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Abstract

We present a solution for the goal of extracting a video

from a single motion blurred image to sequentially recon-

struct the clear views of a scene as beheld by the cam-

era during the time of exposure. We first learn motion

representation from sharp videos in an unsupervised man-

ner through training of a convolutional recurrent video au-

toencoder network that performs a surrogate task of video

reconstruction. Once trained, it is employed for guided

training of a motion encoder for blurred images. This

network extracts embedded motion information from the

blurred image to generate a sharp video in conjunction with

the trained recurrent video decoder. As an intermediate

step, we also design an efficient architecture that enables

real-time single image deblurring and outperforms com-

peting methods across all factors: accuracy, speed, and

compactness. Experiments on real scenes and standard

datasets demonstrate the superiority of our framework over

the state-of-the-art and its ability to generate a plausible

sequence of temporally consistent sharp frames.

1. Introduction

When shown a motion blurred image, humans can men-

tally reconstruct (sometimes ambiguously perhaps) a tem-

porally coherent account of the scene that represents what

transpired during exposure time. However, in computer vi-

sion, natural video modeling and extraction has remained

a challenging problem due to the complexity and ambigu-

ity inherent in video data. With the success of deep neural

networks in solving complex vision tasks, end-to-end deep

networks have emerged as incredibly powerful tools.

Recent works on future frame prediction reveal that di-

rect intensity estimation leads to blurred predictions. In-

stead, if a frame is reconstructed based on the original im-

age and corresponding transformations, both scene dynam-

ics and invariant appearance can be preserved well. Based

on this premise, [6, 45] and [21] model the task as a flow
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of image pixels. The methods [38, 43] generate a video

from a single sharp image, but have a severe limitation in

that they work only on the specific scene for which they are

trained. All of these approaches work only on sharp images

and videos. However, motion during exposure is known

to cause severe degradation in the captured image quality

due to the blur it induces. This is usually the case in low-

light situations where the exposure time of each frame is

high and in scenes where significant motion happens within

the exposure time. In [35], it has been shown that standard

network models used for vision tasks and trained only on

high-quality images suffer a significant degradation in per-

formance when applied to images degraded by blur.

Motion deblurring is a challenging problem in computer

vision due to its ill-posed nature. Recent years have wit-

nessed significant advances in deblurring [36, 27, 25]. Sev-

eral methods [41, 26, 5, 31, 3, 14, 16, 17, 41] have been pro-

posed to address this problem using hand-designed priors as

well as Convolutional Neural Networks (CNN) [2, 29, 30]

for recovering the latent image. A few methods [33, 7] have

been proposed to remove heterogeneous blur but they are

limited in their capability to handle general dynamic scenes.

Most of these methods strongly rely on the accuracy of the

assumed image degradation model and include intensive,

sometimes heuristic, parameter-tuning and expensive com-

putations, factors which severely restrict their accuracy and

applicability in real-world scenarios. The recent works of

[23, 24, 18, 34] overcome these limitations to some extent

by learning to directly generate the latent sharp image, with-

out the need for blur kernel estimation.

We wish to highlight here that until recently, all existing

methods were limited to the task of generating only ‘a’ de-

blurred image. In this paper, we address the task of reviving

and reliving all the sharp views of a scene as seen by the

camera during its flight within the exposure time. Recover-

ing sharp content and motion from motion blurred images

can be valuable for uncovering the underlying dynamics of

a scene (e.g., in sports, traffic surveillance monitoring, en-

tertainment etc.). The problem of extracting a video from

a single blurred observation is challenging due to the fact

that a blurred image can only reveal aggregate information
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about the scene during exposure. The task requires recovery

of sharp frames which are temporally and scene-wise con-

sistent in the sense that they emulate recording coming from

a high frame-rate camera. State-of-the-art deblurring meth-

ods such as [36] [27] estimate at best a group of poses which

constitute the camera motion, but with total disregard to

their ordering. For example, one would get the same blurred

image even if the temporal order is reversed (temporal am-

biguity). As a post-processing step, synthesizing a sequence

from this group of poses is a non-trivial task. Although the

camera motion can be partially detected through gyroscope

sensors attached to modern cameras, the obtained data is too

sparse to completely describe trajectories within the time in-

terval of a single lens exposure. More importantly, sensor

information is seldom available for most internet images.

