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Fig. 1: The PR2 with a pair of pants in a crumpled initial

configuration.

Abstract— We consider the problem of autonomously bring-
ing an article of clothing into a desired configuration using
a general-purpose two-armed robot. We propose a hidden
Markov model (HMM) for estimating the identity of the
article and tracking the article’s configuration throughout a
specific sequence of manipulations and observations. At the
end of this sequence, the article’s configuration is known,
though not necessarily desired. The estimated identity and
configuration of the article are then used to plan a second
sequence of manipulations that brings the article into the
desired configuration. We propose a relaxation of a strain-
limiting finite element model for cloth simulation that can
be solved via convex optimization; this serves as the basis
of the transition and observation models of the HMM. The
observation model uses simple perceptual cues consisting of
the height of the article when held by a single gripper and
the silhouette of the article when held by two grippers. The
model accurately estimates the identity and configuration of
clothing articles, enabling our procedure to autonomously bring
a variety of articles into desired configurations that are useful
for other tasks, such as folding.

I. INTRODUCTION

Due to their inherently high-dimensional configuration

spaces, non-rigid objects pose a number of difficult chal-

lenges. This difficulty is exemplified by the state of the art

in robotic laundry folding, where existing methods are far

from being able to perform the task with general purpose

manipulators. Perhaps the biggest challenge facing robotic

laundry manipulation is how to bring a clothing article into

a known configuration from an arbitrary initial state.

The authors are with the Department of Electrical Engineering and
Computer Sciences, UC Berkeley, CA 94720, U.S.A. Contact Email:
marcoct@berkeley.edu.

Fig. 2: The PR2 holding up the pair of pants after starting

with the configuration shown in Figure 1.

We present an approach that enables a general purpose

robot to bring a variety of clothing articles into desired

configurations. The core of our approach is a hidden Markov

model based on the behavior of cloth under certain simple

manipulation strategies, and how it is perceived using basic

computer vision primitives. Key contributions of this paper

are:

• We propose a method for identifying an article of cloth-

ing and estimating its configuration with only simple

manipulation and limited perception.

• We propose a convex relaxation of the isotropic strain-

limiting model of Wang et. al [16] for cloth simulation.

• We present a planning algorithm for bringing an article

from a known configuration into a desired configuration.

• We describe our implementation of an end-to-end sys-

tem on the Willow Garage PR2 robotic platform. The

system starts with crumpled articles and brings them

into a desired configuration. We successfully tested our

implementation on seven articles of various types. All of

the parameters in our system were trained on a separate

set of articles.

Videos of our experimental results are available at:

http://rll.berkeley.edu/ICRA_2011

II. RELATED WORK

Extensive work has been done on enabling specialized and

general-purpose robots to manipulate laundry. To the best

of our knowledge, however, with the exception of the towel

folding capability demonstrated by Maitin-Shepard et al. [8],

no prior work has reported successful completion of the full
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end-to-end task of picking up an arbitrarily placed clothing

article and bringing it into a neatly folded state. In this paper

we focus on a key part of this end-to-end task; namely,

bringing a clothing article from an unknown configuration

into a desired configuration.

The work of Osawa et al. [12] and Kita et al. [3]–[6] is

the most closely related to our approach. Osawa et al. use

the idea of iteratively grasping the lowest-hanging point.

They describe how this procedure leads to a relatively small

number of fixed points. Once their perception unit recognizes

that a corner has been grasped, their procedure compares

the shape observed while pulling taut with pre-recorded

template images. They reported recognition rates on seven

different clothing categories. In contrast to our work, they

require template images of the articles, they have a one-

shot decision making process (rather than a probabilistic

estimation framework), and their procedure only performs

“lowest-hanging point” re-grasps. As a consequence of only

re-grasping lowest points, their final configuration is not

necessarily spread out. While they do not report success

rates, they show successful manipulation of a long-sleeved

shirt with a final configuration having it held by the ends

of the two sleeves. Kita et al. consider a mass-spring model

to simulate how clothing will hang. Their work shows the

ability to use fits of these models to silhouettes and 3-D

point clouds to extract the configuration of a clothing article

held up by a single point with a good success rate. Their

later work [4]–[6] shows the ability to identify and grasp a

desired point with the other gripper. None of this prior work

demonstrates the ability to generalize to previously unseen

articles of clothing.

