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Accurate predictions of motor impairment after stroke are of cardinal importance for the patient, clinician, and healthcare system.

More than 10 years ago, the proportional recovery rule was introduced by promising that high-fidelity predictions of recovery fol-

lowing stroke were based only on the initially lost motor function, at least for a specific fraction of patients. However, emerging

evidence suggests that this recovery rule is subject to various confounds and may apply less universally than previously assumed.

Here, we systematically revisited stroke outcome predictions by applying strategies to avoid confounds and fitting hierarchical

Bayesian models. We jointly analysed 385 post-stroke trajectories from six separate studies—one of the largest overall datasets of

upper limb motor recovery. We addressed confounding ceiling effects by introducing a subset approach and ensured correct model

estimation through synthetic data simulations. Subsequently, we used model comparisons to assess the underlying nature of recov-

ery within our empirical recovery data. The first model comparison, relying on the conventional fraction of patients called ‘fitters’,

pointed to a combination of proportional to lost function and constant recovery. ‘Proportional to lost’ here describes the original

notion of proportionality, indicating greater recovery in case of a more severe initial impairment. This combination explained only

32% of the variance in recovery, which is in stark contrast to previous reports of 480%. When instead analysing the complete

spectrum of subjects, ‘fitters’ and ‘non-fitters’, a combination of proportional to spared function and constant recovery was fav-

oured, implying a more significant improvement in case of more preserved function. Explained variance was at 53%. Therefore,

our quantitative findings suggest that motor recovery post-stroke may exhibit some characteristics of proportionality. However, the

variance explained was substantially reduced compared to what has previously been reported. This finding motivates future re-

search moving beyond solely behaviour scores to explain stroke recovery and establish robust and discriminating single-subject

predictions.
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Introduction
The science of clinical recovery after stroke began with com-

prehensive, yet mainly anecdotal descriptions of patients’

trajectories (Twitchell, 1951; Newman, 1972; Broeks et al.,

1999). It then moved to increasingly larger studies aiming to

create robust prediction models for individual outcome.

Initial impairment status crystallized as one of the most pre-

dictive features, providing the foundation of the proportion-

al recovery rule (Prabhakaran et al., 2008). According to

this widespread rule, the majority of stroke patients, consid-

ered ‘fitters’ to the rule, recover �70% of the initially lost

function within the first few months after the initial event.

‘Function’ here refers to the term ‘body function’ defined as

‘physiological functions of body systems’ in the International

Classification of Functioning, Disability and Health (ICF)

(World Health Organization, 2001). ‘Lost function’ there-

fore describes the motor impairment on a scale such as the

Fugl-Meyer, with decreasing body function implying increas-

ing impairment. Fitters and non-fitters to this proportional

(to lost function) recovery rule have been defined in several

ways in previous studies. For example, by choosing a dis-

crete initial cut-off score, clustering initial and follow-up

scores, or using measures of corticospinal tract integrity. The

proportional recovery rule, developed initially for Fugl-

Meyer assessment scores of the upper limb (Kundert et al.,

2019), has since been extended to various functional

domains. Numerous studies on recovery post-stroke claim to

confirm proportional (to lost function) recovery of the upper

limbs (Zarahn et al., 2011; Byblow et al., 2015), the lower

limbs (Smith et al., 2017), language (Marchi et al., 2017),

and neglect (Winters et al., 2017). Collectively, these studies

consistently report high values of explained variance in cu-

mulatively more than 500 participants, even as high as 94%

(Winters et al., 2015).

Very recently, doubt has been placed on these estimates

for explaining the variance observed in recovery post-stroke

(Hawe et al., 2019a; Hope et al., 2019). The concerns relate

to the problem of mathematical coupling, when correlating

an initial score and the amount of change (Lord, 1956;

Hayes, 1988; Chiolero et al., 2013). This coupling confound

may occur when the second (‘End’) measurement has consid-

erably less variability than the first (‘Initial’) measurement,

leading to a small ratio of end to initial variabilities. Such

small variability ratios of end to initial measurements arise

naturally in stroke recovery data based on the Fugl-Meyer

assessment (Gladstone et al., 2002), as ceiling effects

predominantly occur at the end time point and cause a re-

duction in variability.

Importantly, if this ‘variability’ ratio of end to initial meas-

urements is small, the true relationship between initial and

end is irrelevant—we will, without question, find over-

whelming evidence for a strong correlation between initial

and change measurements (Fig. 1A). More concretely, corre-

lations between the initial measurement and the correspond-

ing change score will automatically be high, as the change

score is dominated by the initial measurement in case of low

variability of the end measurement due to ceiling effects. For

example, let us assume three patients with initial Fugl-Meyer

scores of 10, 35 and 50. All of them recover completely and

we measure end Fugl-Meyer scores of 66 in the chronic

phase. Thus, there is no variability in their end score but the

change between end and initial measurements equals 56, 31

and 16, respectively and correlates perfectly (r = –1.0) with

the initial measurement. Hence, this implies that testing pro-

portional (to lost function) recovery in case of small variabil-

ity ratios is tautological; it will always hold. Because it is

central to our argument, we name the two confounds of

mathematical coupling and ceiling effects, induced by small

variability ratios and the impact of concentration of data to-

wards ceiling, ‘compression enhanced coupling’.

Having identified this compression enhanced coupling

confound, it is essential to consider whether it can be cir-

cumvented to enable an accurate assessment of the propor-

tional recovery question. This is what we aimed to do in this

article. Our logic was as follows.

(i) The nature of recovery post-stroke cannot be meaningfully

evaluated when there is a substantial ceiling effect at the se-

cond time point (causing compression enhanced coupling).

(ii) By reducing data at ceiling, we can increase the variability ratio

and address compression enhanced coupling. We additionally

make sure that we do not incur any new confounds, when

decreasing ceiling.

(iii) Once this confound has been handled, we can fit various re-

covery models and determine which one best explains the

data, in order to assess the underlying mechanisms of stroke

recovery.

Specifically, we first showed that estimates of explained

variance for recovery were inflated, when models were fit to

the entire sample of fitters (Fig. 1B). This is the approach cur-

rently used in the literature. This inflation was expected on

the basis of Hawe et al. (2019a) and Hope et al. (2019). We
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then reduced ceiling effects and compression enhanced

coupling by creating subsets, i.e. we excluded a varying

range of stroke participants with the highest scores at the

initial time point (Fig. 1C and D). This procedure reduced

the ceiling effect at the end time point and therefore also

increased the variability ratio. Critically, we validated this

subset procedure in synthetic data experiments (Gelman

and Hill, 2006). That is, we generated data with known

ground truth and simulated three candidate explanations

of recovery post-stroke: (i) ‘proportional to lost function’;

(ii) ‘proportional to spared function’; and (iii) ‘constant

recovery’ (Fig. 2A–C). Proportional to lost function is the

familiar pattern (referred to as proportional recovery in

the literature), where a more severe initial impairment

implies a more significant recovery. Proportional to

spared function is the opposite pattern, in which individu-

als recover more if they have more preserved function at

the initial time point. Constant recovery formalizes the

idea that initial severity has no impact on recovery, which

is the same size, whatever the initial impairment.