Further, these methods can only handle blur induced by a

camera imaging a static planar scene which is not represen-

tative of a typical real-world scenario and hence not very

interesting.

We present a two-stage deep convolutional architecture

to carve out a video from a motion blurred image that is

applicable to non-uniform motion caused by individual or

combined effects of camera motion, object motion and ar-

bitrary depth variations in the scene. We avoid overly sim-

plified models to represent motion and hence refrain from

creating synthetic datasets for supervised training. The first

stage consists of training a video auto-encoder wherein the

encoder accepts a sequence of video frames to extract a la-

tent motion representation while the decoder estimates the

same video by applying estimated motion trajectories to

a single sharp frame in a recurrent fashion. We use this

trained video decoder to guide the training of a CNN (which

we refer to as Blurred Image Encoder (BIE)) to extract the

same motion information from a blurred image as the video

encoder would from the image sequence corresponding to

that blurred image. For testing, we propose an efficient de-

blurring network to first estimate a sharp frame from the

given blurred image. The BIE is responsible for extracting

motion features from the blurred image. The video decoder

uses the outputs of the BIE and the deblurred sharp frame

to generate the video underlying the motion blurred image.

As the only other work of this kind, [13] very recently

proposed a method to estimate a video from a single blurred

image by training multiple neural networks to estimate the

underlying frames. In contrast, our architecture utilizes a

single recurrent neural network to generate the entire se-

quence. Our recurrent design implicitly addresses temporal

ambiguity to a large extent, since generation of any frame

in the sequence is naturally preconditioned on all the pre-

vious frames. The approach of [13] is limited to small

motion, owing to its architecture and training procedure.

We estimate pixel level motion instead of intensities which

proves to be an advantage for the task at hand, especially

in cases with large blur (which is an issue with [13]). Our

deblurirng architecture not only outperforms all existing de-

blurring methods but is also smaller and significantly faster.

In fact, separating the processes of content and motion esti-

mation allows our architecture to be used with any off-the-

shelf deblurring approach.

Our work advances the state-of-the-art in many ways.

The main contributions are:

• A novel solution for extracting a sharp video from a

single motion blurred image. In comparison to the

state-of-the-art [13], our network is faster, more accu-

rate (especially for large blur) and contains fewer pa-

rameters.

• A two-stage training strategy with a recurrent architec-

ture for learning to extract an ordered spatio-temporal

motion representation from a blurred image in an un-

supervised manner. Unlike [13], our network is inde-

pendent of the number of frames in the sequence.

• An efficient architecture to perform real-time single

image deblurring that also delivers superior perfor-

mance over the state-of-the-art in deburring [34] across

all factors: accuracy, speed (20 times faster) and com-

pactness.

• Qualitative and quantitative analysis using benchmark

datasets to demonstrate the superiority of our frame-

work over competing methods in deblurring as well as

video generation from a single blurred image.

2. The Proposed Architecture

Convolutional neural networks (CNNs) have been suc-

cessfully applied for various vision tasks on images but

translating these capabilities to video is non-trivial due

to their inefficiency in exploiting temporal redundancies

present in videos. Recent developments in recurrent neu-

ral networks provide powerful tools for sequence model-

ing as demonstrated in speech recognition [8] and caption

generation for images [37]. Long short term memory net-

works (LSTMs) can be used to generate outputs that are

highly correlated along the temporal dimension and hence

form an integral part of our video generation framework.

Though Conv3Ds have been used for video classification

approaches, we found that for our application, recurrent net-

works were more efficient. Considering that we are work-

ing with images, the spatial information across the image

is equally important. Hence we use Convolutional LSTM

units [40] as our building blocks, which are capable of cap-

turing both spatial and temporal dependencies.

The task of generating an image sequence requires the

network to understand and efficiently encode static as well

as dynamic information for a certain period of time. Al-

though such an encoding is not clearly defined and hence
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Figure 1. An overview of our video generation architecture during training. The first step involves training the RVE-RVD for the task of

video reconstruction. This is followed by guided training of BIE through the trained RVD.

unavailable in labeled datasets, we overcome this challenge

by unsupervised learning of motion representation. We pro-

pose to use video reconstruction as a surrogate task for

training our BIE. Our hypothesis is that a successful so-

lution to the video reconstruction task will allow a video

autoencoder to learn a strong and meaningful motion rep-

resentation which will enable it to impart spatio-temporal

coherence to the generated moving scene content.