There is also a body of work on recognizing categories of

clothing; some of this work includes manipulation to assist

in the categorization. For example, Osawa and collaborators

[12] and Hamajima and Kakikura [2] present approaches to

spread out a piece of clothing using two robot arms and then

categorize the clothing.

Some prior work assumes a known, spread-out, or partially

spread-out configuration, and focuses on folding or complet-

ing other tasks. The work of Miller et al. [9], building on the

work of van den Berg et al. [15], has demonstrated reliable

folding of a wide range of articles. Paraschidis et al. [1] de-

scribe the isolated executions of grasping a laid-out material,

folding a laid-out material, laying out a piece of material that

was already being held, and flattening wrinkles. Yamakazi

and Inaba [17] present an algorithm that recognizes wrinkles

in images, which in turn enables them to detect clothes laying

around. Kobori et al. [7] have extended this work towards

flattening and spreading clothing. They successfully spread

out a towel.

III. OVERVIEW

A. Problem Definition

The problem we examine is defined as follows: we are

presented with an unknown article of clothing and wish to

identify it, work it into an identifiable configuration, and

subsequently bring it into a desired configuration.

B. Notation

We consider articles of different types and sizes. These

potential articles make up the set of articles (A) under

consideration. For example, we may be considering two

different pairs of pants and a t-shirt; in this case, we have

A = {pants1, pants2, t-shirt}. We assume that each type of

clothing can have its own desired configuration; for example,

we choose to hold up pants by the waist.

We represent each potential article a (from the set A) via

a triangulated mesh. For concreteness, let the mesh contain

N points {v1, . . . , vN}. We work under the assumption that

the robot may be grasping a single point or a pair of points

on the mesh. Let gt be the grasp state of the cloth at time t,

where gt = (glt, g
r
t ) consists of the mesh point of the cloth in

the robot’s left and right gripper respectively. More precisely,

we have gt = (glt, grt ) ∈ G = {∅, v1, . . . , vN}2, where ∅
denotes that the gripper does not contain any mesh point. The

set G contains all possible grasp states of the cloth. The 3D

coordinates of the left and right gripper at time t are denoted

by x
l
t and x

r
t respectively. We denote the 3D coordinates of

the N mesh points at time t as Xt = {x
1
t , . . . ,x

N
t }.

C. Outline of Our Approach

Our approach consists of two phases, as shown in Figure 3.

First, we use a probabilistic model to determine the identity

of the clothing article while bringing it into a known configu-

ration through a sequence of manipulations and observations,

which we refer to as the disambiguation phase. Second,

we bring the article into the desired configuration through

another sequence of manipulations and observations, which

we call the reconfiguration phase.

Repeat lowest-

hanging point 

procedure

Take 

observations

Choose most 

likely article and 

configuration

Plan sequence 

to desired 

configuration

Initial 
configuration

Arbitrary known 
configuration

Desired 
configuration

Disambiguation Phase Reconfiguration Phase

Fig. 3: Block diagram outlining our procedure. The t-shirt starts out in a crumpled state. We manipulate it with the lowest-

hanging point procedure and take observations. We choose the most likely configuration and article and plan a sequence of

manipulations to the desired configuration. The robot executes the sequence and grasps the t-shirt by the shoulders.
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Fig. 4: Graphical representation of the hidden Markov model.

These phases use three major components: the hidden

Markov model, our cloth simulator, and our algorithm for

planning the manipulations for the reconfiguration phase.

1. Hidden Markov model. The hidden state of our model

consists of the grasp state of the cloth (gt) and the article

which the robot is currently grasping (a). The HMM operates

in the disambiguation phase, where the robot executes a

sequence of manipulations consisting of repeatedly holding

up the clothing article by one gripper under the influence

of gravity and grasping the lowest-hanging point with the

other gripper. The transition model of the HMM encodes

how the grasped points change when the robot manipulates

the cloth. This sequence quickly reduces uncertainty in the

hidden state. After this manipulation sequence the HMM

uses two observations, the height of the article when held by

the last point in the sequence and the contour of the article

when held by two points.

