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Abstract

A general purpose force field such as MMFF94/MMFF94s, which can properly deal with a wide range of diverse structures,
is very valuable in the context of a cheminformatics toolkit. Herein we present an open-source implementation of this
force field within the RDKit. The new MMFF functionality can be accessed through a C++/C#/Python/Java application
programming interface (API) developed along the lines of the one already available for UFF in the RDKit. Our
implementation was fully validated against the official validation suite provided by the MMFF authors. All
energies and gradients were correctly computed; moreover, atom type and force constants were correctly assigned
for 3D molecules built from SMILES strings. To provide full flexibility, the available API provides direct access to
include/exclude individual terms from the MMFF energy expression and to carry out constrained geometry
optimizations. The availability of a MMFF-capable molecular mechanics engine coupled with the rest of the RDKit
functionality and covered by the BSD license is appealing to researchers operating in both academia and industry.
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Background
Molecular mechanics force fields are the workhorse of
computational chemists for molecular simulations,
owing to their low computational demands compared to
CPU-intensive quantum mechanical methods. Drug
designers and cheminformaticians are typically most
interested in general purpose force fields, namely
those which deliver good performance over a broad
spectrum of different structures, ranging from biological
macromolecules to small drug-like molecules. Such force
fields are ideal to optimize 3D conformations of ligands or
receptor/ligand complexes in batch workflows, because
they seldom fail due to missing parameters. Examples of
generalized force-fields include UFF [1], MMFF94 [2-8],
OPLS [9,10], GAFF [11] and CGenFF [12].
Among these, one of the most widely used and

appreciated is MMFF94, which was developed about twenty
years ago by Halgren at Merck Research Laboratories and
documented by a series of five papers on J. Comput.
Chem. [2-6]. A couple of years later, MMFF94 was
complemented by the “static” MMFF94s variant [7],
which is characterized by a different parameterization
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of torsional and out-of-plane interactions geared
towards geometry optimization studies (MMFF94 was
recommended for molecular dynamics simulations).
For the remainder of this paper, “MMFF” will collectively
refer to both MMFF94 and MMFF94s variants. MMFF
has shown robustness and quality in dealing with small
molecules superior to the majority of generalized force
fields in use at the time of its first introduction [8,13], and
also on par or better than the more recent OPLS2005
and GAFF force fields [14]. Its versatility and effect-
iveness warranted its implementation in all major
commercial molecular modelling packages (CCG MOE,
Schrödinger Maestro, MolSoft ICM, Certara SYBYL-X)
and cheminformatics toolkits (ChemAxon, OpenEye)
currently on the market.
Herein we present an implementation of MMFF

within the open-source cheminformatics toolkit RDKit
[15]; MMFF functionality can be accessed through C++, C#,
Python and Java application programming interfaces (APIs).
While other non-commercial implementations of MMFF
do exist [16-19], ours is a complete implementation
according to the definition given by Kearsley [20,21], and,
to the best of our knowledge, the only such one available
under the permissive BSD 3-clause license.
l Ltd. This is an Open Access article distributed under the terms of the Creative
commons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:gregory.landrum@novartis.com


Tosco et al. Journal of Cheminformatics 2014, 6:37 Page 2 of 4
http://www.jcheminf.com/content/6/1/37
Implementation
The MMFF energy expression is constituted by seven
terms: bond stretching, angle bending, stretch-bend,
out-of-plane bending, torsional, van der Waals and
electrostatic (Equation 1); the functional form of individual
terms is reported in the original literature [2].
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The first step in building the force field for a given
molecular system is assigning correct types to each
atom. MMFF identifies 216 symbolic atom types, based
on the chemical nature and environment of each atom,
which are encoded into 95 numeric atom types. Correct
atom typing critically depends on the proper attribution
of the aromaticity flags. Since the aromaticity model
used by MMFF differs from the one normally used
throughout the RDKit, aromaticity has to be re-perceived
according to MMFF criteria starting from a kekulized
representation of the molecule. Subsequently, atom types
are assigned to heavy atoms followed by hydrogens.
As a second step, atom-centered partial charges are

computed according to the MMFF charge model [6],
which requires assignment of formal charges. The
MMFF formal charge paradigm is based on resonant
charges distributed over heteroatoms of the respective
functional groups, which is different to the one imple-
mented in the RDKit. In the API, atom types and charges
are assigned upon construction of an instance of the
MMFFMolProperties class. This class includes methods to
choose between the MMFF94/MMFF94s variants, to
access atom types and partial charges, to set the dielectric
model (constant or distance-dependent) and the dielectric
constant, or to exclude selected terms from the energy
expression (Equation 1), respectively.
By calling the constructForceField() function, or its

