sophisticated tool for solving
fluid flow problems in complex realistic situations as it is the case for brine-dependent recovery,
which combines multiple mechanisms. These mechanisms include processes such as convection,
advection, diffusion/dispersion, sorption (adsorption/ion-exchange), surface complexation, mineral
reactions, zero/first order production, and decay. The widely used numerical modeling method
for brine-dependent recovery is based on black-oil and compositional reservoir simulation with or
without coupling either of these two types of models: the surface sorption models (SSMs) and surface
complexation models (SCMs). The SSM captures sorption reactions like adsorption, ion-exchange,
where the electrical interaction is integrated into the equilibrium constants for the reactions and SCM
captures similar surface reactions, except the sorption process depends on the interaction surface
charges that are simultaneously calculated with the surface species.
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5.2.1. Sandstone Rocks

Jerauld et al. [66] made the earliest attempt to model brine-dependent recovery process in
sandstone reservoir through the adoption of the existing waterflood model. They implemented
fractional flow theory to describe the process and treated salt as a single-lumped component in the
aqueous phase. The relative permeability and capillary pressure was considered a function of salinity,
such that wettability alteration was initiated through interpolation between two relative permeability
and capillary pressure sets (one at water-wet and the other at oil-wet set) within the salinity thresholds.
The residual oil saturation was also made a linear function of salinity, which is used in calculating
the interpolating parameter as expressed in the Equations (2)–(5). They were successful in simulating
coreflood experiments as well as other single-well tests:

krl = ωkrl
HS(Swn) + (1 − ω)krl

LS(Swn) (2)

where krl is the relative permeability to phase l (dimensionless), n is an exponent (dimensionless),
which has a value of 0 for current set, HS for high salinity set and LS for low salinity set, ω is the
interpolation parameter (dimensionless) and Swn is the normalized water saturation (dimensionless):

Pcow = ωPcow
HS(Swn) + (1 − ω)Pcow

LS(Swn) (3)

where Pcow is the oil-water capillary pressure (Pa).

ω =
Sor − Sor

LS

Sor
HS

− Sor
LS

(4)

where Sor is the residual oil saturation to waterflood (dimensionless):

Swn =
Sw − Swi

1 − Sor − Swi
(5)

where Sw is the water saturation (dimensionless) and Swi is the irreducible water saturation
(dimensionless). Tripathi and Mohanty [273] extended Jerauld et al. [66]’s work to studying the
flow instability related to wettability alteration using a 1-D Buckley-Leveret analytical model excluding
effect of capillary pressure. They identified two saturation shocks for the considered low saline
waterflood case, one of which was associated with adverse mobility. This was supported by viscous
fingering theory and 2-D numerical simulation. Wu and Bai [274] tried to model the process in both
porous and fractured reservoirs. They treated salt as a pseudo component in the aqueous phase,
which was subjected to advection and diffusion, as well as adsorption on mineral surface. Similar to
Jerauld et al. [66], their model expressed the dependency of relative permeability, capillary pressure
and residual oil saturation on salinity. The residual oil saturation and contact angle was interpolated
between two sets of residual oil saturation and contact angle data using the total salt concentration
as shown in Equations (6) and (7), which was used to evaluate only the oil relative permeability and
capillary pressure respectively (Equations (2) and (3)). They simulated a hypothetical case to compare
the low saline waterflood with conventional waterflood:

Sor(Xc) = Sor
LS +

Xc − Xc
LS

Xc
LS

− Xc
HS

(

Sor
LS

− Sor
HS

)

(6)

θ(Xc) = θLS +
Xc − Xc

LS

Xc
LS

− Xc
HS

(

θLS
− θHS

)

(7)

where Xc is the salt mass fraction in the aqueous phase (dimensionless) and θ is the contact angle.
Al-adasani et al. [240] extended Wu and Bai [274]’s work by generating different correlations for
residual oil saturation, contact angle and IFT as a function of salt concentration. These correlations
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were used to evaluate the oil relative permeability, water relative permeability, and capillary pressure.
They successfully simulated a series of experimental data and concluded that the increase in oil
relative permeability because of wettability change was the core element of the modeling approach.
However, at weakly water-wet conditions, improved recovery is controlled by low capillary pressure.
Omekeh et al. [275] was the first to construct a more comprehensive model that takes into consideration
the geochemical interpretation of low saline waterflood process in sandstones. They formulated a
Buckley-Leveret two-phase model that accounted for MIE as the sole explanation for wettability
alteration. The MIE was expressed using Gapon convention where cations are involved in a fast
exchange process with the negative clay surface (Equation (8)). They proposed modeling the transition
between two relative permeability sets by using a weighting function which considered the amount
of divalent cations (Ca2+ and Mg2+) desorbed from mineral surface (Equation (9)). The model was
successfully used to do several sensitivity checks on Berea sandstone cores using brines with different
ion compositions. They observed sensitivity of the desorption fronts speed to the injected brine
composition and oil recovery to the composition of the formation water relative to the injected brine
composition. They later coupled mineral dissolution into the model [67]. They obtained a good
agreement between the model and experimental recovery and effluent concentration from a reported
North Sea coreflood experiment:

