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Abstract

Relating visual information to its linguistic semantic

meaning remains an open and challenging area of research.

The semantic meaning of images depends on the presence of

objects, their attributes and their relations to other objects.

But precisely characterizing this dependence requires ex-

tracting complex visual information from an image, which

is in general a difficult and yet unsolved problem. In this pa-

per, we propose studying semantic information in abstract

images created from collections of clip art. Abstract images

provide several advantages. They allow for the direct study

of how to infer high-level semantic information, since they

remove the reliance on noisy low-level object, attribute and

relation detectors, or the tedious hand-labeling of images.

Importantly, abstract images also allow the ability to gener-

ate sets of semantically similar scenes. Finding analogous

sets of semantically similar real images would be nearly

impossible. We create 1,002 sets of 10 semantically simi-

lar abstract scenes with corresponding written descriptions.

We thoroughly analyze this dataset to discover semantically

important features, the relations of words to visual features

and methods for measuring semantic similarity.

1. Introduction

A fundamental goal of computer vision is to discover

the semantically meaningful information contained within

an image. Images contain a vast amount of knowledge in-

cluding the presence of various objects, their properties,

and their relations to other objects. Even though “an im-

age is worth a thousand words” humans still possess the

ability to summarize an image’s contents using only one or

two sentences. Similarly humans may deem two images as

semantically similar, even though the arrangement or even

the presence of objects may vary dramatically. Discovering

the subset of image specific information that is semantically

meaningful remains a challenging area of research.

Numerous works have explored related areas, including

predicting the salient locations in an image [17, 26], ranking

the relative importance of visible objects [1, 5, 16, 31] and

semantically interpreting images [7, 18, 24, 38]. Semantic

meaning also relies on the understanding of the attributes of

Figure 1. An example set of semantically similar scenes created by

human subjects for the same given sentence.

the visible objects [2, 6] and their relations [7, 12]. In com-

mon to these works is the desire to understand which visual

features and to what degree they are required for semantic

understanding. Unfortunately progress in this direction is

restricted by our limited ability to automatically extract a

diverse and accurate set of visual features from real images.

In this paper we pose the question: “Is photorealism nec-

essary for the study of semantic understanding?” In their

seminal work, Heider and Simmel [14] demonstrated the

ability of humans to endow even simple objects such as tri-

angles and circles with the emotional traits of humans[21].

Similarly, cartoons or comics are highly effective at convey-

ing semantic information without portraying a photorealis-

tic scene. Inspired by these obervations we propose a novel

methodology for studying semantic understanding. Unlike

traditional approaches that use real images, we hypothesize

that the same information can be learned from abstract im-

ages rendered from a collection of clip art, as shown in Fig-

ure 1. Even with a limited set of clip art, the variety and

complexity of semantic information that can be conveyed
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Figure 2. An illustration of the clip art used to create the children (left) and the other available objects (right.)

with their combination is impressive. For instance, clip art

can correspond to different attributes of an object, such as

a person’s pose, facial expression or clothing. Their combi-

nation enables an exponential number of potential appear-

ances, Figure 2.

The use of synthetic images provides two main advan-

tages over real images. First, the difficulties in automat-

ically detecting or hand-labeling relevant information in

real images can be avoided. Labeling the potentially huge

set of objects, their properties and relations in an image

is beyond the capabilities of state-of-the-art automatic ap-

proaches, and makes hand labeling expensive and tedious.

Hand-labeling in many instances is also often ambiguous.

Using abstract images, even complex relation information

can be easily computed given the relative placement of the

clip art, such as “Is the person holding an object?” or “Is

the person’s or animal’s gaze directed towards a specific ob-

ject?” Second, it is possible to generate different, yet seman-

tically similar scenes. We accomplish this by first asking

human subjects to generate novel scenes and correspond-

ing written descriptions. Next, multiple human subjects are

asked to generate scenes depicting the same written descrip-

tion without any knowledge of the original scene’s appear-

ance. The result is a set of different scenes with similar

semantic meaning, as shown in Figure 1. Collecting analo-

gous sets of semantically similar real images would be pro-

hibitively difficult.