Python counterpart MMFFGetMoleculeForceField(), all
bonded and non-bonded interactions in the molecular
system under study, depending on its structure and
connectivity, are loaded into the energy expression.
Force constants and equilibrium values for bonded
interactions are retrieved from the tables attached to
the MMFF papers [22] by means of a binary search
algorithm as recommended by Halgren. We also tried the
map object implemented in the standard C++ library,
which indexes database elements through hash tables,
but it proved slightly slower. For interactions lacking
a specific parameterization, a staged “step-down” procedure
is carried out, in which increasingly generic values
are sought [2].
Optionally, external restraining terms can be added to
the MMFF energy expression, with the purpose of
constraining selected internal coordinates during geometry
optimizations. This feature may prove valuable in a number
of instances; e.g., to relax ligand-receptor complexes
without causing major alterations of their original
geometry, or to perform a torsional scan on a selected
dihedral while relaxing the rest of the molecule. Restraints
have been implemented as flat-bottomed potentials
of user-defined strength, whose functional forms for
distances rij, angles ϑijk, and torsions ϕijkl are reported in
Equations 2-4, respectively:
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Flat-bottomed potentials are enforced only when the

relevant internal coordinate is outside the (min, max)
range; the latter can be defined in absolute terms or
relative to the current geometry. Moreover, positional
Cartesian restraints can be set on individual atoms
(including dummy atoms, such as the center of mass
of a residue) as per Equation 5:

Epositional ¼
0 rij≤rmax
1
2
k rij−rmax
� �2

rij > rmax

(

ð5Þ
In this case, the constraint is applied whenever the

atom in question moves farther than rmax from its original
position. The possibility of adding these restraining
potentials to the force field expression has also been
added to the existing RDKit UFF implementation.
Once all bonded and non-bonded interactions, plus

optional restraints, have been loaded into the MMFF
energy expression, potential energy and gradients of the
system under study can be computed or minimized
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via RDKit’s ForceFields::ForceField::calcEnergy(), Force-
Fields:: ForceField::calcGrad() and ForceFields::ForceField::
minimize() methods. A few examples of simple and
constrained geometry optimizations and potential en-
ergy calculations are available as Additional files 1, 2
and 3; more examples can be found in the RDKit test
suite (both C++ and Python).

Results and discussion
Our MMFF implementation was validated against the
MMFF94 and MMFF94s official validation suites depos-
ited by Halgren and Kearsley in the CCL data archive
[20,21], which contain the kekulized 3D structures of
761 and 235 molecules, respectively. Each coordinate file
is provided with two different representations of bonds to
sulfur and phosphorous atoms, namely dative (i.e., single
bonds with formal charge separation) and hypervalent
(i.e., double bonds with no formal charge separation).
Since the MOL2 format used for the 3D coordinates
does not allow explicit indication of formal charges,
the authors included two text files where atoms bearing
formal charges on the various molecules are listed for the
dative and hypervalent representations, respectively. For
validation purposes, we combined this information into
SD files which can be found in the Additional files 1, 2
and 3. The validation suites include a detailed log file
generated by OPTIMOL, a molecular-mechanics program
developed at Merck where the force field was first imple-
mented, which lists for each molecule the MMFF atom
types and charges and the overall potential energy, decom-
posed into the seven energy terms which appear in
Equation 1. Additionally, for each energy term the list of
individual bonded interactions is reported, along with
equilibrium values and force constants. The detailed infor-
mation reported in this log file enables a thorough, in-
depth validation of all steps involved in MMFF energy
calculations, in particular:

� correct assignment of atom types and charges;
� enumeration of bonded and non-bonded interactions

and correct assignment/calculation of equilibrium
values and force constants;

� correct calculation of the energy contribution for
each interaction.