Figure 1 The confounded nature of proportional (to lost function) recovery assessments and investigated subgroups.

(A) Surface plot. Depiction of the relationships between correlations of initial and end measurements, r(X, Y), correlations of initial and change

measurements, r(X,(Y –X)), and the (log) ratio of End to Initial standard deviations. The logic of synthetic data simulations is also shown (black

text, arrows, and symbols on surface plot, for additional intuitions cf. Supplementary material, section 5). Figure modified from Hope et al.

(2019). (B–D) Subgroup analyses. Recovery data are presented as initial Fugl-Meyer scores in the acute phase against end Fugl-Meyer scores in

the chronic phase after stroke. (B) Conventional subgroups of fitters and non-fitters based on a cut-off of FM-initial = 10. (C) Subset approach

for fitters only: only patients with an FM-initial between 10 and 45 are considered in order to control for ceiling effects. (D) Subset approach con-

sidering both fitters and non-fitters using an Fugl-Meyer range between 0 and 45. Excluded data are indicated by a lighter colour.
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Figure 2 Various representations of recovery patterns: proportional to lost function (A and D), proportional to spared func-

tion (B and E), constant recovery (C and F), and unconstrained standard-form (G–I). Performance is inspired by the Fugl Meyer as-

sessment of the upper limbs, where 66 is the maximum value, providing a ceiling. However, the depictions here show the ‘true’ underlying

recovery pattern that one would obtain if there was no ceiling. Thus, we extended the scales beyond the maximum. We show a range of linear

regression lines. For a more realistic illustration, simulated recovery datapoints are also shown, with the red line showing the best fit. (A–C)

Proportional to lost function, proportional to spared function, and constant recovery to varying amounts (i.e. 10%, 20%, 30% etc. proportional

recovery, each generating a different regression line) under the typical change formulations. The x-axis presents initial scores, X, while the y-axis

shows the change between the initial and end scores, (Y –X). (D–F) The same linear relationships, but re-expressed as classical standard-form

regressions, by merely moving the X variable to the right-hand side of the equation, and then, rearranging. In contrast to the top row, the y-axis

here represents the raw end score, Y. (G–I) Unconstrained standard-form regression between initial, X, and end, Y, scores. This is the most gen-

eral of all models, as it fits an intercept, as well as a slope that can take any numerical values (i.e. they are unconstrained). (G) A range of possible

linear relationships that can be fit. (H and I) Specific mixtures. Importantly, neither of the linear relationships in H and I is directly in the space of

the basic proportional to lost function, proportional to spared function and constant recovery models, i.e. D–F. Uppercase A and B represent

intercept and slope in change models, while lowercase a and b represent intercept and slope in standard-form regression models.
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These three patterns are different in all but one case,

which is when there is no recovery (i.e. Y = X). We then

imposed a ceiling in our synthetic data simulations and suc-

cessively created subsets by excluding subjects with the high-

est initial scores. As the ground truth was available in these

simulations, we were able to ensure our subset approach

really reduced compression enhanced coupling (Fig. 1A).

Subsequently, we assessed recovery patterns in empirical

stroke data. Therefore, we aggregated a substantial body of

data, i.e. 385 individual post-stroke recoveries, across a

range of representative studies focused on upper limb deficits

measured as Fugl-Meyer scores (Zarahn et al., 2011;

Byblow et al., 2015; Feng et al., 2015; Winters et al., 2015;

Buch et al., 2016; Guggisberg et al., 2017). We used state-

of-the-art hierarchical Bayesian models, enabling us to in-

corporate data from these various sources, while accounting

for inter-study variability and fully modelling the uncertainty

in the data. Crucially, these models also permitted conduct-

ing overall model comparisons, enabling us to assess the evi-

dence in the data for each model. We considered the three

change models mentioned above and shown in Fig. 2A–C,

proportional to lost, proportional to spared, and constant

recovery. We also included a completely unconstrained

standard-form regression, the most general of the models,

which determined whether linear relationships outside our

three candidate models explained the data any better

(Fig. 2G–I). While we first only considered patients that

adhered to the conventional proportional recovery rule, i.e.

fitters, we later extended the analyses to the full spectrum of

fitters and non-fitters (Fig. 1C and D).

Consequently, the core objective of this paper was to re-

spond to the confounded nature of assessments of behav-

ioural recovery from stroke, particularly from upper-limb

impairments. We did so by applying a subset approach to

reduce confounding effects. We then used Bayesian models

and model comparisons to answer the substantive scientific

question: what mechanisms best explain the data on recov-

ery of upper-limb impairment after stroke and with what

explained variance?

Material and methods

Participants and clinical data

The analyses of post-stroke upper limb impairment were

based on a sample of 385 acute stroke participants originat-

ing from six different studies on stroke recovery (Zarahn

et al., 2011; Byblow et al., 2015; Feng et al., 2015; Buch

et al., 2016; Guggisberg et al., 2017). Details on data acqui-

sition are given in the Supplementary material, section 3. In

brief, we used anonymized data available from Zarahn et al.

(2011) and Guggisberg et al. (2017) and combined them

with secondary data from Hawe et al. (2019a). Therefore,

we had individual-level information on Fugl-Meyer (FM)

scores assessing upper limb motor impairment in the acute

as well as chronic stage (3–6 months after the event)

(Nakayama et al., 1994). A minimum score of 0 implied no

preserved body function and a maximum score of 66

implied maximal body function (Fugl-Meyer et al., 1975). In

line with previous research (Feng et al., 2015), we split the

stroke subject samples into fitters and non-fitters to the clas-

sic proportional recovery rule (Prabhakaran et al., 2008)

based on their initial scores (non-fitters: FM-initial 4 10

points, fitters: FM-initial 410 points) (Fig. 1B). The first set

of analyses were focused exclusively on fitters (n = 243), and

subsequent analyses highlighted findings on the entire sam-

ple, i.e. fitters and non-fitters (n = 385). As all of the data

have been published previously, ethics approvals had been

granted for all individual primary studies.