In our proposed video autoencoder, the encoder uti-

lizes all the video frames to extract a latent representation,

which is then fed to decoder which estimates the frame se-

quence in a recurrent fashion. The Recurrent Video En-

coder (RVE) reads N sharp frames x1..N , one at each time-

step. It returns a tensor at the last time-step, which is uti-

lized as the motion representation of the image sequence.

This tensor is used to initialize the first hidden state of an-

other ConvLSTM based network called Recurrent Video

Decoder (RVD) whose task is to recurrently estimate N op-

tical flows. Since the RVE-RVD pair is trained using re-

construction loss between the estimated frames x̂1..N and

ground-truth frames x1..N , the RVD must return the pre-

dicted video. To enable this, the (known) central frame of

the video is acted upon by the flows predicted by the RVD.

Specifically, the estimated flows are individually fed to a

differentiable transformation layer to transform the central

frame x�N

2
� to obtain the frames x̂1..N . Once trained, we

have an RVD which can estimate sequential motion flows,

given a particular motion representation.

In addition, we introduce another network called Blurred

Image Encoder (BIE) whose task is to accept blurred image

xB corresponding to the spatio-temporal average of the in-

put frames x1..N and return a motion encoding, which too

can be used to generate a sharp video. To achieve this task,

we employ the already trained RVD to guide the training

of BIE so as to extract the same motion information from

the blurred image as the RVE would from that image se-

quence. In other words, the weights are to be learnt such

that BIE(xB) ≈ RV E(x1..N ). We refrain from using

the encoding returned by RVE for training due to lack of

ground truth for the encoded representation. Instead, the

BIE is trained such that the predicted video at the output of

RVD for the given xB matches as closely as possible to the

ground truth frames x1..N . This ensures that the BIE learns

to capture ordered motion information for the RVD to return

a realistic video. Directly training the BIE-RVD pair poses

a challenge since it requires learning to perform two tasks

jointly: “video generation from motion representation” and

“ambiguity-invariant motion extraction from a blurred im-

age”. Such training delivers below-par performance (see

supplementary material).

The overall architecture of the proposed methodology is

given in Fig. 1. It is fully convolutional, end-to-end differ-

entiable and can be trained using unlabeled high frame-rate

videos, without the need for optical flow supervision, which

is challenging to produce at large scale. During testing, the

central sharp frame is not available and is estimated using

an independently trained deblurring module (DM). We now

describe the design aspects of the different modules.

2.1. Recurrent Video Encoder (RVE)

At each time-step, a frame is fed to a convolutional en-

coder, which generates a feature-map to be fed as input

to the ConvLSTM cell. Interpreting ConvLSTM’s hidden-

states as a representation of motion, the kernel-size of a

ConvLSTM is correlated with the speed of the motion

which it can capture. Since we need to extract motion taking

place within a single exposure at fine resolution, we choose

a kernel-size of 3 × 3. As can be seen in Fig. 2(a), the en-
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(a) RVE architecture. (b) BIE architecture.

Figure 2. Architectures of BIE and RVE. The RVE is trained to

extract a motion representation from a sequence of frames while

the BIE is trained to extract a motion representation from a blurred

image and a sharp image.

coder block is made of 4 convolutional blocks with 3 × 3
filters. The first block is a conv layer with stride of 1 and

the rest contain a conv layer with stride of 2, followed by

a Resblock. The number of feature maps in the outputs of

these blocks are 16, 32, 64 and 128, respectively. A ConvL-

STM cell operates on the features returned by the last block

and augments it with memory from previous time-steps.

Overall, each module can be represented as henc
n =

enc(henc
n−1

, xn), where henc
n is encoder ConvLSTM state at

time step n and xn is the nth sharp frame of the video.

2.2. Recurrent Video Decoder (RVD)

The task of RVD is to construct a sequence of frames

using the motion representation provided by RVE and the

(known) central frame (x�N

2
�) of the sequence. The RVD

contains a flow encoder which utilizes a structure similar

to the RVE. Instead of accepting images, it accepts opti-

cal flows. The flow encoding is fed to a ConvLSTM cell

whose first hidden state is initialized with the last hidden

state he,N of the RVE. To estimate optical flows for a time-

step, the output of the ConvLSTM cell is passed to a Flow

decoder network (FD). The flow estimated by FD at each

time-step is fed to a transformer module (T ) which returns

the estimated frame x̂n. The descriptions of FD and T are

provided below.