Contributions:

• Our main contribution is a new methodology for studying

semantic information using abstract images. We envision

this to be useful for studying a wide variety of tasks, such

as generating semantic descriptions of images, or text-

based image search. The dataset and code are publicly

available on the author’s webpage.

• We measure the mutual information between visual fea-

tures and the semantic classes to discover which visual

features are most semantically meaningful. Our seman-

tic classes are defined using sets of semantically similar

scenes depicting the same written description. We show

the relative importance of various features, such as the

high importance of a person’s facial expression or the oc-

currence of a dog, and the relatively low importance of

some spatial relations.

• We compute the relationship between words and visual

features. Interestingly, we find the part of speech for a

word is related to the type of visual features with which

it shares mutual information (e.g. prepositions are related

to relative position features).

• We analyze the information provided by various types

of visual features in predicting semantic similarity. We

compute semantically similar nearest neighbors using a

metric learning approach [35].

Through our various experiments, we study what aspects

of the scenes are semantically important. We hypothesize

that by analyzing the set of semantically important features

in abstract images, we may better understand what informa-

tion needs to be gathered for semantic understanding in all

types of visual data, including real images.

2. Related work

Numerous papers have explored the semantic under-

standing of images. Most relevant are those that try to

predict a written description of a scene from image fea-

tures [7, 18, 24, 38]. These methods use a variety of ap-

proaches. For instance, methods generating novel sentences

rely on the automatic detection of objects [9] and attributes

[2, 6, 25], and use language statistics [38] or spatial rela-

tionships [18] for verb prediction. Sentences have also been

assigned to images by selecting a complete written descrip-

tion from a large set [7, 24]. Works in learning semantic

attributes [2, 6, 25] are becoming popular for enabling hu-

mans and machines to communicate using natural language.

The use of semantic concepts such as scenes and objects

has also been shown to be effective for video retrieval [20].

Several datasets of images with multiple sentence descrip-

tions per image exist [11, 28]. However, our dataset has the

unique property of having sets of semantically similar im-

ages, i.e. having multiple images per sentence description.

Our scenes are (trivially) fully annotated, unlike previous

datasets that have limited visual annotation [11, 28, 36].

Several works have explored visual recognition of dif-

ferent parts of speech. Nouns are the most commonly col-

lected [29, 31] and studied part of speech. Many methods

use tagged objects in images to predict important objects
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Figure 3. A screenshot of the AMT interface used to create the

abstract scenes.

directly from visual features [1, 5, 16, 31], and to study

the properties of popular tags [1, 31]. The works on at-

tributes described above includes the use of adjectives as

well as nouns relating to parts of objects. Prepositions as

well as adjectives are explored in [12] using 19 comparative

relationships. Previously, the work of Biederman et al. [3]

split the set of spatial relationships that can exist in a scene

into five unique types. [30] and [39] study the relationships

of objects, which typically convey information relating to

more active verbs, such as “riding” or “playing”. In our

work, we explicitly identify which types of visual features

are informative for different parts of speech.

3. Generating abstract images

In this section we describe our approach to generating

abstract images. The following sections describe various

experiments and analysis performed on the dataset.

There are two main concerns when generating a collec-

tion of abstract images. First, they should be comprehen-

sive. The images must have a wide variety of objects, ac-

tions, relations, etc. Second, they should generalize. The

properties learned from the dataset should be applicable

to other domains. With this in mind, we choose to cre-

ate abstract scenes of children playing outside. The actions

spanned by children playing cover a wide range, and may

involve interactions with a large set of objects. The emo-

tions, actions and interactions between children have certain

universal properties. Children also tend to act out “grown-

up” scenes, further helping the generalization of the results.