Bayesian hierarchical modelling of
motor stroke outcome

A hierarchical Bayesian framework was used to allow for

the balanced incorporation of data from various sources and

to facilitate model comparisons. More precisely, we built

Bayesian multilevel (hierarchical) linear regression models

with varying intercepts and slopes (Gelman, 2006).

Therefore, each of the six considered studies was character-

ized by estimated full probability distributions of intercept

and slope parameters—rather than simple best-fit, maximum

likelihood parameter estimates as commonly used in recov-

ery studies. Retaining study-specific information in this stat-

istical way was essential to addressing potential differences

between studies. These differences could arise from inde-

pendent data collection, involving study sites in different

countries, and likely minor variations in therapy regimens.

Nonetheless, given that each of the included studies consid-

ered similar measures at similar time points from broadly

similar participants, information was also pooled across the

various studies and a set of hyperparameters, i.e. across-

study intercept and slope, was derived (Bzdok et al., 2020).

Thus, intercepts and slopes had two levels that carefully cap-

tured across-study versus individual variation in the eligible

stroke studies.

The outcome variables that we sought to predict were

either the raw FM-end score or Change (i.e. FM-end –

FM-initial). We thus created a likelihood function for the

outcome and linked it to the priors of our predictor varia-

bles, i.e. either the unaltered FM-initial score or Potential

(FM-maximum – FM-initial), through one of five different

models:

(i) The (classical) standard-form regression model: FM-end =

b.FM-initial + a (with intercept a and slope b).

(ii) The change model: Change = Potential.B + A, with Change =

FM-end – FM-initial and Potential = FM-maximum – FM-ini-

tial, with FM-maximum = 66.

The change model was more precisely framed in three differ-

ent ways expressing various conceivable recovery models,

which we highlighted in the ‘Introduction’ section (cf.

Fig. 2A–C): The classical proportional to lost function

Proportional recovery in proportion BRAIN 2020: 143; 2189–2206 | 2193
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recovery model: Change = Potential.B, a proportional to

spared function recovery model: Change = FM-initial.B

(which takes the raw initial score), and a constant recovery

model: Change = A.

Once fitted, we determined whether the obtained models

were truly proportional to lost, spared, or constant recovery

by assessing the parameter settings, where 0 4 B5 1 for

the proportional to lost or spared function recovery and

where 0 4 A5 Max ^ Max ¼ 66 for the constant recov-

ery model. We used lower case a and b to denote intercepts

and slopes in standard-form regression models, which fea-

tured FM-end as outcome. Conversely, upper case A and B

represented intercept and slope in change models, which had

Change (FM-end – FM-initial) as outcome.

A critical step in any Bayesian analysis is the specification

of prior beliefs. We attenuated the effects of priors and sim-

ultaneously increased the influence of the actual data by

choosing simple, weakly informative Gaussian priors for

slope and intercept (hyper-)parameters (i.e. we chose large

standard deviations), and half-Cauchy priors for correspond-

ing variance terms. The full Bayesian model is specified in

Fig. 5A. Dependencies between variables are indicated with

arrows, observed variables are in grey boxes, and the distri-

butions defining variables are shown on the right. M denotes

the number of studies analysed and N(i) the number of sub-

jects in each study.

Inference

The analytical derivation of posterior distributions is either

computationally very expensive and challenging or not pos-

sible, as it requires the integration over thousands of unknown

parameters. We thus deployed a recent Monte Carlo Markov

Chain algorithm, the No U-Turn Sampler (NUTS), which does

not compute the posterior distribution directly, yet draws sam-

ples from it in a stochastic way (Hoffman and Gelman, 2014)

(setting: draws = 2000, n _init = 1000; for quality assurance

and to check for convergence: initially four chains, then one

chain for final analyses). Marginal posteriors are given as mean

and 95% credible intervals. Posterior predictive checks were

run to analyse the model performance, i.e. we predicted FM-

end or Change scores based on parameter drawings from the

posterior. In this way, we could assess whether data originating

from our fitted hierarchical model resembled data from the true

underlying distribution.We compare predictedmeans to the ac-

tual sample means and finally compute R-squared values as a

measure of explained variance.

Synthetic data simulation
experiments

Before carrying out model comparisons, we first conducted

data simulations (Gelman and Hill, 2006) and synthetically

generated data based on ground truth models. These simula-

tions enabled us to test strategies to ensure correct model es-

timation despite the effects of noise and ceiling.

We proceeded in the following way: we selected propor-

tional to lost, proportional to spared function and constant

recovery as ‘true’ models. These models were rearranged to

obtain the standard-form classical regression, directly linking

X and Y (Fig. 2D–F).

The transformation to standard-form enabled us to gen-

erate Y-values from those of X. To consider different

degrees of recovery, we assessed these in 10% steps from

10% to 90% of the proportional recoveries and in steps of

five from 5 to 50 points for constant recovery (Fig. 2D–F).

We then entered the empirical FM-initial scores of all fitters

(n = 243) in one of the ‘true’ models, added noise, and

enforced ceiling (Supplementary material, section 4). The

final and critical step then was to fit a new linear regression

model to the simulated data and compare the estimated

parameters for intercept and slope to the given ‘true’

parameters to answer whether it was still possible to esti-

mate the ‘true’ model after alterations by noise and ceiling.

Also, we tracked the ratio of the standard deviations FM-

end/FM-initial, Pearson correlations of FM-initial and FM-

end, as well as FM-initial and Change and the number of

simulated subjects at absolute ceiling, i.e. at a Fugl-Meyer

score of 66 (maximum).

Aiming to reduce ceiling and thus its confounding effect,

we implemented a subset approach by limiting the data sim-

ulations to specific FM-initial ranges, i.e. subset (i) FM-initial

10–60 including subjects with initial scores between 10 and

60 (n = 206); (ii) FM-initial 10–50 (n = 153); (iii) FM-initial

10–45 (n = 118); and (iv) FM-initial 10–40 (n = 92), and

evaluated its effect on subsequent model estimation. In the

case of FM-initial 10–45 and FM-initial 10–40, we addition-

ally excluded studies that had 510 subjects in the respective

range [FM-initial 10–45 (Zarahn et al., 2011; Buch et al.,

2016), FM-initial 10–40 (Zarahn et al., 2011; Byblow et al.,

2015; Buch et al., 2016)]. This enabled us to assess in syn-

thetic data, which subset approach gave the best trade-off

between retrieval of correct model and parameter settings,

and size of the remaining data. For each of the described

scenarios, simulations were repeated 1000 times. A typical

simulation process is illustrated as the black annotations in

Fig. 1A. See the Supplementary material, sections 5 and 7,

for further details on these simulation experiments and intui-

tive examples.