1/2Ca2+ + Na − X ⇄ Na+ + Ca1/2 − X
1/2Mg2+ + Na − X ⇄ Na+ + Mg1/2 − X

(8)

ω
(

βCa, βMg

)

=
1

1 + r
[

max(βCa,0 − βCa, 0) + max
(

βMg,0 − βMg, 0
)] (9)

where r is a constant that determines the shape of the adsorption curve (dimensionless), βCa,0 and
βMg,0 are the adsorbed Ca2+ and Mg2+ concentration (dimensionless), respectively, at the initial
time, and βCa and βMg are the adsorbed Ca2+ and Mg2+ concentration (dimensionless), respectively,
at the current time. Similarly, Dang et al. [63] used GEM CMG, a compositional simulator of
Computer Modeling Group, to simulate low saline brine injection in sandstones by constructing
a comprehensive multi-phase multi-component geochemical model. In their work, the multi-ion
exchange was expressed using Gaines–Thomas convention as highlighted in Equation (10). They
modeled the transition between the two-relative permeability sets as a function of equivalent Ca2+

fraction on the mineral surface, which was contrary to Omekeh et al. [275]’s viewpoint with regards to
recovery mechanism in sandstones. However, wettability alteration was captured as they successfully
simulated coreflood experiments conducted on cores from North Sea and Texas reservoirs [40,252].
They validated the model by obtaining good agreement between experimental and model effluent ion
concentrations, effluent pH and recovery. Besides, they extended the model to capture the combination
of brine-dependent recovery and CO2 flood [276]. They observed that such combination is a very
promising recovery technique that promoted the synergy between the two processes in ensuring
capillary force is fully captured via wettability and IFT alteration:

Na+ + 1/2Ca − X2 ⇄ 1/2Ca2+ + Na − X

Na2+ + 1/2Mg − X2 ⇄ 1/2Mg2+ + Na − X
(10)

Korrani et al. [277] coupled a geochemical package and compositional simulator to obtain an
integrated tool in UTCOMP-IPHREEQC capable of executing a geochemical-based modeling of
complex processes like low saline brine injection, alkaline-surfactant-polymer (ASP) flooding and
formation damage with sensitivity to hydrocarbon interactions. They modeled the transition from
oil-wet to water-wet region by considering different interpolation parameters, like total ionic strength
(Equation (11)) and ion exchange through organometallic components surface complexation (Equation
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(12)). The model was then used in matching histories of produced ions as well as the oil recovery of
coreflood experiments and the Endicott field trial conducted by BP [219]:

ω =
TISmax − TIS

TISmax − TISmin
(11)

ω =
ζmax − ζ

ζmax − ζmin
(12)

where TIS is the total ionic strength (mol/L) and ζ is the fraction of surface organometallic complexes
(dimensionless). Brady et al. [179,257,258] constructed a batch SCM for sandstones having two
surface charge sites; namely, clay edge and basal plane. Meanwhile the charges at these sites are
controlled by pH-dependent protonation/deprotonation reactions at the clay edge and heterovalent
substitution in the lattice of the basal plane. Four electrostatic attraction bridges, as shown in figure,
were identified as important in modifying rock wettability. At pH < 5.5, [>Al:SiO−

⇔
+HN<] and

[>AlOH2
+
⇔

−OOC<] attraction bridges are dominant while at higher pH, [>Al:SiO−
⇔

+CaOOC<]
attraction bridge dominates while [>Al:SiOCa+

⇔
−OOC<] attraction bridge only important at

pH>8. The authors showed that low Ca2+ injected brine and low saline brine can both decrease
[>Al:SiO−

⇔
+CaOOC<] attraction bridge at higher pH and explained that at low acid numbers, low

saline brine can decrease, [>Al:SiO−
⇔

+HN<] and [>AlOH2
+
⇔

−OOC<] attraction bridges, resulting in
improved recovery [257]. It was also identified that, for kaolinite-containing sandstones, an increase in
Ca2+ will decrease oil adhesion by filling the exchange basal plane sites Ca2+ and increase oil adhesion
by increasing [+CaOOC<] species at the kaolinite edge site. They revealed that the ratio of edge to
basal plane exposure is critical to determining the mechanism of oil adhesion to kaolinite-containing
sandstones [258]. The bond product sum (BPS) of oil interaction with kaolinite edge, which is the sum
of the four electrostatic attraction bridges, was also suggested to be a simple means to estimate mutual
electrostatic adhesion between the surface charges of oil and kaolinite edge sites [179]. The BPS would
equal to zero with no likelihood of electrostatic adhesion when both oil and mineral surfaces only
contain negatively charged species, resulting in water-wetness. While the BPS would be high when
both oil and mineral surfaces contain oppositely charged species and the potential for electrostatic
adhesion would be high. This was used to interpret why the Snorre field (BN = 1.1 and AN = 0.02 mg
KOH/g oil) showed very little positive response to low saline brine [36].