2. Cloth simulator. We simulate articles using triangulated

meshes in which each triangle element is strain-limited and

bending energy and collisions are ignored. This model has

a unique minimum-energy configuration (Xt) when some

points in the mesh are fixed at the locations (glt, g
r
t ).

3. Planning algorithm. To generate the plan for the

reconfiguration phase, our planning algorithm generates a

sequence of manipulations in which the robot repeatedly

grasps two points on the cloth, places the cloth onto the

table, and grasps two other points. The planning algorithm

assumes that the most likely model and state reported by the

HMM in the disambiguation phase are correct.

IV. HIDDEN MARKOV MODEL

We have the discrete random variables A and Gt, where

Gt takes on values from the set G of all possible grasp

states of the cloth (as defined in Section III-B). The model

estimates the probability P (A = a,Gt = gt|E1:t = e1:t),
where E1:t is the set of all observations through time t.

The robot’s gripper locations (xl
t and x

r
t ) are assumed to

be deterministic. The graphical model for our problem is

shown in Figure 4.

As described above, the 3D coordinates of the mesh points

at time t (Xt) are uniquely determined from the article, grasp

state of the cloth, and the locations of the grippers (a, gt,

x
l
t, and x

r
t , respectively). Using Gt as the state rather than

Xt reduces the state space to a tractable size on the order

of N2, where N is the number points in a mesh.

Without loss of generality, we assume that the robot first

picks up the article with its left gripper. Intuitively, the initial

probability distribution over models and grasp states should

be zero for any state in which the right gripper is grasping

the cloth and uniform over all states in which the left gripper

is grasping the cloth. Therefore the initial distribution is:

P (a, g0) =

{

1

N |A| gr0 = ∅, gl0 6= ∅

0 otherwise.

Recall that the disambiguation phase consists of repeatedly

holding up the article (under the influence of gravity) by one

gripper and grasping the lowest-hanging point with the other

gripper. Let gt−1 be the grasp state of the robot at the end

of this process; the robot is only holding the article in one

gripper. Next, we take an observation of the height (ht−1)

of the article in this grasp state (gt−1). Afterwards, we have

the free gripper grasp the lowest-hanging point, bringing us

into the grasp state gt, in which both grippers are grasping

the article. We then move the grippers such that they are at

an equal height and separated by a distance of roughly ht−1.

Therefore the gripper locations are now

x
l
t =

(

x,
ht−1

2
, z

)

, x
r
t =

(

x,
−ht−1

2
, z

)

where the exact values of x and z are unimportant. We then

take an observation of the contour of the article against the

background.

Together, the lowest-hanging point sequence along with

the two observations compose all of the information obtained

about the article during the disambiguation sequence; the

details of the probabilistic updates for the transitions and

observations are explained below.

A. Transition Model

A transition in the HMM occurs after holding the cloth up

with one gripper, grasping the lowest-hanging point with the

free gripper, and then releasing the topmost point. Without

loss of generality, let the cloth be grasped by only the

left gripper at time t. Specifically, the grasp state gt is

(glt, ∅). This implies gt+1 = (∅, grt+1), where grt+1 is the

lowest-hanging point at time t. The transition model gives

the probability that each mesh point hangs lowest and is

therefore grasped by the right gripper. In particular,

P (gt+1|a, gt) =

{

P (grt+1 is lowest|a, glt is held) if glt+1 = ∅
0 if glt+1 6= ∅.

The transition model assumes the robot has successfully

grasped a point with the right gripper. When we simulate an

article held at a single point vi, the resulting configuration

X is a straight line down from vi; the probability of point

vj hanging lowest when the cloth is held by vi depends on

X. Let dij be the vertical distance from vi to vj in this

configuration. The probability of a point hanging lowest is
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based on dij :

P (vj is lowest | a, vi is held) =
eλdij

∑N

k=1
eλdik

.

This expression is a soft-max function, resulting in a dis-

tribution in which points that hang lower in the simulated

configuration are more likely to be the lowest-hanging point

in reality. The parameter λ expresses how well the simulated

configuration reflects reality.

Repeated application of the lowest-hanging point primitive

causes the grasp state to converge to one of a small number of

regions on the clothing article. For example, if a pair of pants

is initially grasped by any point and held up under gravity, the

lowest-hanging point will likely be on the rim of a pant-leg.