Final model comparisons

Fitters only

We initially focused on the fitters (FM-initial 4 10) portion

of the data. Relying on the simulation results, we con-

structed Bayesian hierarchical models for the standard form

regression, the proportional to lost function, and proportion-

al to spared function as well as the constant recovery models

in the subset FM-initial 10–45 and conducted a model com-

parison. We focused on this subset as it represented an opti-

mal compromise between mitigating ceiling effects and

retaining as many subjects in the analysis as possible [FM-

initial 10–45: n = 118 (31%)]. Results for the subsets FM-

2194 | BRAIN 2020: 143; 2189–2206 A. K. Bonkhoff et al.
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initial 10–40 and FM-initial 10–50 are provided in the

Supplementary material, section 10.

Despite our dataset being as large as currently possible, a

potential limitation is that, for some of the studies included,

we relied upon values extracted from published figures. This

process missed 68 subjects because multiple points sat on

top of one another in scatter plots. To account for these

missing values and to determine an upper bound of

R-squared for the winning model in our model comparison,

we repeatedly (1000 times) took 68 random draws from the

available FM-initial distribution. We excluded values not in

the range 10–45 and placed the remaining values on the pre-

dicted linear fit (i.e. assuming perfect prediction by the

standard-form model). We then added those additional

simulated subjects to the original dataset. By these means,

we obtained an average R-squared value, which can be con-

sidered an upper bound when correcting for missing values.

Fitters and non-fitters

In the final analyses, we jointly investigated data on fitters

(FM-initial 4 10) and non-fitters (FM-initial 4 10) by fit-

ting the four competing models outlined above. Once again,

we ran analyses using the subset approach, using a

decreased upper limit for FM-initial scores to prevent con-

founding by ceiling [FM-initial 0–45: n = 270 (70%)].

Statistical analyses

The main analyses were conducted in a Bayesian hierarch-

ical framework. The central inferential question was a

model comparison. Specifically, we determined the models

best describing the data based on their leave-one-out-

cross-validation (LOOCV) (Vehtari et al., 2017), with

LOOCV being a critical out-of-sample test of model fit—

indicating whether our findings are likely to hold up in fu-

ture studies. Model comparisons based on the widely ap-

plicable information criterion (WAIC) are also given in

the Supplementary material, section 8. The WAIC repre-

sents a principled means of weighing goodness-of-fit

against model complexity (i.e. number of effective param-

eters) (Watanabe, 2013). Additionally, we report R-

squared values, the standard measure of the effectiveness

of models at explaining within-sample variability.

Data availability

The recovery data as well as jupyter notebooks (python 3.7,

primarily software package pymc3) (Salvatier et al., 2016)

used in this study are available from the authors on reason-

able request.

Results

Descriptive statistics

Individual studies as well as the joint distributions of initial

and end Fugl-Meyer scores, median values, and quartiles,

are illustrated in Fig. 3. With regard to subtle differences be-

tween studies, Feng et al. (2015) only considered stroke sub-

jects with FM-initial scores 560. Guggisberg et al. (2017)

included more subjects with lower initial scores and sched-

uled the second assessment sooner on average, which likely

underlies the more widespread and less skewed distribution

of FM-end scores. Further characteristics, such as size, mean

age, and sex of each study are summarized in

Supplementary Table 1.

Bayesian posterior distributions for
stroke recovery prediction

The hierarchical standard-form regression and change mod-

els built on the entirety of fitters (n = 243) could be well esti-

mated, as indicated by the convergence of four

independently sampled (Monte Carlo Markov) chains

for the posterior estimates of model parameters.

Additionally, the predicted posterior mean was evenly dis-

tributed around the actual sample mean, indicating that the

model can reproduce patterns occurring in the real data

(Supplementary Fig. 2). Figure 4 illustrates the marginal pos-

teriors for the across-study and study-specific intercept and

slope parameters, arising from one final chain. Furthermore,

Fig. 5B and C highlights the joint posterior densities for

intercept and slope parameters. A striking finding for both

models was the dispersion of the individual studies’ inter-

cepts and slopes. For the change model, the across-study

mean for the slope was 0.64, thus specifying a proportional

recovery of 64% for all six studies combined. However, the

individual posterior means for slopes fell in the range be-

tween 54% (Guggisberg et al., 2017) and 70% (Feng et al.,

2015), reflecting different patient mixes and evaluation time

points. The six slopes also followed two general patterns,

with three studies featuring lower and three studies higher

proportional recovery amounts. As expected, the explained

variance of the change model markedly surpassed that of the

standard-form regression model [posterior predictive check

(PPC): R-squared: 70.8% versus 42.7%], demonstrating the

problematic inflation due to mathematical coupling high-

lighted in Hawe et al. (2019a) and Hope et al. (2019). Also,

this inflation of explained variance coincided with a small

ratio of standard deviations FM-end/FM-initial, totalling

0.57. This small ratio at least partially resulted from the

number of subjects reaching absolute ceiling at follow-up:

37 (15.2%). In sum, these are the canonical properties of

compression enhanced coupling.

Synthetic data simulation
experiments

Synthetic data simulations in the sample of fitters (Gelman

and Hill, 2006) facilitated the detailed study of confounding

effects of noise and ceiling as well as hypothetical conclu-

sions when assuming three conceivable ground truth models:
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Figure 3 Initial and follow-up upper limb motor performance, individually for each of the six studies included and aggregated

across studies. (A) Raincloud plots of the initial and end Fugl-Meyer assessment scores. These measured the upper limb impairment post-

stroke of all fitters, i.e. those with FM-initial 4 10 (n = 243). Each of the six studies included is displayed separately and uniquely colour-coded.

The top row within each study’s plot shows the distribution of scores. The second row summarizes the same data in a box plot (i.e. median, upper

and lower quartiles, whiskers extending to the entire range of data, outliers indicated as separate dots). The third row displays raw individual data-

points. While initial Fugl-Meyer score distributions are more homogeneous across the entire range (i.e. more uniform), distributions at the se-

cond time point are narrower and—to varying degrees—more pronounced at the upper end of the Fugl-Meyer assessment scale, i.e. skewed.

The code for raincloud plots is from Allen et al. (2019). (B) Entirety of aggregated individual Fugl-Meyer assessment scores of all stroke subjects

defined as fitters (FM-initial 4 10). Scores are jittered on the vertical axis for visualization only. Left: FM-initial versus FM-end, clearly depicting the

increased density for follow-up scores close to and at ceiling, i.e. FM-end = 66. Right: FM-initial versus Change (FM-end – FM-initial). Included studies

are colour-coded, as before.
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proportional to lost function, proportional to spared func-

tion, as well as constant recovery.