Flow Decoder (FD): Realizing that the flow at current step

is related to the previous one, we perform recurrence on

optical flows for consecutive frames. The design of FD

is illustrated in Fig. 3. FD accepts the output of ConvL-

STM unit at any time-step and generates a flow-map. For

robust estimation, we further perform estimation of flow at

multiple scales using deconvolution (deconv) layers which

“unpool” the feature maps and increase the spatial dimen-

sions by a factor of 2. Inspired by [28], we make use of skip

connections between the layers of flow encoder and FD. All

deconv operations use 4×4 filters and the convolutional op-

erations use 3× 3 filters. The output of the ConvLSTM cell

is passed through a convolutional layer to estimate the flow

fn,1. The cell output is also passed through a deconv layer

before being concatenated with the upsampled fn,1 and the

corresponding feature-map coming from the encoder, to ob-

Figure 3. Our Recurrent Video Decoder (RVD). This module re-

currently generates optical flows which are warped to transform

the sharp frame. Flows are estimated at 4 different scales.

tain a hybrid feature map at that scale. As shown in Fig. 3,

this process is repeated 3 more times to obtain the flow maps

at subsequently higher scales (fn,2...4).

Transformer(T ): This generates a new frame by trans-

forming a sharp frame using the output returned by FD. It

is a modified version of the Spatial Transformer Layer [11],

which comprises of a grid generator followed by a sampler.

Instead of a single transformation for the entire image (as

originally proposed in [11]), T accepts one transformation

per pixel. Since we focus on learning features for motion

prediction, it provides immediate feedback on the flow map

predicted by the optical flow generation layers. Effectively,

the RVD function can be summarized as follows:

hdec
1

= henc
N (1)

hdec
n , fn,1..4 = G(hdec

n−1
, fn−1,4) (2)

x̂n,1..4 = T (x�N

2
�, fn,1..4) (3)

for n ∈ [1,N] where hdec
n is decoder hidden state, fn,1..4 are

flows predicted at n and x̂n,1..4 are sharp frames predicted

at different scales and G refers to a recurrent cell of RVD.

2.3. Blurred Image Encoder (BIE)

We make use of the trained encoder-decoder couplet to

solve the task of extracting video from a blurred image. We

advocate a novel strategy of utilizing spatio-temporal em-

beddings to guide the training of a CNN. The trained de-

coder has learnt to generate optical flow for all time-steps

from the encoder’s hidden state. We employ this proxy net-

work to solve the task of blurred image to video generation.

The use of optical flow recurrence enables our network

to prefer temporally consistent sequences, which preempts

it from returning arbitrarily ordered frames. However, di-

rectional ambiguity stays. For a scene with multiple objects,

the ambiguity becomes more pronounced as each object can

have its own independent motion. The BIE is connected

with the pre-trained RVD and the pair is trained (RVD is

fine-tuned) using a combination of ordering-invariant frame
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Figure 4. An overview of our dense deblurring architecture which

we utilize to estimate the central sharp frame. It follows an

encoder-decoder design with residual-dense blocks, bottleneck

blocks, and skip connections present at 3 different sub-scales.

reconstruction loss and spatial motion smoothness loss over

the RVD outputs (described later). No such ambiguity ex-

ists in the video autoencoder since the RVD has to exactly

reproduce the video which is fed to RVE.

The BIE is implemented as a CNN which specializes in

extracting motion features from a blurred image (we exper-

imentally found that feeding the central sharp frame along

with the blurred image improves its performance). The BIE

is tasked to extract the sequential motion in the image by

capturing local motion, e.g. at the smeared edges in the

image. Moreover, the generated encoding should be such

that the RVD can reconstruct motion trajectories. The BIE

has 7 convolutional layers with kernel sizes as shown in

Fig. 2(b). Each layer (except the last) is followed by batch-

normalization and leaky ReLU non-linearity.