Once the rim of the pant-leg is grasped and held up, the rim

of the other pant-leg will likely contain the lowest-hanging

point. Continuing this procedure typically cycles between

the two pant-leg rims. In practice, the clothing articles we

consider converge to a small number of points within two or

three repetitions of the lowest-hanging point primitive. The

HMM transition model captures this converging behavior,

thereby significantly reducing uncertainty in the estimate of

the article’s grasp state (gt). Note that this transition model

does not change the marginal probabilities of the articles

(P (a|e1:t)).

B. Height Observation

When the article is held up by a single gripper, the

minimum-energy configuration provided by our cloth sim-

ulator is a straight line, as described in Section V. Although

this provides no silhouette to compare against, the length of

this line (hsim) is a good approximation to the article’s actual

height (ht). The uncertainty in this height is modeled with a

normal distribution:

P (ht|gt, a) ∼ N (hsim + µ, σ2)

where µ is the mean difference between the actual height

and the simulated height.

This update makes configurations of incorrect sizes less

likely. For example, if we measure that the article has a

height of 70 cm, it is highly unlikely that the article is in a

configuration with a simulated height of 40 cm.

C. Contour Observation

When the cloth is held up by two grippers, the contour of

the simulated configuration is a good approximation to the

actual contour, as seen in Figure 5. The predicted contours

for each pair of grasp states and articles (gt, a) are computed

from the mesh coordinates (Xt) generated by the cloth

simulator, which is detailed in Section V. Next, the dynamic

time warping algorithm is used to find the best alignment

of each predicted contour to the actual contour. The score

associated with each alignment is then used to update the

belief p(gt, a|e1:t).
Although the general shape of the simulated contour and

the actual cloth contour are similar, the amount of overlap

between them can vary greatly between different trials due

Fig. 5: The simulated contour (pink) is overlaid on the actual

cloth image.

to inconsistency in grasping and other unmodeled factors. To

account for this, we use a dynamic programming algorithm

known as dynamic time warping (DTW) in the speech-

recognition literature [13] and the Needleman-Wunsch al-

gorithm in the biological sequence alignment literature [11].

Dynamic time warping is generally used to align two se-

quences and/or to calculate a similarity metric for sequences.

In order to closely match the key features of clothing

articles, such as corners, collars, etc., we choose a cost

function of the form

φ(pi, pj) = ‖θ(pi)− θ(pj)‖

where θ extracts the weighted features of each pixel pi. Our

features are the (x, y) pixel coordinates of the contour points

and the first and second derivatives with respect to the arc

length s, (dx
ds
, dy
ds
) and (d

2x
ds2

, d2y
ds2

). The derivative terms force

corners and other salient points to align to each other. An

example where the amount of overlap is a poor measure of

similarity but DTW returns a reasonable alignment is shown

in Figure 6.

Let the dynamic time warping cost for each article and

grasp state pair (a, gt) be denoted ca,gt . We found that using

an exponential distribution with the maximum-likelihood

estimate was too generous to costs associated with incorrect

configurations. Based on inspection of empirically collected

Fig. 6: An example of a challenging alignment where a sim-

ple overlap metric would perform poorly. The dynamic time

warping algorithm matches the salient features of simulated

contour (yellow) to the actual contour (blue) well.
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DTW data, we propose the following distribution for the

dynamic-time-warping costs:

P (ca,gt |a, gt) =

{

1

f+ 1

d

if ca,gt < f
1

f+ 1

d

e−dca,gt if ca,gt ≥ f.

This distribution, shown in Figure 7, is uniform for costs

below a certain threshold and quickly drops off as the cost

increases past the threshold.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Fig. 7: Our probability distribution over DTW costs for the

correct grasp state and article.

V. CLOTH SIMULATOR

To go from the grasp state (gt) and article (a) to the

simulated 3D coordinates of each mesh point (Xsim =
{x1

sim, . . . ,x
N
sim}), we minimize the gravitational potential

energy of all mesh points subject to two sets of constraints.

Our choice of constraints and energy function make this a

convex optimization problem with a unique solution.