Detailed descriptions and data simulations are given in the

Supplementary material, section 7. In summary, the inclusion

of noise did not impede the correct model and parameter esti-

mation. The situation changed markedly with the introduc-

tion of a ceiling: correct estimation deteriorated in parallel to

the increase of subjects at absolute ceiling and with growing

amounts of recovery (e.g. going from 10% of proportional

recovery to 20%). This scenario also demonstrated the effects

of compression enhanced coupling, since tracked Pearson

correlations of FM-initial and Change increasingly became

more extreme than those of FM-initial and FM-end after

enforcing ceiling (Fig. 6A). Importantly, the variability ratio,

computed as r(FM-end)/r(FM-initial), decreased in parallel

(Fig. 6B). Figure 6A illustrates these courses: in the case of

proportional to spared function and constant recovery, the

tracked Pearson correlations of FM-initial and Change before

and after enforcing ceiling diverged dramatically (cf. yellow

and green lines, before and after ceiling). Crucially, trajecto-

ries after introducing ceiling closely resembled those of pro-

portional to lost function recovery. Hence, when considering

Figure 4 Bayesian hierarchical model of all fitters (n = 243): marginal posteriors of intercepts and slopes. The best parameter set-

tings are the ones with the highest frequencies and the spread of the distributions indicate uncertainty associated with the parameter estimation.

(A) Standard-form regression model. End Fugl-Meyer scores are estimated according to FM-end = b.FM-initial + a. Across-study intercept and

slope are depicted in the top two rows. The bottom two rows show the lower level of the hierarchy: varying intercepts and slopes, individually per

included study. (B) ‘Classic’ proportional to lost function change model. The outcome measure of interest here is the change between the initial

and end Fugl-Meyer scores, estimated based on Change = B.Potential + A with Change = FM-end – FM-initial and Potential = 66 – FM-initial. The

across-study slope indicates a proportional recovery of 64% (black arrow). The inflation of explained variance due to mathematical coupling and

ceiling enhanced coupling is demonstrated by an R-squared value of 70.8% for the change model that exceeds the one from the standard-form re-

gression model by 28%. Note that unlike our presentations of proportional to lost function elsewhere, we include an intercept here to maximize

fit, although, as can be seen, fitting generates an intercept very close to zero.
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all fitters and disregarding any potential ceiling effects, there

was only one possible conclusion: data would follow a pro-

portional to lost function recovery regardless of the real

mechanism driving recovery.

However, estimation performance gradually improved

again, when running the simulations in subsets of fitters, i.e.

considering only those below a certain cut-off of FM-initial.

The most stringent subset of FM-initial 10–40 [92 subjects

(24%)] performed the best in terms of estimating the true

intercepts and slopes for all models. However, in order to

choose an appropriate subset range for the intended model

comparisons, we tried to find the optimal balance of reduc-

ing possible confounds, while also retaining as many subjects

in the analysis as possible. The subset FM-initial 10–50, con-

taining 153 subjects (40%), was only capable of retrieving

proportional to spared function up to a proportion of 30%

and 15 points of constant recovery, which we did not judge

to be sufficient. On the other hand, we could only keep three

studies and 24% of all subjects in the subset FM-initial 10–

40, which seemed an inefficient use of hard-won empirical

data and reduction to too few patients. Therefore, we estab-

lished a further subset FM-initial 10–45 to combine the

advantages of FM-initial 10–50 and 10–40. Based on the

subset FM-initial 10–45 [118 subjects (31%)], we were able

to estimate the entire range of proportional to lost function;

up to 40% of proportional to spared function, and up to 20

points of constant recovery. We were also able to recover the

‘true space’ of the generating model for all proportional to

spared function models (Supplementary material, section 5).

Hence, we decided to focus on the subset FM-initial 10–45

Figure 5 Bayesian hierarchical model and model estimated within- and between-study differences in motor recovery based on

the standard-form regression model. (A) Full specification of the Bayesian hierarchical model. (B) Aggregated motor studies. We display

the joint distribution between the across-study intercept, which can be described as the average motor outcome for an FM-initial score of zero,

and the across-study slope, equivalently framed as performance gain dependent on FM-initial. Therefore, the plot illustrates the joint posterior

densities for the included hyperparameters, with the marginal posterior for the intercept ranging from 37.0 to 47.4 and from 0.28 to 0.44 for

slopes (95% credibility intervals). (C) Individual motor studies. The figure pictures the joint density for combinations of intercepts and slopes

that are plausible, given the visited data of the six included studies. It particularly highlights the relationship between sample size and width of

credibility intervals, as larger studies present with narrower intervals (see legend in C for study-specific colour-coding).
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for model comparisons on the human data (results for FM-

initial 10–50 and 10–40 are presented in the Supplementary

material, section 10).

Final model comparisons: human
data

Fitters in the FM-initial 10–45 subset

The studies by Zarahn et al. (2011) and Buch et al. (2016)

were excluded from these analyses as they had fewer than

10 subjects in the range of FM-initial 10–45, which would

lead to a substantial deterioration in accuracy when sam-

pling from the posterior. Relying on the remaining 118

subjects (31%; six subjects were at absolute ceiling, 5%;

variability ratio was 1.12), we successfully sampled poste-

riors for the (unconstrained) standard-form regression

model, and change-form versions of proportional to lost

function, proportional to spared function, and constant-

recovery models. Resulting distributions for the marginal

posteriors are shown in Fig. 7.