Elakneswaran et al. [278] further extend Brady et al.’s work by coupling SCMs and mineral
dissolution/precipitation and showed that mineral equilibrium showed a notable positive effect on oil
desorption and improved oil recovery. They also emphasized that pH, Ca2+ and Mg2+ significantly
influenced electrostatic interaction at both rock-brine and oil-brine interfaces and oil desorption
increased with dilution of injected brines. Erzuah et al. [279] compares BPS from Brady et al. [179]’s
SCMs work with flotation techniques in the presence of high saline formation brine and showed that
the presence of divalent cations increased oil adhesion through cation bridging to kaolinite and quartz
surfaces, reflected by the high BPS through [>Al:SiO−

⇔
+CaOOC<] and [>Al:SiO−

⇔
+MgOOC<]

bridges, and high concentration of oil-wet particles from flotation tests. In addition, Lima et al. [280]
developed a pore scale model by coupling SCM with the generalized Poisson-Boltzmann equation to
compute local disjoining pressures and contact angle and their dependence on brine salinity and pH.
The contact angle was then incorporated in Brook Corey’s formula to obtain the relative permeability
functions for various low saline brine injection scenarios. Meanwhile, Korrani and Jerauld [281] showed
that BPS failed to predict wettability change as instead of decreasing, it increased as wettability moves
towards more water-wet state, and suggested that stability number (SN), which is a dimensionless
group for ratio of electrostatic to van der Waals force, gave a better prediction of coreflood experiments
and the Endicott field trial conducted by BP [219].
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5.2.2. Carbonate Rocks

Similar to modeling attempts in sandstones, there has been quite a few modeling studies
conducted on carbonate rocks. Hiorth et al. [65] was the first to attempt to develop a model to
better understand the published experimental results, especially in chalk formations. They coupled
bulk aqueous, SCM with two sites (>Ca+ and >CO3

−) and mineral reactions in a geochemical model,
calculated the surface speciation, charge, and potential with temperature and tried to calculate the
water film stability and oil wettability, the result of which was compared with spontaneous imbibition
experiments on Stevns Klint outcrop chalk. They found that the negatively charged surface promotes
water-wetness, while the positively charged surface promotes oil-wetness. They reported that the
experimental observation could not be fully explained by surface potential changes and only calcite
dissolution could account for the improved recovery. They concluded that the unstable equilibrium
that resulted in calcite dissolution has a strong dependence on temperature and pH conditions.
Yu et al. [282] presented a 1-D two phase model to simulate a smart waterflood spontaneous imbibition
tests conducted on core plugs from Stevns Klint Chalk formation. They considered a wettability
alteration (WA) agent (sulfate ions) as the second component in the aqueous phase, which was used
along with the adsorption isotherm to imitate the transition between the two-relative permeability and
capillary pressure sets representing the oil-wetting and water-wetting state (Equation (13)). The model
accounted for molecular diffusion, capillary force, gravity and adsorption. However, it did not capture
the influence of WA agent adsorption on rock permeability and porosity. A reasonable match was
achieved between the model and experimental results. They placed emphasis on dynamic and fixed
wettability alteration, with the dynamic alteration depending on the salt concentration to capture the
gradual transition period and gave a better match:

ω(c) =
a∗ − a(c)

a∗
, a∗ =

a1

a2
, a(c) =

a1c

1 + a2c
(13)

where c is the concentration of WA agent, a(c) is the adsorption isotherm, a∗ is the asymptotic
limit of a(c), a1 and a2 are constants to calculate adsorption isotherm. Evje et al. [283] constructed
a 1-D model to describe water-rock interactions by coupling convection-diffusion equations with
geochemical (equilibrium and non-equilibrium) reaction equations relevant for chalk weakening
effects essential to carbonate reservoirs. The model’s result agreed with experimental profiles for
measured effluent concentrations when solution of MgCl2 was injected into a chalk core initially
saturated with pure water at an elevated temperature of 130 ◦C. Mineral non-equilibrium reactions in
the form of MgCO3 precipitation and CaCO3 dissolution were the main components of the water-rock
interactions used in matching. Similarly, Evje and Hiorth [64] proposed a 1-D mathematical two phase
model coupled with geochemical reaction equations for a modified brine flood spontaneous imbibition
(SI) experiment conducted on chalk core plugs. Dynamic wettability alteration was introduced by
using changes in mineral composition (Equation (14)) as interpolating parameters between two sets of
flow functions relating to oil-wet and water-wet conditions. The effects of varying temperature, sulfate
and magnesium ion concentrations observed in SI experiments by Zhang et al. [59] were simulated,
but not reproduced. They envisaged that mineral dissolution detaches the oil attached to oil-wet sites
and gradually shifts rock wetness in a water-wet direction, which favors improved oil mobilization:

ω(ρ) =
1

1 + r[max(ρ0 − ρ, 0)]
(14)

where, ρ is the concentration of the mineral and ρ0 is the initial concentration. Andersen et al. [61]
extended the model developed for chalk by accounting for transport effects like advection, dispersion,
soluble hydrocarbon components, aqueous complexation, cation exchange and mineral alteration. The
geochemical model was used to reproduce the measured effluent of flooding experiments performed
at 130 ◦C. In another work, Andersen and Evje [284] developed a two-phase geochemical model to
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interpret possible chemical mechanisms responsible for brine-dependent oil recovery observed in
the variation of sulfate and calcium ions at 70 ◦C in chalk formation [59,188]. They incorporated ion
exchange processes that account for sulfate adsorption to the free site at the surface (Equation (15))
and modeled the transition from oil-wet to water-wet region by considering different interpolation
parameters like sulfate adsorption, calcite dissolution and anhydrite precipitation. A similar weighting
function (Equation (16)) as used by Evje et al. [283] was used for the transition between the sets
of flow functions representing oil-wet and water-wet curves, except that adsorption of sulfate was
incorporated to increase CEC. They concluded that only sulfate adsorption, coupled with surface
calcium activity, was responsible for the observed experimental results at 70 ◦C:

1/2SO4
2− + Y+

⇄ 1/2SO4 − Y2 (15)

ω(cso, βCa) = 0.5 −
1
π

tan−1
(

10
a(cso, βCa)

amax
− 4.5

)

(16)

Al-Shalabi et al. [285] developed a two-phase flow model using UTCHEM, chemical compositional
flow simulator developed at The University of Texas at Austin, to study the mechanisms responsible
for brine dilution in carbonate reservoirs through data matching. They attempted to simulate injection
of sea water and its different dilutions in experimental studies conducted by Yousef et al. [47]. They
used different scaling parameters to account for wettability alteration by interpolating between the two
sets of relative permeabilities and residual oil saturation. They concluded that simulation was quite
sensitive to transition between the two sets of oil flow functions. In another work, Al-Shalabi et al. [60]
used empirical correlation between contact angle and salinity as the interpolating parameter to tune
residual oil saturation and reported that contact angles gave a better option. Then curve fitting
using contact angle was used to obtain the oil relative permeability and Corey exponent. The model
was used to obtain a good match on coreflood experiments [48,215]. Al-Shalabi et al. [286] built a
geochemical model using Gibbs free energy to correlate residual oil saturation and oil flow function
and compared results from UTCHEM and PHREEQC (a geochemical module from the United States
Geological Survey) to emphasize the effect of the activity coefficient. The same experimental studies
were matched with emphasis on the dominant mechanism for wettability alteration as surface charge
alteration and anhydrite dissolution [287]. However, it is essential to state that empirical correlation is
only valid under the given experimental conditions and non-predictive under different conditions.

Korrani et al. [288] also extended the usage of their integrated UTCOMP-IPHREEQC to simulate
observations made during brine dilution experiments by Chandrasekhar and Mohanty [215]. The
authors used the amount of calcite dissolved as the transition between oil and water-wet flow
functions coupled with implicitly included surface complexation reactions. The model gave a
good match of oil recovery, pH and breakthrough curves and emphasized that calcite dissolution
and surface reactions are mandatory to capture improved oil recovery. Nevertheless, there was
high computation time due to the coupled simulator. Brady et al. [258,267] constructed another
batch SCM for carbonates and stated that the carbonate surface charge is largely controlled
by sorption of Ca2+ and CO3

2−, rather than pH. The authors used the calculated surface
speciation to consider the individual coordination between calcite and oil at 25−130 ◦C. They
identified several possible electrostatic attraction bridges: at higher pH are [>CaOH2

+
⇔

−OOC<],
[>CO3Ca+

⇔
−OOC<], [>CO3

−
⇔

+CaOOC<], [>CaSO4
−
⇔

+CaOOC<], [>CaCO3
−
⇔

+CaOOC<], and at
low pH are [>CO3

−
⇔

+HN<], [>CaSO4
−
⇔

+HN<], and [>CaCO3
−
⇔

+HN<]. The strongest oil-calcite
attraction bridge at reservoir pH is considered as [>CaOH2

+
⇔

−OOC<], which can be reduced by
increasing Ca2+ and/or Mg2+ (which could reverse the charge of [<COO−] specie), and/or increasing
SO4

2−, which can coordinate with [>CaOH2
+] and eliminate the positive charge to produce a negative

surface. The model was used to predict the injection of various versions of diluted brines used in the
experimental study by Yousef et al. [47] on limestone rocks. The authors claimed that the decreased
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salinity decreased the oil-calcite BPS, which resulted in reduced oil adhesion and increased oil recovery,
however diminishing returns was observed beyond ten times dilution.