The first set of constraints represents the cloth’s grasp state

as equality constraints on the simulated mesh configuration

Xsim. If the grasp state (glt, g
r
t ) = (va, vb), then the equality

constraints are x
a
sim = x

l
t and x

b
sim = x

r
t .

The second set of constraints limits the extensibility of the

cloth. We use the isotropic strain-limiting model introduced

by Wang et al. [16]. This model limits the strain of each trian-

gle element e ∈ E ⊂ {v1 . . . vN}3 by restricting the singular

values of the deformation gradient Fe
1. Wang et al. restrict

the minimum and maximum strain of each triangle element.

We restrict only the maximum strain2; therefore our con-

straints are expressed as

maxSingularValue(Fe(Xsim)) ≤ σ for all e ∈ E,

where σ is the extensibility of the mesh surface, with σ =
1 indicating the cloth cannot be stretched at all3. This can

1See Wang et al. for details [16].
2The minimum strain constraint is non-convex. We also ignore bending

energy and collisions because they too are non-convex.
3We found that σ = 1.03 works well.

also be expressed as the following semidefinite programming

(SDP) constraint:
[

σ2I3 Fe(Xsim)
F⊤
e (Xsim) I2

]

� 0 for all e ∈ E. (1)

In summary, our optimization problem becomes:

minXsim
U(Xsim) =

N
∑

i=1

zi

s.t. x
a
sim = x

l
t,x

b
sim = x

r
t

Xsim satisfies Equation (1)

where zi is the z-coordinate of the ith mesh point. We feed

this problem into the SDP solver SDPA [18] to simulate the

article’s configuration4.

Despite the strong assumptions, this model predicts config-

urations whose contours are realistic for the case of two fixed

points. The predicted contours are used in the observation

update described in Section IV-C.

When the robot is only grasping the cloth with one gripper,

the simulated configuration is a straight line down from the

fixed point. Although this predicted configuration is visually

unrealistic, the resulting height of each point is a good

approximation. These height values are used by the HMM in

the transition model and the height observation as described

in Sections IV-A and IV-B respectively.

VI. PLANNING ALGORITHM

Our planning algorithm generates the sequence of manip-

ulations to be carried out during the reconfiguration phase.

We assume that the disambiguation phase correctly identifies

the article and grasp state of the cloth.

For each type of clothing (e.g., shirts, pants, etc.), the user

specifies a desired configuration, determined by the pair of

points (vi, vj) that the robot should grasp. This determines

a desired grasp state gd = (vi, vj). For example, the user

could select that the robot hold a t-shirt by the shoulders or

a pair of pants by the hips.

Our algorithm plans a sequence of grasp states, where each

state has both grippers holding the cloth, to get from the ini-

tial grasp state gi (obtained from the disambiguation phase)

to the desired grasp state gd. The sequence of manipulations

to get from one grasp state to the next consists of laying the

cloth on the table, opening both grippers, and picking up the

cloth by a new pair of points.

The appropriate sequence of grasp states is generated by

building the directed graspability graph, which indicates

which other grasp states can be reached from each grasp

state. To build this graph the article is simulated for all

grasp states, and the resulting configurations are analyzed

for graspability. To ensure that our assumption that the robot

fixes a single point with each gripper is reasonable, we say

that a point vi is graspable in a given configuration X when

4On a dual-core 2.0 GHz processor, SDPA can run roughly four simula-
tions per second when we use about 300 triangle elements per mesh. We
find that increasing the number of elements past this point does not make
the simulations significantly more realistic.
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only points in the local neighborhood5 of vi on the mesh

surface are close to vi in terms of Euclidean distance in

X. Note that the local neighborhood on the mesh surface

is a property of the mesh and does not change with the

configuration X. For example, consider grasping the corner

of a sleeve of a t-shirt. When the sleeve is folded onto the

chest, the mesh points on the chest are close to the corner of

the sleeve in Euclidean distance but not local to each other on

the surface. We say that the sleeve cannot be grasped because

the robot would likely fix points on the chest in addition to

the sleeve, resulting in a very different configuration from the

one where only the sleeve is grasped. The complete planning

algorithm is given in Algorithm 1.