Figure 6 Synthetic data simulations of proportional to lost function (left), proportional to spared function (middle), and con-

stant recovery (right) based on 243 simulated subjects. (A) Trajectories of Pearson correlation between FM-initial (X) and FM-end (Y) and

FM-initial (X) and Change (Y – X). Proportional to lost function recovery: starting at almost the maximum of 1, the correlation between FM-initial

and FM-end decreases the higher the amount of proportional recovery, while the correlation for FM-initial and Change becomes more negative

and finally exceeds the one of FM-initial and FM-end in absolute terms, demonstrating the effect of mathematical coupling. Ceiling only exhibits a

minor amplification of this effect. Proportional to spared function recovery: without any ceiling, correlations of FM-initial and FM-end, as well as

FM-initial and Change, are close to 1. The latter changes dramatically after enforcing ceiling: the correlations of FM-initial and Change now decrease

monotonically, become negative and are reminiscent of proportional to lost function. Constant recovery: the correlation between FM-initial and

FM-end is close to 1, while FM-initial and Change are not correlated. After ceiling is enforced, patterns closely resemble those for proportional to

lost function: the correlation of FM-initial and FM-end decreases monotonically, yet stays positive, the one between FM-initial and Change decreases

and becomes almost –1 for high levels of constant recovery. (B) Trajectories of variability ratios. Proportional to lost function recovery: variabil-

ity ratios are decreasing from �1 to 0.2, ceiling exhibits only minor effects. Proportional to spared function recovery: trajectories differ markedly

depending upon ceiling: ratios are 41 and increase before ceiling and decrease to values 51 after ceiling is enforced. Constant recovery: once

again, the presence of a ceiling substantially alters the trajectories of variability ratios. While they remain close to 1 before enforcing ceiling, they

show a steep decrease after enforcing ceiling.
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Figure 7 Alleviating confounds by ceiling effects and mathematical coupling: Bayesian hierarchical models in the FM-initial

10–45 subset (n = 118). Marginal posteriors for parameters of proportional to lost function recovery (A), (unconstrained) standard-form re-

gression (B), proportional to spared function recovery (C), and constant recovery (D). (E) Final Bayesian model comparison using leave-one-

out-cross-validation (LOOCV). As deviance increases (x-axis), the accuracy of the fit goes down. Open circles represent the LOOCV-corrected

2200 | BRAIN 2020: 143; 2189–2206 A. K. Bonkhoff et al.
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Themean of the across-study slope-parameter in the propor-

tional to lost function model equalled 0.65 (95% credibility

interval 0.39–0.90), thus indicating an across-cohort recovery

of a little less than 70%. In contrast to the model on the entire

dataset, the explained variance came to just 21.3%. Notably,

this value was lower than the explained variance based on the

(unconstrained) standard-form regression model (PPC, R-

squared: 31.5%). Across studies, subjects had a marginal pos-

terior constant recovery of 26 points, ranging from 25 for

Byblow et al. (2015) and Guggisberg et al. (2017) to 30 points

for Winters et al. (2015). The explained variance amounted to

only 5.8%. Explained variance dropped even further in case of

proportional to spared function (PPC, R-squared: –0.153,

slope = 0.85), with the negative value signalling the unsuitabil-

ity of this model. Since these fittings put us on the boundary of

correct parameter retrieval for proportional to spared and con-

stant recovery, we provide further justification for our conclu-

sions in the Supplementarymaterial, section 9.

As the reported R-squared values are only comparable to

a certain extent, as a model’s inherent degrees of freedom

(i.e. flexibility) are not quantified in this measure, we carried

out a model comparison based upon leave-one-out-cross-

validated deviance values. The standard-form regression

model, as well as the proportional to lost change model, had

the lowest deviance and were thus top ranked. The stand-

ard-form regression model gave a fit that can be seen as a

combination of proportional to lost function and constant

recovery and could thus be viewed as liberal proportional to

lost (Supplementary material, section 1). The constant recov-

ery model followed these two models. Proportional to

spared function performed the worst. Non-overlapping con-

fidence intervals for the differences in deviance increased

confidence in the two winning models (Fig. 7E cf.

McElreath, 2018). See Supplementary Fig. 3 for WAIC-

based results, which yielded similar results and indicated

equidistant differences between in-sample and out-of-sample

estimates (horizontal distance between filled and unfilled

circles in results panels), rendering a pronounced overfitting

of the LOOCV-based models unlikely. Results for the add-

itional subsets FM-initial 10–40 and 10–50 are broadly com-

parable to the FM-initial 10–45 subset (Supplementary Figs

4 and 5).

When adjusting for missing values in our dataset in add-

itional analyses, we determined the upper bound of the R-

squared value for the winning, standard-form regression

model to be 44.7%.

Fitters and non-fitters in the FM-initial 0–45 subset

Merging fitters and non-fitters increased the total sample

size to 385 subjects, out of which 39 reached maximum val-

ues of 66 at follow-up (10%). Further characteristics,

such as the ratio of standard deviations, are given

in Supplementary Table 1 and Supplementary material, sec-

tion 11. Once again, we used our subset approach and only

considered subjects with FM-initial scores 545, restricting

our analysis to 270 subjects (70%; eight at absolute ceiling

at follow-up, 3.0%). Posteriors of the various models’

parameters could be reliably sampled, as indicated by con-

verging chains. Evaluating the standard-form regression

model first: all of the individual slopes’ marginal posterior

distributions had a mean between 1.17 and 1.34, yet

included 1 in their credibility intervals (across-cohort slope:

1.24; 95% credibility interval 0.99–1.52) (Fig. 8D).

Therefore, they indicated a mixture of proportional to

spared function and constant recovery (PPC, R-squared:

52.8%), which is similar to the pattern in Fig. 2I. Two of

the change models, i.e. proportional to lost function and

proportional to spared function, provided a very poor (nega-

tive) in-sample explained variance (PPC, R-squared: –0.13

and –0.51 for proportional to lost and proportional to

spared function recovery, respectively) (Fig. 8A and B). Only

the constant recovery model could capture some positive

variance (PPC, R-squared: 7.4%) (Fig. 8C). The final model

comparison revealed the (unconstrained) standard-form re-

gression model, indicating a mixture of proportional to

spared function and constant recovery, and constant recov-

ery as the winning models (Fig. 8E).

Discussion
Current analyses of proportional recovery after stroke are

subject to various confounds. We here proposed a subset ap-

proach to minimize a key confound, compression enhanced

coupling, which we validated in synthetic data experiments.

We furthermore used hierarchical Bayesian models to ana-

lyse one of the largest datasets of upper limb recovery post-

stroke (n = 385) and evaluate various conceivable patterns

of stroke recovery in overall model comparisons.

We first carried out the subset approach focusing on those

patients considered to be fitters to the proportional recovery

rule. Thus, we considered all 118 participants with an initial

Fugl-Meyer score of 410 to exclude non-fitters (Feng et al.,

Figure 7 Continued

(out-of-sample) deviance, which is the key measure we use to compare models; black error bars indicate the corresponding standard error (i.e.

uncertainty) in that deviance estimate. Grey triangles are the difference from the top-ranked model and grey bars the associated standard error.