Qiao et al. [68] developed a multiphase multicomponent reactive transport model that captured
the SCMs of surface reactions among carboxylic groups, cations, and sulfate. The model was used to
interpret the oil recovery from the spontaneous imbibition experiment conducted on chalk by using
brine with selective removal of non-active ions [28]. The water-wetting fractions, controlled by the
proportion of the carboxylic group desorbed from the surface sites, were used as the interpolating
parameter to transit between the two sets of capillary pressure, relative permeability, and residual
oil saturations. The model showed good consistency with experimental observations and through
sensitivity studies, they concluded that ion species, ionic strength and parameters, like oil acidity,
reaction equilibrium constants, total surface sites and diffusion coefficient, play such a key role in
the wettability alteration mechanisms. They extended the model by including limestone mineral
dissolution/precipitation reactions [289]. They introduced changes in surface potential in the
equilibrium constant calculations. The model was consistent with experimental observations using
brine dilution approach on limestone [45,47,97] and chalk outcrop [28].

Mahani et al. [99] developed a batch SCM to elucidate and correlate ζ-potential results under
varying brine salinity (synthetic seawater, with 25 and 100 times dilution) and pH conditions. They
made changes to the reaction of SO4

− with the calcite sites to match the ζ-potential results and observed
that ζ-potential increased with pH, which was caused by formation of surface species coordinating
with the PDIs. Brine dilution was observed to lead to more negative surface charge due to the resultant
effect of increase in concentration of negatively charged species, decrease in positively charged species
concentration and formation of neutral species. As the surface charge is modified, the wetting condition
is influenced towards improved water-wetness. Eftekhari et al. [290] developed a SCM reactive
transport model to derive the reaction equilibrium constant for natural carbonates by using a non-linear
optimization technique to fit the model with ζ-potential and single-phase breakthrough curves data on
intact chalk cores. The authors used the tuned model to suggest a correlation existing between the
remaining oil in several imbibition tests on chalk and [>CaOH2

+
⇔

−OOC<], which was estimated
using equilibrium constants analogous to aqueous acid-base reactions. Awolayo et al. [62] developed
a reactive transport model in GEM CMG considering adsorption and ion exchange and obtained
temperature-dependent equilibrium constants for the two reactions by fitting with the single-phase
breakthrough curves of different ions, temperature and intact carbonate minerals. The optimized
model was used to simulate oil recovery and breakthrough curves from different experiments. In
another study, the contribution of dissolution and precipitation of different minerals as they contribute
to the distribution of PDIs available for surface sorption were captured and simulated. The fraction of
the free surface sites that could adhere to oil, was observed to reduce as the brine salinity reduced and
sulfate concentration in injected water increased, which was used to transit between two sets of flow
functions [181,272].

6. Injection Water Issues and Remediation

In most published literature, it is evident that the properties of the formation fluids vary depending
on on different parameters, including mineral digenesis, its pressure and temperature history and the
other complex alterations experienced as reservoir fluid flow and mix over geological time [291]. As a
result, typical formation water is highly saline and enriched in divalent ions. Sandstone formation
water often contain an abundance of barium [Ba2+] and strontium [Sr2+] cations, while carbonate and
calcite-cemented sandstone formations usually contains a substantial amount of calcium [Ca2+] and
magnesium [Mg2+] cations [292]. Seawater is also rich in ions (higher SO4

2− than in formation fluids)
that form from marine sediments and water evaporation. These two fluids are the major sources of
water injected (diluted seawater or formation water) during brine-dependent recovery, and the mixing
of both incompatible fluids can result in precipitation/scaling. The precipitate/scale arises when
the natural state of the reservoir fluid system is disturbed to the extent that the solubility limits of
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some of its components are exceeded. As such, calcium sulfate (anhydrite) precipitates in carbonate
and calcite-cemented sandstone formations [293] and barium sulfate (barite) and strontium sulfate
(Celestine) precipitates can be readily formed in sandstone formations. The scale precipitation of these
minerals has a complicated dependency on variables like temperature and pressure. For instance,
calcium carbonate scales, the most common oil field scale, precipitate because of pressure changes
while sodium chloride (halite) scale forms similarly from highly saline brines encountering large
temperature drops. The scale formed at near-wellbore region or in the reservoir cause plugging/flow
restrictions, resulting in a porosity and permeability reduction and could reduce the waterflood scheme
effectiveness, when formed close to an injection well. Those formed at near-wellbore are easily removed
through acidizing while those formed in the formation are difficult to remove. Meanwhile, scales
formed in the production tubing lower the production rate by reducing the flowing area and increasing
the pipe surface roughness [292]. Romanuka et al. [46] proposed that injecting brine, with high amount
of surface-interacting ions (like SO4

2−, PO4
3−, and BO3

3−) into a formation containing divalent cations
such as Ba2+ and Sr2+, will increase the tendency for scale precipitation in the production lines, at
near-wellbore region or in the reservoir.