Algorithm 1 Planning algorithm

Input: geodesic distances D, start pair (va, vb)
desired end pair (vx, vy)

initialize graspability graph G with no edges

for all pairs (vp, vq) do

X← Simulate(vp, vq)
for all pairs (vs, vt) do

if Graspable(D,X, vs) and Graspable(D,X, vt)
then

add edge ((vp, vq)→ (vs, vt)) to G

end if

end for

end for

path← Dijkstra(G, (va, vb), (vx, vy))

Algorithm 2 Graspable

Input: geodesic distances D, configuration X, point vp

Parameters: geodesic thresh. d1, Euclidean thresh. d2
for i = 1 to N do

if D(vi, vp) > d1 and ‖xi − x
p‖ < d2 then

return false

end if

end for

return true

To go from a grasp state ga to another grasp state gb, the

robot drags the cloth onto the table in a way that preserves the

configuration that was present when the cloth was held in the

air under gravity. The friction force of the table on the cloth

acts similarly to gravity. We then simulate the minimum-

energy configuration for the grasp state ga and extract the

predicted contour. An example contour is given in Figure 8.

We then align this predicted contour to the actual cloth

contour using the dynamic time warping method described

above in Section IV-C. We then find the two pixels in the

predicted contour corresponding to points glb and grb . Next,

we follow the alignment to get the corresponding pixels in

the actual contour and determine the 3D coordinates of points

glb and grb . The desired grasp state for a pair of pants is shown

in Figure 8.

5The local neighborhood is determined by the geodesic distances from
v
i to the other points. We use the algorithm by Mitchell et al. [10] to find

the geodesic distances in the mesh.

Fig. 8: The grasp points, shown in pink, are identified by

following the alignment from the simulated contour (yellow)

to the actual contour (blue).

VII. EXPERIMENTS

We assess our system’s performance on two tasks. The

first is the identification of the article and its grasp state

after the end of the disambiguation phase. The second task

adds the reconfiguration phase; together, the two phases

compose the end-to-end task of bringing articles into a

desired configuration.

A. Setup

We use the PR2 robotic platform, manufactured by Willow

Garage, to perform all manipulations. The robot is entirely

autonomous throughout the procedure. We used a compliant

foam working surface to allow the PR2’s grippers to slide

underneath the cloth when grasping. We use a pair of two

640x480 color cameras mounted on the PR2 for all visual

perception tasks. We use a green-colored background to

simplify the task of image segmentation of the clothing

article from the background.

The system requires mesh models of all clothing arti-

cles under consideration. Models of new clothing articles

are generated by a nearly-autonomous process. The user

measures three dimensions on the garment, identifies the

clothing type (i.e. shirt, pants, skirt, etc.), and an appropriate

cloth model is generated. Next, the mesh-generation software

Triangle [14] produces an initial planar mesh with triangle

areas constrained to 15 cm2. This mesh is then converted

into a full two-sided 3D mesh. The final 3D mesh contains

approximately 300 triangle elements per clothing article.

We use an approximation in the contour observation

update of the HMM. Simulating all N2 possible grasp states

can be done in around two hours per article. Although this

could be done offline, we opted to only consider a subset of

the pairs. In our experiments we tracked the probabilities

associated with about 15 possible grasp points. We also

prune simulations that are obviously infeasible, resulting in

a contour observation runtime of one or two minutes when

considering five articles.

All experimental runs start with the clothing article in a

random configuration on the table in front of the robot, as

shown in Figure 1. The test set for our experiments, shown

in Figure 9, consists of one short-sleeve shirt, one long-

sleeve shirt, one pair of pants, one skirt, one towel, and

two infant clothing articles meant to judge how well our
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Fig. 9: Our test set of clothing articles.

algorithm generalizes. We found the maximum likelihood

estimates of our parameters using data from a separate

training set of articles; the only prior interaction with the

test set was measuring the dimensions needed to generate

the candidate article meshes. We conducted 30 full end-to-

end experiments the test set. We also conducted 10 more

experiments consisting only of the disambiguation phase.

The data collected in the end-to-end runs was also used to

calculate the disambiguation results.

B. Disambiguation Experiments

We tested the disambiguation phase and probabilistic

model under three settings of the candidate article set A:

1) In the first experiment, A only includes the correct

article’s mesh. In this test, we measure the accuracy

of the grasp state reported by the HMM. We declare

success when the most likely grasp state gt = (glt, g
r
t )

has both glt and grt within 5 cm of the points on the

cloth that the robot is actually holding.