2.4. Cost Function

Both our network pairs (RVE-RVD and BIE-RVD) are

trained by calculating the cost on the flows and frames esti-

mated by the RVD. Since RVD implicitly estimates optical

flows, we utilize a cost function motivated by learning-free

variational method [1] which resembles the original for-

mulation of [9] to impose flow smoothness. At each time

step, the data loss measures the discrepancy between inten-

sities of target frame and the output of transformation layer

(obtained using the the predicted optical flow field). The

smoothness cost is in the form of total variation-loss on the

estimated flow-maps: TV (s) =
�

|∇xs|+ |∇ys|.
Coarse-to-Fine: Motivated by the approach employed in

FlowNet [4], we improve our network’s accuracy by esti-

mating the flow-maps and frames in a coarse-to-fine man-

ner. At each time-step, four loss terms are calculated us-

ing four optical flows fn,1..4 predicted at sizes which are

( 1
8
, 1

4
, 1

2
, 1)th fraction of the original image resolution and

applied on the corresponding down-sampled central frame

using the transformation layers. Reconstruction losses

are calculated at each scale using suitably down-sampled

ground truth videos. Effectively, we use a weighted sum of

loss to guide the information flow over the network, which

can be expressed as

L =

4
�

j=1

λj

�

Lj +

N
�

n=1

µTV (fn,j))

�

(4)

For RVE-RVD training, the data term we use is

Lj =

N
�

n=1

�

�

�
x̂n,j − xn,j

�

�

�

1

(5)

As mentioned in section 2.3, training of BIE-RVD requires

a loss term that preempts the network from penalizing a

video which correctly explains the blurred image but does

not match the available ground truth. Following [13], we

use loss function

Lj =

N

2
�

n=1

�

�

�
|x̂n,j + x̂N−n,j |− |xn,j + xN−n,j |

�

�

�

1

+
�

�

�
|x̂n,j − x̂N−n,j |− |xn,j − xN−n,j |

�

�

�

1

(6)

Here, j represents the scale, n represents time-step, µ is

the regularization weight for total-variation loss empirically

set to 0.02. The relative weights λjs for each scale were

adopted according to the loss weight suggested in [22].

2.5. Deblurring Module (DM)

We propose an independent network for deblurring the

motion blurred observation. The estimated sharp frame is

fed to both BIE and RVD during testing.

Recent works on image restoration have proposed end-

to-end trainable networks which require labeled pairs of

degraded and sharp images. Among them, [23, 34] have

achieved promising results using multi-scale CNN com-

posed of residual connections. We explore a more effective

network architecture which is inspired by prior methods that

use multi-level and multi-scale features. Our high-level de-

sign is similar to that of U-Net [28], which has been used

extensively for preserving global context information in var-

ious image-to-image tasks [10]. Based on the observation

that increase in number of layers and connections across

them leads to a boost in feature extraction capability, the

encoder structure of our network utilizes a cascade of Resid-

ual Dense Blocks (RDB) [44] instead of convolutional lay-

ers. An RDB is a cascade of convolutional layers connected

through a rich set of residual and concatenation connections

which immensely improves feature extraction capability by

reusing features across multiple layers. Inclusion of such

connections maximizes information flow along the interme-

diate layers and results in better convergence. These units
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efficiently learn deeper and more complex features than a

network with residual connections (which have been used

extensively in recent deblurring methods[23, 18, 34, 13]),

while requiring fewer parameters.

Our proposed deblurring architecture is depicted in Fig.

4. The decoder part of our network contains 3 pairs of up-

sampling blocks to gradually enlarge the spatial resolution

of feature maps. Each up-sampling block contains a bottle-

neck layer [12] followed by a deconvolution layer. Each

convolution layer (except the last) is followed by a non-

linearity. Similar to U-Net, features corresponding to the

same dimension in encoder and decoder are merged with

the help of projection layers. The output of the final up-

sampling block is passed through two additional convolu-

tional layers to reconstruct the output sharp image. Our

network uses an asymmetric encoder-decoder architecture,

where the network capacity becomes higher benefiting from

the dense connections.

Further, we optimize the inference time of the network

by performing computationally intensive operations on fea-

tures at lower spatial resolution. This also reduces memory

footprint while increasing the receptive field. Specifically,

before feeding the input blurred image to encoder, we map

the image to a lower resolution space using space-to-depth

transformation. Following [20, 23], we omit normalization

layers for stable training, better generalization and reduced

computational complexity and memory usage. To further

improve performance, we also exploit residual scaling [20].

3. Experiments

In this section, we carry out quantitative and qualitative

comparisons of our approach with state-of-the-art methods

for deblurring as well as video extraction tasks.