Another major issue is the presence of sulfate-reducing bacteria (SRB), which feeds on sulfate
sources to oxidize organic materials to hydrogen sulfide (H2S) in the form of anaerobic respiration.
The produced H2S is highly toxic and corrosive, which can cause severe handling and safety problems
in oilfield operations at a very low concentration. The produced H2S is also slightly soluble in both
oil and water phase that can turn sweet oil into sour oil, which is expensive to refine. Fine migration
and mechanic compaction are other issues encountered during brine-dependent recovery, which are
because of weakened rock structure. Clay swelling has been reported to be associated with brine
dependent recovery in sandstone reservoir, which resulted in fines production and/or reduction
in permeability or increase in pressure drop. Meanwhile, mechanical compaction has been mostly
observed in chalk reservoirs, which is because of reduced mechanical strength of the chalk. This is
caused by the replacement of Ca2+ at the biogenic chalk surface by Mg2+ in the injected water through
chemical substitution at elevated temperatures. After water breakthrough, another environmental
issue might be the content of the produced water, which will include an added cost for treating
the water. The produced water from reservoir undergoing brine dependent recovery process will
contain low concentration of potential determining ions because of their adsorption to the rock. Hence,
injecting an appropriate mixture of this produced water and freshly prepared-injection water has been
proposed to also triggers wettability alteration and better recovery [294].

Even though these issues exist, success reported in various brine dependent recovery projects
conducted in many fields (notably Alaska and North Sea) for years did not account for much encounter
with precipitation/scaling, souring and fines production, except compaction which was prevalent in
North Sea Chalk reservoirs. Various authors have highlighted optimum sulfate concentration to avoid
precipitation of sulfate scales. Furthermore, in any waterflood project, the choice of water treatment
method is a key factor that significantly affects the project success. Treatment and reinjection of
produced brines has been reported to be possibly cheaper than its transportation and disposal [295–297].
Desalination is the water treatment process readily used to remove selected dissolved ions in water
to provide safe drinking water and treated injection water for improving oil recovery. There are two
main methods for water treatment/desalination: thermal-based, which involves heating the feed
water and collecting the condensed vapor from the distillation column and membrane-based, which
involves applying pressure to force the water feed through the member, thereby leaving the selective
salts. Membrane-based methods are often preferred over the thermal methods due to space limitation
and energy requirements [298]. The two widely used membrane-based desalination methods are
nanofiltration (NF) and reverse osmosis (RO), which are often used as either standalone or hybrid
configuration. During the nanofiltration process, the divalent ions are selectively removed, decreasing
water hardness, and leading to monovalent-ion rich effluent water (permeate stream) and divalent
ion-rich rejected water (retentate stream). Meanwhile, in the reverse osmosis process, both monovalent
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and divalent ions are selectively removed to reduce the permeate stream water salinity. Essentially the
permeate stream water from RO is fresh with negligible amounts of salt and this is possible because
RO has a much tighter pore size than NF.

Several published patents [299–303] have been proposed that the desired water quality can
be generated through the blending of the effluent permeate streams from the different NF/RO
application (standalone, hybrid configuration either parallel or series and plurality) schemes to satisfy
brine-dependent recovery requirements in sandstone reservoirs. As such, Yousef and Ayirala [304]
proposed a desalination optimization technique based on a parallel configuration of NF/RO that
blends both the permeate and retentate water streams to cover the entire range of ionic salinity
and composition appropriate for both sandstone and carbonate rocks, which also considered the
minimization/prevention of clay swelling, reservoir souring, corrosion and aerobic bacterial issues.
The authors emphasized that the availability of these multiple water streams provides the flexibility
of customizing the desired ionic content and salinity not just for brine-dependent recovery process
but also as a good preconditioner for hybrid-EOR applications such as miscible gas flood, carbonated
waterflood, polymer flood, ASP flood, and as boiler feed water in thermal floods. Meanwhile, Ayirala
and Yousef [305] recently reviewed different chemical extraction and desalination technologies and
reported that current desalination technology has limitations to treat high saline water and produced
water. They claimed that no current proven commercial technology can selectively remove specific
ions in one step to optimally meet the desired water requirement, but a combination of all current
technologies. Forward osmosis and membrane distillation are reported to offer cost-effective potential
alternatives to reverse osmosis with the availability of low-grade waste heat and well suited to treat
very high salinity water. Dynamic vapour recompression and Carrier-Gas extraction are identified as
well suited to treat high saline water and hyper-saline produced water from oil and gas production for
zero liquid discharge. This is critically important in locations where disposal facilities are not available,
which can become an effective water management strategy during field implementation by converting
the produced water into the desired water quality for reinjection. However, the two technologies
are reportedly not cost-effective for water desalination and their footprints and energy requirements
are not well defined as they are still in the development stage. The comparison of the features and
capability of all current and emerging water desalination technology are given in Table 3.
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Table 3. Summary of technology selection criteria, key attributes and capabilities of both current and emerging water treatment technologies (adapted from Ayirala
and Yousef [305]).