Our goal is to create a set of scenes that are semantically

similar. We do this in three stages. First, we ask subjects on

Amazon’s Mechanical Turk (AMT) to create scenes from a

collection of clip art. Next, a new set of subjects are asked to

describe the scenes using a one or two sentence description.

Finally, semantically similar scenes are generated by asking

multiple subjects to create scenes depicting the same written

description. We now describe each of these steps in detail.

Initial scene creation: Our scenes are created from a col-

lection of 80 pieces of clip art created by an artist, as shown

in Figure 2. Clip art depicting a boy and girl are created

from seven different poses and five different facial expres-

sions, resulting in 35 possible combinations for each, Figure

2(left). 56 pieces of clip art represent the other objects in the

scene, including trees, toys, hats, animals, etc. The subjects

were given five pieces of clip art for both the boy and girl

assembled randomly from the different facial expressions

and poses. They are also given 18 additional objects. A

fixed number of objects were randomly chosen from differ-

ent categories (toys, food, animals, etc.) to ensure a con-

sistent selection of options. A simple background is used

depicting grass and blue sky. The AMT interface is shown

in Figure 3. The subjects were instructed to “create an il-

lustration for a children’s story book by creating a realistic

scene from the clip art below”. At least six pieces of clip

art were required to be used, and each clip art could only

be used once. At most one boy and one girl could be added

to the scene. Each piece of clip art could be scaled using

three fixed sizes and flipped horizontally. The depth order-

ing was automatically computed using the type of clip art,

e.g. a hat should appear on top of the girl, and using the clip

art scale. Subjects created the scenes using a simple drag

and drop interface. In all of our experiments, subjects were

restricted to United States residents to increase the quality

of responses. Example scenes are shown in Figure 1.

Generating scene descriptions: A new set of subjects were

asked to describe the scenes. A simple interface was created

that showed a single scene, and the subjects were asked to

describe the scene using one or two sentences. For those

subjects who wished to use proper names in their descrip-

tions, we provided the names “Mike” and “Jenny” for the

boy and girl. Descriptions ranged from detailed to more

generic. Figure 1 shows an example description.

Generating semantically similar scenes: Finally, we gen-

erated sets of semantically similar scenes. For this task, we

asked subjects to generate scenes depicting the written de-

scriptions. By having multiple subjects generate scenes for

each description, we can create sets of semantically simi-

lar scenes. The amount of variability in each set will vary

depending on the ambiguity of the sentence description.

The same scene generation interface was used as described

above with two differences. First, the subjects were given

a written description of a scene and asked to create a scene

depicting it. Second, the clip art was randomly chosen as

above, except we enforced any clip art that was used in the

original scene was also included. As a result, on average

about 25% of the clip art was from the original scene used

to create the written description. It is important to note that

it is critical to ensure that objects that are in the written de-

scription are available to the subjects generating the new

scenes. However this does introduce a bias, since subjects

will always have the option of choosing the clip art present

in the original scene even if it is not described in the scene

description. Thus it is critical that a significant portion of

the clip art remains randomly chosen. Clip art that was

shown to the original scene creators, but was not used by
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them are not enforced to appear.

In total, we generated 1,002 original scenes and descrip-

tions. Ten scenes were generated from each written descrip-

tion, resulting in a total of 10,020 scenes. That is, we have

1,002 sets of 10 scenes that are known to be semantically

similar. Figure 1 shows a set of semantically similar scenes.

See the author’s webpage for additional examples.

4. Semantic importance of visual features

In this section, we examine the relative semantic impor-

tance of various scene properties or features. While our re-

sults are reported on abstract scenes, we hypothesize that

these results are also applicable to other types of visual data,

including real images. For instance, the study of abstract

scenes may help research in semantic scene understanding

in real images by suggesting to researchers which properties

are important to reliably detect.

To study the semantic importance of features, we need a

quantitative measure of semantic importance. In this paper,

we use the mutual information shared between a specified

feature and a set of classes representing semantically sim-

ilar scenes. In our dataset, we have 1002 sets of semanti-

cally similar scenes, resulting in 1002 classes. Mutual in-

formation (MI) measures how much information the knowl-

edge of either the feature or the class provide of the other.