3.1. Implementation Details

We prepared our training data from GoPro dataset [23],

following standard train-test split, wherein 22 full videos

were used for creating training sets and 11 full videos were

reserved for validation and testing. Each blurred image is

produced by averaging 9 successive latent frames. Such an

averaging simulates a photo taken at approximately 26 fps,

while the corresponding sharp image shutter speed is 1/240.

We extract 256 × 256 patches from these image sequences

for training. Finally, our dataset is composed of 105 sets,

each containing N = 9 sharp frames and the correspond-

ing blurred image xB . We perform data augmentation by

random horizontal flipping and zooming by a factor in the

range [0.2, 2]. The network is trained using Adam optimizer

with learning rate 1 × 10−4. The batch size was set to 10

and the training of our video-autoencoder took 5 × 104 it-

erations to converge. We then train the BIE-RVD pair with

the same training configuration and reduce the learning rate

for RVD parameters to 2× 10−5, for stable training.

Method [42] [39] [33] [7] [23] [18] [34] Ours

PSNR(dB) 21 24.6 24.5 26.4 28.9 27.2 30.10 30.58

SSIM 0.740 0.845 0.851 0.863 0.911 0.905 0.933 0.941

Time (s) 3800 700 1500 1200 6 0.8 0.4 0.02

Size(MB) - - 54.1 41.2 300 45.6 27.5 17.9

Hardware CPU CPU CPU CPU GPU GPU GPU GPU

Table 1. Performance comparison of our deblurring network with

existing methods on the benchmark dataset [23].

For training and evaluating our single image deblurring

network, we utilized the same train-test split of the GoPro

dataset [23] as recent deblurring methods [23][34]. The

batch size was set to 16 and the entire training took 4.5×105

iterations to converge.

3.2. Results for Single Image Deblurring

We evaluated the efficacy of our network (DM shown in

Fig. 4) for the intermediate task of deblurring, both quan-

titatively and qualitatively on 1100 test images (resolution

1280 × 704) from the GoPro dataset [23]. The method of

[39] is selected as representative traditional method for non-

uniform blur. We also compare our performance with deep

networks [23, 18, 34]. All the codes were downloaded from

the respective authors’ websites. Quantitative and qualita-

tive comparisons are presented in Table 1 and Fig. 5, re-

spectively. Since traditional method of [39] cannot model

combined effects of general camera shake and object mo-

tion, it fails to faithfully restore most of the images in the

test-set. On the other hand, the method of [18] trains a resid-

ual network containing instance-normalization layers using

a mixture of deep-feature losses and adversarial losses, but

leads to suboptimal performance on images containing large

blur. The methods [23, 34] use a multi-scale strategy to im-

prove capability to handle large blur, but fail in challenging

situations. Fig. 5 shows that results of prior works suffer

from incomplete deblurring or ringing artifacts. In contrast,

our network is able to restore scene details more faithfully,

while being 20 times faster than the nearest competitor [34].

These improvements are also reflected in the quantitative

values presented in the table.

3.3. Results and Comparisons for Video Extraction

In Fig 6, we give results on standard test blurred images

from the dataset of [23]. Note that some of them suffer

from significant blur. Fig. 6(a) shows an image of a pla-

nar scene which is blurred due to dominant camera motion.

Fig. 6(b) shows a 3D scene blurred due to camera motion.

Figs. 6(c-f) show results on blurred images with dynamic

object motion. Observe that the videos generated by our

approach are realistic and qualitatively consistent with the

blur and depth of the scene, even when the foreground in-

curs large motion. Our network is able to reconstruct videos

from blurred images with diverse motion and scene content.
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Blurred Image Blurred patch Whyte et al. [39] Nah et al. [23] DelurGAN [18] SRN [34] Ours

Figure 5. Visual comparisons of deblurring results on test dataset [23] (best viewed in high resolution).

(a) (b) (c) (d) (e) (f)
Figure 6. Comparisons of our video extraction results with [13] on motion blurred images obtained from the test dataset of [23]. The first

row shows the blurred images while the second and third rows show deblurred frames generated by our method and [13], respectively.

Videos extracted using our method and [13] are provided in the supplementary document.