Water Treatment
Process

Desalination
Methods

Technology
Maturity

Selective Ion
Removal

Treatment Capability
Comparable Features

High Saline Water Produced Water

Nanofiltration Membrane-based High Yes No No
• Water recovery efficiency of 90–99%
• More open pores leading to higher flux
• Low operation pressure and energy consumption over RO

Reverse Osmosis Membrane-based High No No No
• Minimal footprint and energy requirement
• Cost effective as its widely used with water recovery efficiency greater

than 99%

Chemical
Precipitation Pretreatment Medium-High Yes No No

• Remove scaling and fouling in desalination pretreatment
• Upfront chemical costs and additional facility requirements for sludge

handling and disposal

Salt Extraction Pretreatment Low Maybe Yes Maybe • No scaling and lower energy requirements
• Details on cost and chemical solvents not well known

Forward Osmosis Membrane-based Low-Medium No Yes Yes
• Lower energy requirements
• Cost-effective compared to widely-used desalination method
• Can treat high-saline water

Membrane
Distillation

Combo Membrane &
Thermal-based Medium No Yes No

• Cost-effective compared to widely-used desalination method
• Can treat high-saline water
• Low-grade waste heat requirements

Carrier-Gas
Extraction

Humidification/
Dehumidification Medium No Yes Yes

• Provide zero liquid discharge solution up to 85–90% water recoveries
• Treating both high saline water and produced water
• Non-cost-effective compared to widely-used desalination method
• Costs, footprints and energy requirements not well-defined

Dynamic Vapor
Recompression Thermal-based Medium Maybe Yes Yes

• Minimal pretreatment and no scaling
• Provide zero liquid discharge solution up to 97% water recoveries
• Treating both high saline water and produced water
• Non-cost-effective compared to widely-used desalination method
• Costs, footprints and energy requirements not well-defined
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7. Discussion

In this work, a comprehensive review on systematic investigation of brine-dependent recovery
through all level of investigations of oil-brine-rock systems was presented. From laboratory and
field scale studies, brine-dependent recovery has resulted in substantial improvement in recovery,
though the magnitude observed at field scale is minimal compared to that observed in laboratory
experiments. It takes less injection water volume to achieve considerably incremental recovery in field
scale than in laboratory, which makes the application of the process more enticing. The improvement
in recovery was shown to vary depending on brine content (connate and injected), rock mineralogy, oil
type and structure, and temperature. Wettability alteration is widely accepted as the consequence of
the brine-dependent recovery process, while no consensus exists on the probable cause/mechanism,
which might be due to experiments conducted and reported at varying conditions. Despite these
challenges, analytical and numerical models have been utilized to further interpret and predict the
process performance.

Based on this review, the established opinion is that petroleum rock wettability can be modified
towards a more water-wetting state, irrespective of temperature, depending on rock type. For
carbonate rocks, it can be inferred that the injected brine should contain PDIs, depleted in NaCl,
and wettability alteration is much more effective at high temperatures. There is however a limit to
which increasing the SO4

2− concentration with increasing temperature can improve oil recovery; as
high SO4

2− concentrations at high temperature can result in CaSO4 precipitation and oil recovery
reduction. Aside chalk cores, SO4

2− and Mg2+ can be generated in-situ due to dissolution of anhydrite
and dolomite leading to improved oil recovery, which depends on the injected brine content and
reservoir rock temperature. The concentration of these PDIs in the formation water is also critical to
observing improved oil recovery, which implies that concentration of PDIs plays a more significant
role, compared to brine salinity reduction. Meanwhile, both reduction in brine salinity and modifying
the composition of heterovalent ions in sandstone rocks seems equally important as both cases have
led to significant improvement in oil recovery. There is an optimum salinity limit that is low enough
to improve oil recovery and high enough not to impede fluid flow and reduce oil recovery through
reservoir/wellbore plugging. Because sandstone rocks attached identically to both acidic and basic
components of the oil, temperature seems not to play such a vital role as compared to carbonate rocks.
Overall, the composition of the formation water needs to be critically examined before designing the
injected brine content to prevent chances of reservoir/wellbore damage and maximize oil production.

The effect of different minerals on the performance of brine-dependent recovery has been well
investigated in carbonate rocks with high degree of repeatability and the observed trend is that the
presence of different kind of minerals helps the two approaches of ionic strength and composition
modification performs better through in-situ generation of PDIs. Meanwhile, various inconsistencies
and contradictions observed with sandstone rocks due to the varying degree of mineralogy and clay
contents indicate that more controlled experiments need to be conducted. The current trend observed
from this review is that improved oil recovery can be observed in the presence or absence of clay
minerals, but lesser in the absence of clay minerals. This remains an area of further investigation
as many mechanisms proposed for improved recovery only considered oil adhesion through clay
minerals. Many of the studies quantified polar oil components using AN and BN, which might not
be able to give a robust description for type and structure of polar oil components contributing to
increased oil adhesion. Beyond, AN and BN, a combination of oil compositional characteristics (such
as the G-AB parameters [148]) should be further investigated to give a qualitative indication of the
extent to which low saline brine can alter wettability.