Our implementation passes all validation tests for both
MMFF94 and MMFF94s suites; hence, it can be labelled
as a complete MMFF implementation according to the
cited criteria given by Kearsley [20,21]. The validation
C++ code is included as part of the standard RDKit test
suite, and is also available as Additional files 1, 2 and 3.
On top of the official validation, we performed three
additional robustness tests. Firstly, since the OPTIMOL
log file does not include per-atom energy gradients, we
checked them against those computed by the MMFF
implementation available in TINKER [17], and they
proved to be identical. Secondly, we converted the 3D
structures provided in the MMFF validation suites
into SMILES strings using the MolToSmiles() RDKit
function, and then rebuilt 3D coordinates with DGeom-
Helpers::EmbedMolecule(); the raw 3D geometries
were finally optimized with our MMFF implementation
(see Additional files 1, 2 and 3). Obviously, since now the
rebuilt conformations were different from those in the
validation suite, energies could not be compared anymore.
Still, all atom types, charges and force constants were
correctly assigned. This proves the robustness of our
assignment algorithms against variations of bond orders
due to degenerate kekulization of condensed aromatic
systems. Finally, upon suggestion of a reviewer, we
challenged the atom typing code against 100 random
shuffles of the atom order in the input coordinate files,
obtaining correct results in all cases.

Conclusions
We presented a complete and validated implementation
of the MMFF94/MMFF94s force fields within the open-
source cheminformatics toolkit RDKit. The integration
with the RDKit, which is licensed under a 3-clause BSD
license, makes this implementation appealing to both
academic and industrial users. The MMFF-related C++,
C#, Python and Java APIs have the same architecture as
those previously implemented for UFF; hence, it is straight-
forward to switch existing programs and scripts which
relied upon the RDKit UFF force field implementation to
MMFF. A comprehensive application to computer-aided
drug design of the MMFF implementation described herein
will be the subject of a forthcoming paper.

Availability and requirements
The MMFF implementation object of this work is in-
cluded in the BSD-licensed open source toolkit RDKit
[15] since Release_2013.09.1, and can be accessed from
C++, C#, Python and Java applications.

Additional files

Additional file 1: Source code. The file sources.zip contains: ● the
C++ sources of the MMFF-related code implemented within the RDKit;
● the Python script mol2ToSdfAndSmi.py, which converts the MOL2 and
formal charge files included in the original MMFF validation suite into
SDF and SMILES representations; ● the Python script shuffleSdf.py, which
shuffles the order of the atoms of molecules in a SDF file; ● the Bash
script shuffleValidation.sh, that we used to test the robustness of the
atom typing code against 100 random shuffles of the atom order in the
input coordinate files; ● the commented Python scripts optFromSmiles.
py, optLigandInProtein.py and torsionalScan.py which serve as examples
of simple and constrained MMFF minimizations.

Additional file 2: Structures. The file structures.zip contains: ● the SDF
3D coordinate files MMFF94_dative.sdf, MMFF94_hypervalent.sdf,

http://www.biomedcentral.com/content/supplementary/13321_2014_37_MOESM1_ESM.zip
http://www.biomedcentral.com/content/supplementary/13321_2014_37_MOESM2_ESM.zip
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MMFF94s_dative.sdf, MMFF94s_hypervalent.sdf, and the respective
SMILES representations MMFF94_dative.smi, MMFF94_hypervalent.smi,
MMFF94s_dative.smi, MMFF94s_hypervalent.smi, as generated by the
mol2ToSdfAndSmi.py Python script; ● the SDF 3D coordinate files
MMFF94_dative_min_from_SMILES.sdf, MMFF94_hypervalent_min_from_
SMILES.sdf, MMFF94s_dative_min_from_SMILES.sdf, MMFF94s_
hypervalent_min_from_SMILES.sdf, as rebuilt by the program
testMMFFForceField out of the corresponding SMILES representations.

Additional file 3: Documentation. The file docs.zip expands to an
HTML tree which documents the MMFF-related C++ and Python RDKit APIs;
the documentation can be browsed opening the docs.html file in any HTML
browser. The full RDKit documentation can be found at http://www.rdkit.org.
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