The lowest (i.e. best) LOOCV deviance value is indicated by the vertical dashed grey line. The filled black circles mark the models’ in-sample devi-

ances, which are susceptible to overfitting and, thus, not appropriate measures of accuracy. The standard-form regression model provided the

best out-of-sample performance and was ranked first in the model comparison, closely followed by the proportional to lost function recovery

model. However, the explained variance was low at 31.5% (standard-form regression) and 21.3% (proportional to lost function recovery).
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Figure 8 Hierarchical Bayesian analysis of fitters and non-fitters combined for FM-initial 0-45 (n = 270). Recovery models: propor-

tional to lost function recovery (A), proportional to spared function recovery (B), constant recovery (C), and unconstrained standard-form re-

gression (D). Marginal posterior distributions are presented on the left side for A–C and in the upper part of D. Distribution of initial against end

scores in conjunction with an overlay of sampled fits are added on the right side for A–C and in the lower part of D (thick black line: mean, grey

lines: 2000 sampled marginal posterior parameter fits). (E) Final model comparison. Based on LOOCV, model comparison selected the standard-

form regression model. Pure constant recovery was the best follow-up model.
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2015) and a score of 545 to decrease compression

enhanced coupling (Fig. 1C). In this case, model comparison

pointed in the direction of either proportional to lost func-

tion, with a recovery proportion of 65%, or a combination

of proportional to lost function and constant recovery

(Fig. 2H) as the underlying relationships. These findings

were, therefore, generally in line with previous assumptions

of proportional to lost function recovery post-stroke

(Prabhakaran et al., 2008). However, the pure proportional

to lost function recovery model could only explain 21% of

the variance in recovery. The combination of proportional

to lost function and constant recovery in the standard-form

regression model explained 32%. Therefore, both values

were drastically reduced in comparison to earlier studies,

reporting up to 94% (Winters et al., 2015). Given the likely

confounds by compression enhanced coupling in these ear-

lier studies, the current estimates of explained variance may

be considered more accurate. As the standard-form regres-

sion directly linked initial and follow-up Fugl-Meyer scores,

it is important to note that this model was not prone to the

confounds due to mathematical coupling.

Of note, these conclusions substantially depended on the

exclusion of patients with very low FM-initial scores, so-

called non-fitters: a completely different picture arose when

using the subset approach to the entire spectrum of subjects,

i.e. fitters and non-fitters combined (FM-initial 0–45 to de-

crease compression enhanced coupling, n = 270) (Fig. 1D).

The model comparison led to the selection of a composite of

proportional to spared function and constant recovery as the

winning model (Fig. 2I); the explained variance was 53%. In

contrast to proportional to lost function, proportional to

spared function recovery suggests that patients with greater

preservation of function have a higher capacity to improve,

presumably because basic abilities to move limbs could en-

able the reacquisition of more sophisticated movement pat-

terns more easily. Indeed, functional neuroimaging data

have shown that a higher degree of residual motor function

is associated with a more physiological and thus lateralized

motor network architecture (Rehme et al., 2011). This later-

alized architecture in turn has been shown to constitute a

strong predictor for good motor recovery (Grefkes and Fink,

2014). Taken together, considering this recovery pattern

could have important implications for the conceptualization

of recovery trajectories.

The pressing current questions are: Are we in need of

more studies jointly analysing fitters and non-fitters, particu-

larly given the higher explained variance for the whole sam-

ple? Is 32% or even 53% explained variance sufficient to

justify a recovery rule that may guide individual predictions

in a future of precision neurology?

Clinical importance and prediction
of recovery post-stroke

Overestimation of the proportional recovery rule becomes

particularly problematic when it impacts clinical practice,

e.g. prompts the assumption of a spontaneous recovery pro-

cess that exclusively depends on initial motor impairment. In

particular, such a conclusion may limit the allocation of

valuable therapy sessions to some stroke subjects and gener-

ate a negative prior expectation towards tailored therapies

(Byblow et al., 2015; Hawe et al., 2019b). Putting its suit-

ability for single-participant prediction aside, Byblow and

Stinear (2019) and Kundert et al. (2019) recently under-

scored the proportional recovery rule’s purpose for explain-

ing the recovery process in stroke populations in general.

From this perspective, it may be that proportional to lost

function recovery explains fitters’ trajectories better than

other change models, but the low level of explained variance

suggests a need for further and better predictors.

Because of the increase in the explained variance of motor

recovery when jointly considering fitters and non-fitters—

from 32% to 53%—we may also need to rethink conven-

tional analysis approaches and increasingly shift the focus

on severely affected subjects by including non-fitters more

often. This might be particularly important in view of the

number of severely affected patients, e.g. 37% of non-fitters

in our study and generally increasing numbers of patients

with severe arm impairments (Hayward et al., 2017).

Additionally, recent studies have provided evidence that cer-

tain practices to classify subjects into fitters and non-fitters

may be biased, as they lead to increased estimates of

explained variance and potentially erroneous conclusions.

This situation may particularly arise when dividing patients

into fitters and non-fitters on results based on clustering ini-

tial and change scores (Hawe et al., 2019; Kundert et al.,

2019). Nevertheless, even 53% of explained variance can be

considered low, suggesting that recovery is influenced by

more factors than mere initial motor impairment as meas-

ured by the Fugl-Meyer scale. In this respect, our finding of

higher explained variance when estimating parameters for

fitters and non-fitters combined does not stand against the

observation that there are grossly different recovery patterns

across patients, which may necessitate differing therapeutic

(rehabilitative) approaches for differently impaired patient

subgroups.

Likert-like scales and ceiling effects

It is also essential to be aware of a particular score’s charac-

teristics. The Fugl-Meyer score is a Likert-like scale, and

thus is a summary of multiple Likert-like items, comprising

ordinal data (Likert, 1932). It is this combination of multiple

items that renders the parametric statistical approaches

applied here feasible (Norman, 2010; Harpe, 2015).

Positively, reported test-retest and inter-rater reliabilities for

Fugl-Meyer scores are r4 0.95 over repeated measurements

(Gladstone et al., 2002). However, as previously empha-

sized, the Fugl-Meyer assessment is highly susceptible to ceil-

ing effects (Gladstone et al., 2002). Here, we further

dissected these ceiling effects and highlighted the induction

of compression enhanced coupling with change formulation

models that link initial scores and recovery (Lord, 1956;
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Hawe et al., 2019a; Hope et al., 2019). Amongst our total

sample size of 385 subjects, 39 (10%) reached maximum

scores at follow-up, and many more were likely compressed

towards, but not at ceiling. Our synthetic data experiments

showed that this degree of ceiling effect was sufficient to im-

pede correct conclusions. Independent of the simulated

ground truth mechanism, we would always discover propor-

tional to lost function recovery.

Here, we relied upon the logic of subsets to decrease con-

founding effects by ceiling. That is, we focused on lower

ranges of initial motor performance scores, which are less

likely to lead to maximum end motor performance scores.