In comparison, the results of [13] suffer from local er-

rors in deblurring, inconsistent motion estimation, as well

as color distortions. We have observed that in general the

method of [13] fails in cases involving high blur as direct

image regression becomes difficult for large motion. In con-

trast, we divide the overall problem into two sub-tasks of de-

blurring and motion extraction. This simplifies learning and

yields improvement in deblurring quality as well as motion

estimation. The color issue in [13] can be attributed to the

design of their networks, wherein feature extraction and re-

construction branches are different for different color chan-

nels. Our method applies the same motion to each color

channel. By having a single recurrent network to generate

the video, our network can be directly trained to extract even

higher number of frames (> 9) without any design change

or additional parameters. In contrast, [13] requires training

of an additional network for each new pair of frames. Our

overall architecture is more compact (45 MB vs 70 MB)

and much faster (0.02s vs 0.45s for deblurring and 0.39s vs

1.10s for video generation) as compared to [13].

To perform quantitative comparisons with [13], we also

trained another version of our network on the restricted

case of blurred images produced by averaging 7 successive

sharp frames. For testing, 250 blurred images of resolution

1280 × 704 were created using the 11 test videos from the

dataset of [23]. We compared the videos estimated by the

two methods using the ambiguity invariant loss function de-

fined in Eq. 6. The average error was found to be 49.06 for

[13] and 44.12 for our method. Thus, even for the restricted

case of small blur, our method performs favorably. Repeat-

ing the same experiment for 9 frames (i.e. for large blur

from the same test videos) led to an error of 48.24 for our

method, which is still less than the 7-frame error of [13].

We could not compute the 9-frame error for [13] as their

network is rigidly designed for 7 frames only.

3.4. Additional Results on Video Extraction

Results on Camera Motion Dataset: For evaluating qual-

itative performance on videos with camera motion alone,

we tested our network’s ability to reconstruct videos from

blurred images taken from datasets of [7], [15] and [19],

which are commonly used for benchmarking deblurring

techniques. Fig. 7(a) shows the video obtained on a syn-

thetically blurred image provided in [7]. Fig. 7(b) shows
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(a) (b) (c) (d) (e) (f)
Figure 7. Video generation from images blurred with global camera motion from datasets of [7, 15] and [19]. First row shows the blurred

images and our deblurred frames are shown in second row (generated videos are provided in the supplementary document).

Figure 8. Video generation results on real motion blurred images from dataset of [32]. The first row shows the blurred images. Second row

contains the deblurred images estimated with our method (extracted videos are provided in the supplementary document).

result on an image from the dataset of [15]. We can ob-

serve that the motion in the generated video conforms with

the blur. The dataset [19] consists of both synthetic and

real images collected from various conventional prior works

on deblurring. Figs. 7(c-d) show our network’s results on

synthetically blurred images from this dataset using non-

uniform camera motion. The examples in Figs. 7(e-f) are

real blurred images obtained from the same dataset. Our

method is able to re-enact underlying motion quite well.

Results on Blur Detection Dataset: In Fig. 8, we show

videos generated from real blurred images taken from the

dataset of [32] which contains dynamic scenes. The results

reaffirm that our network can sense direction and magnitude

even in severely blurred images.

3.5. More Results and Ablation Studies

Additional results and experiments to highlight the mo-

tivation for our design choices are given in the supplemen-

tary material. Specifically, for the video autoencoder, we

study the effects of motion flow estimation (instead of di-

rect intensity estimation) and the recurrent design. This is

followed by an analysis on the influence of different loss

functions. Regarding training of BIE, we study the ef-

fect of input sharp frame on its performance and also com-

pare our two-stage strategy (BIE trained using pre-trained

RVD) with the case where BIE and RVD are trained directly

from scratch. We also include an analysis on variations in

growth-rate and residual-dense connection topology on the

training performance of our deblurring network.

4. Conclusions

We introduced a new methodology for video generation

from a single blurred image. We proposed a spatio-temporal

video auto-encoder based on an end-to-end differentiable

architecture that learns motion representation from sharp

videos in a self-supervised manner. The network predicts

a sequence of optical flows and employs them to transform

a sharp central frame and return a smooth video. Using the

trained video decoder, we trained a blurred image encoder

to extract a representation from a single blurred image, that

mimics the representation returned by the video encoder.

This when fed to the decoder returns a plausible sharp video

representing the action within the blurred image. We also

proposed an efficient deblurring architecture composed of

densely connected layers that yields state-of-the-art results.

The potential of our work can be extended in a variety of

directions including blur-based segmentation, video deblur-

ring, video interpolation, action recognition etc.
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