For instance, if the MI between a feature and the classes

is small, it indicates that the feature provides minimal in-

formation for determining whether scenes are semantically

similar. Specifically, if X is the set of feature values, and Y

is the set of scene classes,

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
). (1)

Most of our features X are binary valued, while others have

continuous values between 0 and 1 that we treat as proba-

bilities.

In many instances, we want to measure the gain in infor-

mation due to the addition of new features. Many features

possess redundant information, such as the knowledge that

both a smile and person exist in an image. To measure the

amount of information that is gained from a feature X over

another feature Z we use the Conditional Mutual Informa-

tion (CMI),

I(X;Y |Z) =
∑

z∈Z

∑

y∈Y

∑

x∈X

p(x, y, z) log(
p(x, y|z)

p(x|z)p(y|z)
).

(2)

In the case that we want to condition upon two variables,

we compute the CMI for each variable individually and take

the minimum value [34]. All scores were computed using

10 random 80% splits of the data. The average standard de-

viation between splits was 0.002. Next, we describe various

sets of features and analyze their semantic importance using

Equations (1) and (2).

Occurrence: We begin by analyzing the simple features

corresponding to the occurrence of the various objects that

may exist in the scene. For real images, this would be the

same information that object detectors or classifiers attempt

to collect [9]. For occurrence information we use two sets of

object types, instance and category. In our dataset, there ex-

ist 58 object instances, since we group all of the variations

of the boy together in one instance, and similarly for girl.

We also created 11 categories by grouping objects of sim-

ilar type together. These categories, such as people, trees,

animals, and food are shown in Figure 2. The ranking of

instances and categories based on their MI scores can been

seen in Figure 4. Many of the results are intuitive. For in-

stance, objects such as the bear, dog, girl or boy are more

semantically meaningful than background objects such as

trees or hats. In general, categories of objects have higher

MI scores than instances. The semantic importance of an

object does not directly depend on how frequently it oc-

curs in the scenes. For instance, people (97.6%) and trees

(50.3%) occur frequently but are less semantically impor-

tant, whereas bears (11.1%) and soccer balls (11.5%) occur

less frequently but are important. Interestingly, the individ-

ual occurrence of boy and girl have higher scores than the

category people. This is most likely caused by the fact that

people occur in almost all scenes (97.6%), so the category

people is not by itself very informative.

Person attributes: Since the occurrence of the boy and

girl are semantically meaningful, it is likely their attributes

are also semantically relevant. The boy and girl clip art have

five different facial expressions and seven different poses.

For automatic detection methods in real images the facial

expressions are also typically discretized [8], while poses

are represented using a continuous space [37]. We compute

the CMI of the person attributes conditioned upon the boy

or girl being present. The results are shown in Figure 4. The

high scores for both pose and facial expression indicate that

human expression and action are important attributes, with

expression being slightly higher.

Co-occurrence: Co-occurrence has been shown to be

a useful feature for contextual reasoning about scenes

[27, 32, 36]. We create features corresponding to the co-

occurrence of pairs of objects that occur at least 100 times

in our dataset. For our 58 object instances, we found 376

such pairs. We compute CMI over both of the individual

objects, Figure 4. Interestingly, features that include com-

binations of the boy, girl and animals provide significant

additional information. Other features such as girl and bal-

loons actually have high MI but low CMI, since balloons

almost always occur with the girl in our dataset.