Observations from a molecular study conducted through electrokinetic analysis shows varying
degree of ζ-potential values because many of these studies were conducted using mineral particles of
varying sizes. The impact of particle size distribution has not been explored, which could potentially
affect the ζ-potential values. In addition, there has been contrast shown between ζ-potential obtained
from using intact rock cores and mineral particles suspension, and different measurement techniques
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(like electrophoretic mobility and streaming potential measurement), which is due to the differences in
the relative position of the shear plane between natural porous media and particle suspension to the
charged mineral surface [51]. These differences can result in contradicting predictions in understanding
the process mechanism and influence the reliability of the interpretation of the molecular-scale
investigation at the larger scale. This implies that more controlled experiments need to be conducted
using intact cores or uniform particle size should be maintained and the position of the shear plane
should be considered during the interpretation to compare with that from intact cores. Likewise,
further understanding of wettability alteration mechanisms through MIE can be achieved by more
robust interpretation and measurements of chemical composition of injected and effluent brines. In
addition, most areas of investigation have not been well explored, more detailed and controlled
experiments carried out at all scale of investigation will help clarify many of the contradictions facing
the current state of understanding and predicting the process efficiency.

The analytical models developed hitherto have only considered a few mechanisms, which
have been successfully utilized in describing the improvement in oil recovery. Improving on the
development of the analytical models can be quite difficult, because of the complexity of the process
mechanisms, however, it will be interesting to develop semi-analytical models that can combine
various mechanisms and help in conducting faster sensitivity and screening of the recovery process.
The bulk of the numerical black-oil models used salinity-dependent flow functions, while some of
the compositional models used empirical correlations. Meanwhile, the complex interaction has been
well predicted by the geochemical models using both surface sorption and complexation approaches,
which allows the investigation of rock mineralogical contents, brine compositions and polar oil
materials, which are significant in electrostatic interactions at both rock–brine and oil–brine interfaces.
However, if DLE is to be accepted as the cause of wettability alteration, then SCM would be the
ultimate approach at generating a numerical model to predict the process performance at all level
of investigation. Another area for further investigation will be to obtain thermodynamic parameters
describing the surface sorption and complexation models for natural rocks and their temperature
dependency, instead of the current practise of applying aqueous thermodynamic parameters. It is also
critical that the premise through which wettability alteration occurs as reflected by the interpolation
parameters used in simulation is identified with a high confidence level before being considered in
modeling to avoid contradictions.

This recovery process has more advantage than other chemical EOR methods in terms of operating
costs, field implementation and environmental assessment, even though it might recover comparably
less additional oil. There is currently no commercially proven desalination technology that can
selectively remove specific ions in one step, but a combination of all current technologies. However,
the emerging technologies have the tendencies to overcome this barrier when they become fully
developed. Meanwhile, modification of the injected brine composition (like adding more PDIs) can be
more expensive than brine dilution. The recovery benefits from both approaches can further outweigh
any potential damages that could be caused to the reservoir or near-wellbore region. Additionally, low
saline brine can serve as a preconditioner for other EOR methods, as most of the injected chemical/gas
performs better in a low saline brine environment.

8. Concluding Remarks

In this paper, a comprehensive review on various published systematic research and industry
efforts on brine-dependent recovery process has been presented. This review outlines an integrative
overview of laboratory and field observations, descriptions of underlying mechanisms and their
validity, the complexity of the oil-brine-rock interactions, modeling attempts, and comparison between
sandstone and carbonate rocks. The discussion covers how different techniques have been exploited
to interpret and predict the process efficiency, while highlighting various contradictions posed. The
following conclusions are drawn from this study:
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• Brine-dependent recovery process has resulted in substantial improvement in oil recovery from
laboratory to field scale studies, though the magnitude observed at the field scale is minimal
compared to that observed in laboratory experiments.

• The improvement in recovery varies depending on brine content (connate and injected), rock
mineralogy, oil type and structure, and temperature.

• Wettability alteration is the resultant effect of the recovery process, while the probable
cause/mechanism is a combination of many proposed mechanisms.

• For a brine-dependent recovery process to be effective in carbonate rocks, the injected brine should
contain PDIs depleted in NaCl, the rock should contain PDI-sourced minerals, and temperature
should be high. For sandstone rocks, on the other hand, there is no temperature limitation but the
optimum salinity of the injected brine should be less than 5000 ppm with modified heterovalent
ion concentration.

• Various analytical and numerical models have been utilized to further interpret and predict
the process performance, however, geochemical models comprising of surface sorption and
complexation appear to give comparably better interpretation and prediction.

• Brine-dependent recovery process is a relatively inexpensive and environmental friendly process,
particularly because of various emerging cost-effective water treatment technologies.

• Finally, the comparison between brine-dependent recovery process in sandstone and carbonate
reservoir highlighted in this review potentially serves to highlight the need for relevant studies
for the particular type of candidate reservoirs.

• The areas that need further investigations are identified, and they include crude oil
characterization beyond the current AN and BN characterization, effect of varying degree
of mineralogy in sandstone rocks, development of semi-analytical models, generating the
thermodynamic parameters to describe the surface sorption and complexation reactions for
natural rocks
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