The relationships identified in the ceiling-reduced subsets

could then be extended to the entire sample, as generaliza-

tion was ensured by the assumed constant relationship be-

tween initial and end scores inherent to linear regression.

Importantly, our synthetic data experiments additionally

demonstrated that we did not incur any new confounds,

which would affect conclusions when defining subsets on

initial scores.

Bayesian hierarchical models

Insufficient numbers of subjects could endanger successful

subset analyses relying on the data of just one study. This

may be particularly the case as it may not be feasible to in-

crease the size of individual studies, as high-quality data ac-

quisition is time-consuming and costly. Here, the subset

approach was only rendered possible due to our Bayesian

hierarchical framework that facilitated the fusion of multiple

datasets with individual-level data (Gelman and Hill, 2006).

In this way, we could maximize the number of included sub-

jects, while retaining as much information on each study’s

characteristics as possible and modelling uncertainty explicit-

ly (McElreath, 2018). This combination of merging studies

and preserving individual features was particularly appeal-

ing, as it addressed both similarities and dissimilarities be-

tween individual studies. On the one hand, we had similar

scores from similar patients at similar time points and yet

considered various study sites and likely minor variations in

therapies on the other hand. Also, our Bayesian hierarchical

models were capable of effectively handling diverging sample

sizes in the six studies considered (McElreath, 2018). Lastly,

as anticipated in Hope et al. (2019), they allowed for the

evaluation of various generative models on the nature of re-

covery—proportional to lost function, proportional to

spared function, and constant recovery—through model

comparisons.

Limitations and future directions

We decreased distorting ceiling effects by limiting analyses

to subsets of initial scores. However, we acknowledge that

there are drawbacks to this approach, such as the exclusion

of substantial portions of the entire sample. Also, it does not

represent a definitive handling of the ceiling problem. The

Fugl-Meyer assessment is based on several single items. For

example, it asks whether a patient is able, partially able or

unable to move the hand from the ipsilateral ear to the

contralateral knee. This multitude of items could poten-

tially result in multiple subceilings. These may remain pre-

sent even in case of excluding data at the scale’s

maximum. Therefore, one viable strategy to circumvent

these kinds of ceiling effects could be the increased use of

behavioural and clinical assessments with continuous

scales, for example, muscle forces, movement speeds or

other kinematic parameters. Another strategy could be the

construction of more elaborate scoring systems that allow

for the detection of even very subtle variation, especially

at the top of the scale. Nevertheless, motor impairment

may be maximally recovered and effectively indistinguish-

able from a healthy pre-stroke level in some cases. As a re-

sult, some natural ceiling would occur and require special

attention, primarily concerning statistical procedures.

Future research may thus utilize our subset analysis or

further approaches for censored data, such as frequentist

Tobit models (Tobin, 1958) and Bayesian counterparts

(Gelman and Hill, 2006).

Furthermore, we did not attempt to differentiate be-

tween potential non-linearities of the Fugl-Meyer scale,

e.g. is a 10-point gain from 0 to 10 the same as a 10-point

gain from 50 to 60? Especially when considering the in-

volvement of different functional domains and their inter-

actions, a linear recovery pattern seems rather unlikely.

For example, motor recovery might also be influenced by

recovery from visuospatial neglect. Such non-linearities

might thus not be detectable by the linear regression mod-

els we, and the majority of the field, have focused on so

far. Therefore, our results encourage research into other

model types, for example, non-linear models, such as deci-

sion tree-like algorithms (Stinear et al., 2012) and expo-

nential recovery functions (van der Vliet et al., 2020).

Additionally, we may need to refocus on a variety and

multivariate combination of indicators of stroke recovery,

such as behavioural, physiological, and imaging bio-

markers, which have already shown promise (Stinear,

2017; Ward, 2017; Findlater et al., 2019).

Our study highlights the opportunity for novel insights to

be gleaned by Bayesian hierarchical modelling, as it facili-

tates model comparisons and the creation of large datasets,

thereby increasing the generalizability of obtained inferences.

Therefore, they are likely to become more common in stroke

research, as well as in other clinical fields. Indeed, the strat-

egies outlined here may inspire and guide future studies,

raise awareness of the better handling of ceiling and change

models, as well as the pernicious nature of compression

enhanced coupling; especially, as these effects may frequently

occur in biomedical data.

In this study, we relied on a relatively large number of

385 subjects. Nonetheless, we are still in need of larger

stroke recovery datasets. The individual studies that we com-

bined all specified upper limb motor impairment as inclusion

criterion and primarily recorded Fugl-Meyer scores. Some

studies even explicitly excluded patients with communication
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or memory deficits (Winters et al., 2015) or patients with

concomitant posterior or cerebellar artery stroke (Byblow

et al., 2015). To explore the influence of non-motor impair-

ments on the recovery of motor impairments and vice versa,

more ambitious data-rich studies in future research (cf.

Bzdok and Ioannidis, 2019; Bzdok et al., 2019) will need to

simultaneously record a multitude of stroke symptoms, such

as motor impairments of upper and lower limbs, aphasia,

neglect, apraxia and haemianopia. In particular, the field

needs to take advantage of collaborative data collection and

move beyond behavioural scores for both predictor and

outcome variables. In this way, a range of potential ex-

planatory and predictive variables could be incorporated to

reliably increase explained variance and accuracy of out-of-

sample prediction of stroke recovery—in case of fitters and

also non-fitters (Grefkes and Fink, 2016; Bernhardt et al.,

2017; Boyd et al., 2017).

Conclusion
Our Bayesian approach to systematically revisit post-stroke

motor performance revealed only weak signs of proportional

to lost function recovery for those defined to be fitters to the

proportional recovery rule. Variance in recovery could only

be explained by up to 32%, which is 550% of that previ-

ously reported. Additionally, a combination of proportional

to spared function and constant recovery emerged as a likely

relationship for the recovery of the entirety of stroke sub-

jects, at a higher explained variance of 53%. Importantly,

these estimates were obtained after de-confounding effects of

mathematical coupling and ceiling by means of subset analy-

ses (Hawe et al., 2019a; Hope et al., 2019). In summary,

these lower levels of explained variance may motivate re-

search moving beyond behavioural measures and the consid-

eration of combinations of various biomarkers, such as

demographic, clinical, imaging, and physiological.

Ultimately, our findings may also pave the way for more

common use of Bayesian hierarchical analyses. In this way,

we may distil and accumulate evidence resting upon merged

clinical datasets and efficiently ensure reliable generalization

performance and modelling of uncertainty.
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