Absolute spatial location: It is known that the position

of an object is related to its perceived saliency [33] and can

even convey its identity [23]. We measure the position of

an object in the image using a Gaussian Mixture Model

(GMM) with three components. In addition, a fourth com-

ponent with uniform probability is used to model outliers.
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Figure 4. The mutual information measuring the dependence between classes of semantically similar scenes and the (left) occurrence of

obejcts, (top) co-occurrence, relative depth and position, (middle) person attributes and (bottom) the position relative to the head and hand,

and absolute position. Some mutual information scores are conditioned upon other variables (see text.) The pie chart shows the sum of

the mutual information or conditional mutual information scores for all features. The probability of occurrence of each piece of clip art

occurring is shown to the left.
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Thus each object has four features corresponding to its ab-

solute location in an image. Once again we use the CMI

to identify the location features that provide the most addi-

tional information given the object’s occurrence. Intuitively,

the position of the boy and girl provide the most additional

information, whereas the location of toys and hats matters

less. The additional information provided by the absolute

spatial location is also significantly lower than that provided

by the features considered so far.

Relative spatial location: The relative spatial location

of two objects has been used to provide contextual informa-

tion for scene understanding [4, 10]. This information also

provides additional semantic information over knowledge

of just their co-occurrence [3]. For instance, a boy holding

a hamburger implies eating, where a hamburger sitting on

a table does not. We model relative spatial position using

the same 3 component GMM with an outlier component as

was used for the absolute spatial model, except the positions

are computed relative to one of the objects. The CMI was

computed conditioned on the corresponding co-occurrence

feature. As shown in Figure 4, the relative positions of the

boy and girl provide the most information. Objects worn by

the children also provide significant additional information.

One interesting aspect of many objects is that they are

oriented either to the left or right. For instance the children

may be facing in either direction. To incorporate this infor-

mation, we computed the same relative spatial positions as

before, but we changed the sign of the relative horizontal

positions based on whether the reference object was fac-

ing left or right. Interestingly, knowledge of whether or not

a person’s gaze is directed towards an object increases the

CMI score. This supports the hypothesis that eye gaze is an

important semantic cue.

Finally, we conducted two experiments to measure how

much information was gained from knowledge of what a

child was holding in their hands or wearing on their head.

A single feature using a Gaussian distribution was centered

on the children’s heads and hands. CMI scores were condi-

tioned on both the object and the boy or girl. The average

results for the boy and girl are shown in Figure 4. This does

provide some additional information, but not as much as

other features. As expected, objects that are typically held

in the hand and worn on the head have the highest score.

Depth ordering: The relative 3D location of objects can

provide useful information for their detection [13, 15]. The

depth ordering of the objects also provides important se-

mantic information. For instance, foreground objects are

known to be more salient. Our depth features use both ab-

solute and relative depth information. We create 3 absolute

depth features for each depth plane or scale. The relative

features compute whether an object is in front, behind or on

the same depth plane as another object. The absolute depth

features are conditioned on the object appearing while the

relative depth features are conditioned on the corresponding

pair co-occurring. Surprisingly, as shown in Figure 4, depth

Figure 5. Retrieval results for various feature types. The retrieval

accuracy is measured based on the number of correctly retrieved

images given a specified number of nearest neighbors.

provides significant information, especially in reference to

absolute and relative spatial position.

There are numerous interesting trends present in Figure

4, and we encourage the reader to explore them further. To

summarize our results, we computed the sum of the MI or

CMI scores for different feature types to estimate the total

information provided by them. The pie chart in Figure 4

shows the result. It is interesting that even though there are

relatively few occurrence features, they still as a set con-

tain more information than most other features. The person

attribute features also contain significant information. Rel-

ative spatial and depth features contain similar amounts of

information as well, but spread across a much greater num-

ber of features. It is worth noting that some of the features

contain redundant information, since each was only condi-

tioned upon one or two features. The real amount of infor-

mation represented by a set of features will be less than the

sum of their individual MI or CMI scores.

5. Measuring the semantic similarity of images

The semantic similarity of images is dependent on the

various characteristics of an image, such as the object

present, their attributes and relations. In this section, we

explore the use of visual features for measuring semantic

similarity. For ground truth, we assume a set of 10 scenes

generated using the same sentence are members of the same

semantically similar class, Section 3. We measure seman-

tic similarity using nearest neighbor search, and count the

number of nearest neighbors from the same class. We study

the recall accuracy using various subsets of our features.