2) In the second experiment, A includes the correct article

a as well as four extra articles which are transformed

versions of a where each differs from a by 10 cm in

a single dimension. We record whether the grasp state

and article (gt, a) reported by the HMM has the correct

article a. This experiment assesses the ability of the

algorithm to determine an article’s size to a resolution

of 10 cm. We also check if the reported grasp points

are within 5 cm of the actual grasp points, as above.

3) In the third experiment, A includes the correct models

of all seven articles in our test set. We assess whether

the reported grasp state and article (gt, a) has the

correct article a, and whether the grasp state is accurate

to within 5 cm.

The results for the disambiguation experiments are shown

in Table I and detailed below.

Experiment 1: During the first experiment, 38 out of

40 runs were successful. One failure occurred because that

article had relatively weak shape features for distinguishing

between grasp states. In the other failure, the article was

flipped over itself, as shown in Figure 10. Therefore it was

not in the minimum-energy configuration predicted by the

simulator.

Experiment 2: In the second experiment, the correctly

sized article was chosen in 26 out of 40 trials. Because there

were five choices (the actual article and the four transformed

articles), this is significantly better than a random selection.

Eight of the fourteen errors were from two articles that lack

strong shape features; adding 10 cm to a single dimension of

these articles does not significantly change the shape of the

contour or the height when held by a single point. However,

in the same test, the grasp state of the articles was still

accurately determined in 38 out of 40 trials (even if the

incorrectly sized article was reported).

Experiment 3: In the third experiment, in which all

seven articles from the test set were considered (with no

transformed versions), the correct article was chosen in 36

out of 40 trials. One of the errors was due to the robot

grasping two points with one gripper that were not in the

same local neighborhood on the mesh surface (the sleeve and

the waist of a t-shirt); because our grasp state model assumes

each gripper only grasps a single point, this configuration

was not considered by the HMM. In one of the other failures,

the robot was grasping too much fabric, which violates this

same assumption but in a less drastic manner. Of the cases

where the article was correctly identified, the correct grasp

state was estimated in all but one.

Candidate article set Correct article Correct grasp (5 cm)

Correct article only — 94.87%

With transformed articles 64.10% 94.87%

All test articles 92.31% 89.74%

TABLE I: Results for the disambiguation experiments, in

which the identity and grasp state of the clothing articles are

estimated. See Section VII-B for details.

Overall success rate 20/30

Failures

— Robot could not reach point 9/30

— Incorrect estimated grasp state 1/30

TABLE II: Results for the full end-to-end task. Note that the

majority of failures were due to the robot not being able to

reach a target grasp point in the planned sequence.

Fig. 10: A cloth configuration in which the article is flipped

over itself and therefore not in the minimum-energy config-

uration that is predicted by our simulator.
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C. End-to-End Task

On the end-to-end task of bringing articles into a desired

configuration, our system successfully brought the article

into the desired configuration in 20 out of 30 trials. Of the ten

failures, nine were because the robot could not reach a grasp

point. The other failure was because the disambiguation

procedure reported an incorrect grasp state. The results are

summarized in Table II.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a method, involving only simple manipu-

lations and basic computer vision, for bringing an article

from an unknown configuration into a desired configuration

while simultaneously determining its identity. This process

involved two phases. We first identify the article while

bringing it into an arbitrary known configuration. We have

shown that our method is highly successful at identifying the

type and grasp state of the article, with a success rate of about

90%. The second phase involves taking it from the known

configuration and bringing it into a desired configuration.

Our results here are promising and demonstrate the first

reliable completions of this task.

The disambiguation phase failed when the robot fixed

multiple points on the cloth or the article’s shape was un-

informative. Our model could easily be extended to account

for both of these. For example, one could add additional

observations into the HMM; adding image features such

as buttons could help distinguish between grasp states with

similar contours. Furthermore, one could model the potential

for the robot to fix multiple points on the cloth with a

single gripper by fixing additional points in the simulator.

The majority of failures in the end-to-end procedure were

due to the robot not being able to reach a target point on

the cloth. We believe that integrating a motion planner that

considers both base and arm motion into our system would

eliminate these failures.
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