In each set, the top 200 features are selected based on MI

or CMI score ranking. We compare against low-level im-

age features such as GIST [22] and Spatial Pyramid Models

(SPM) [19] since they are familiar baselines in the commu-

nity. We use a GIST descriptor with 512 dimensions and

a 200 visual word SPM reduced to 512 dimensions using

PCA. To account for the varying usefulness of features for

measuring semantic similarity, we learn a linear warping of

the feature space using the LMNN metric learning approach

[35] trained on a random 80% of the classes, and tested on
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Figure 6. The words with the highest total MI and CMI scores across all features for different part of speech (left). The words with highest

total scores across different features types (top-right). Colors indicate the different parts of speech. Top non-nouns for several relative

spatial features using object orientation (bottom-right).

the rest. After warping, the nearest neighbors are found us-

ing the Euclidean distance.

Figure 5 shows that the low-level features GIST and

SPM perform poorly when compared to the semantic (clip

art) features. This is not surprising since semantically im-

portant information is commonly quite subtle, and scenes

with very different object arrangements might be semanti-

cally similar. The ability of the semantic features to repre-

sent similarity shows close relation to their MI or CMI score

in Section 4. For instance the combination of occurrence

and person attributes provides a very effective set of fea-

tures. In fact, occurrence with person attributes has nearly

identical results to using the top 200 features overall. This

might be partially due to overfitting, since using all features

does improve performance on the training dataset.

6. Relating text to visual phenomena

Words convey a variety of meanings. Relating these

meanings to actual visual phenomena is a challenging prob-

lem. Some words such as nouns, may be easily mapped

to the occurrence of objects. However, other words such

as verbs, prepositions, adjectives or adverbs may be more

difficult. In this section, we study the information shared

between words and visual features. In Figure 6, we show

for words with different parts of speech the sum of the MI

and CMI scores over all visual features. Notice that words

with obvious visual meanings (Jenny, kicking) have higher

scores, while those with visual ambiguity (something, do-

ing) have lower scores. Since we only study static scenes,

words relating to time (before, finally) have low scores.

We also rank words based on different types of visual

features in Figure 6. It is interesting that different feature

types are informative for different parts of speech. For in-

stance, occurrence features are informative of nouns, while

relative position features are predictive of more verbs, ad-

verbs and prepositions. Finally, we show several examples

of the most informative non-noun words for different rel-

ative spatial position features in Figure 6. Notice how the

relative positions and orientations of the clip art can dramat-

ically alter the words with highest score.
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7. Discussion

The potential of using abstract images to study the high-

level semantic understanding of visual data is especially

promising. Abstract images allow for the creation of huge

datasets of semantically similar scenes that would be im-

possible with real images. Furthermore, the dependence on

noisy low-level object detections is removed, allowing for

the direct study of high-level semantics.

Numerous potential applications exist for semantic

datasets using abstract images, which we’ve only begun

to explore in this paper. High-level semantic visual fea-

tures can be learned or designed that better predict not

only nouns, but other more complex phenomena repre-

sented by verbs, adverbs and prepositions. If successful,

more varied and natural sentences can be generated using

visually grounded natural language processing techniques

[7, 18, 24, 38].

Finally, we hypothesize that the study of high-level se-

mantic information using abstract scenes will provide in-

sights into methods for semantically understanding real im-

ages. Abstract scenes can represent the same complex rela-

tionships that exist in natural scenes, and additional datasets

may be generated to explore new scenarios or scene types.

Future research on high-level semantics will be free to focus

on the core problems related to the occurrence and relations

between visual phenomena. To simulate detections in real

images, artificial noise may be added to the visual features

to study the effect of noise on inferring semantic informa-

tion. Finally by removing the dependence on varying sets

of noisy automatic detectors, abstract scenes allow for more

direct comparison between competing methods for extrac-

tion of semantic information from visual information.
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