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Abstract

Contacting bodies subjected to sufficiently large applied shear will

undergo frictional sliding. The onset of this motion is mediated by dy-

namically propagating fronts, akin to earthquakes, that rupture the dis-

crete contacts that form the interface separating the bodies. Macroscopic

motion commences only after these ruptures have traversed the entire

interface. Comparison of measured rupture dynamics to the detailed pre-

dictions of fracture mechanics reveals that the propagation dynamics, dis-

sipative properties, radiation and arrest of these “laboratory earthquakes”

are in excellent quantitative agreement to the predictions of the theory of

brittle fracture. Thus, interface fracture replaces the idea of a character-

istic static friction coefficient as a description of the onset of friction. This

fracture-based description of friction additionally provides a fundamental

description of earthquake dynamics and arrest.
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1 INTRODUCTION

Frictional resistance has puzzled mankind for thousands of years. One reason is
its enormous importance. Frictional forces will stop our cars - as well as keep
them on the road. Extensive efforts have been directed towards understanding
friction across scales; from single nanometric contacts [48, 68, 141] to natural
faults and earthquakes [29,96,103,134]. While descriptions of friction date back
to at least the early Egyptians [57, 116], the foundations for the modern study
of friction were laid by Leonardo da Vinci, whose early experiments suggested
that the onset of frictional motion is predicted by the ratio of shear to normal
forces acting on contacting bodies. The simplicity of this description has been
challenged by recent experiments. Detailed measurements have revealed that
the onset of sliding is mediated by complex spatio-temporal dynamics that take
place at the contacting interface that separates sliding bodies. Motion is ini-
tiated when the ensemble of micro-contacts, that make up a rough frictional
interface, are broken by means of propagating rupture fronts. These rupture
fronts, which are akin to earthquakes, may approach the speed of sound. Macro-
scopic sliding of two bodies commences only after such a front has traversed the
entire frictional interface. These rupture fronts, which can be mapped to cracks,
couple dynamics at time and length scales that are separated by many orders
of magnitude. The interplay of these is the key to understanding friction.

This review focuses on the dynamics of frictional rupture fronts at the on-
set of motion. Our aim is to both show how the friction problem is related
to the fracture dynamics and present experimental evidence that validates this
‘fracture mechanics’ framework. To this end, we intentionally omit numerous
important topics in the study of friction such as contact mechanics and effects
of roughness [72,83,109,113,115,146], wear [2], microscopic models of frictional
interfaces [3,22,116] and stability of frictional sliding [22,39,126]. Furthermore,
we simplify our discussion to sub-Rayleigh rupture fronts propagating along an
interface separating identical materials. We will therefore not include in this
review recent contributions in our understanding of supershear ruptures and
rupture propagating along bimaterial interfaces. The structure of this review is
as follows. After briefly reviewing single degree of freedom descriptions of fric-
tion, we will sketch, in sec. 2.1, the fracture mechanics theoretical framework
that replaces this simplistic view of friction, when the spatial degrees of freedom
along an extended frictional interface are properly accounted for. After demon-
strating that the elastic fields at the tip of propagating ruptures are very well
described by the universal singular solutions originally developed to describe
brittle shear cracks (sec. 2.1), we will show that the classical equation of motion
derived for brittle shear cracks perfectly describes the acceleration (sec. 2.2)
and arrest (sec. 2.3) of frictional ruptures (laboratory earthquakes). Moreover,
we will demonstrate how this quantitative framework can be used to explore
the elusive properties of both the hitherto “hidden” interface. In sec. 2.4 we
go on to demonstrate how non-singular contributions capture the unique form
of stress-wave radiation resulting from rapid rupture acceleration. Finally, we
discuss how the singular fields at a rupture tip are regularized (sec.2.5).
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1.1 Single Degree of Freedom Representation of Friction

Let us consider two contacting bodies that are pressed together by an external
normal force FN and subjected to a slowly increasing shear loading (Fig. 1a top).
This system will eventually undergo slip-stick motion; alternating start-stop
motion. In the stick phase, the interface separating the two bodies resists the
relative motion of the bodies and FS increases slowly with the applied loading.
At the onset of motion, FS rapidly decreases as the relative motion (slip) of the
blocks commences; the sliding bodies accelerate away from the points where FS

is applied (Fig. 1b) reducing its value rapidly. Typically, frictional resistance at
the onset of motion is larger than the resistance during sustained sliding. Both
are commonly thought to be proportional to the applied normal force where
the proportionality factors, µs and µd, are respectively defined as the ’static‘
and ’dynamic‘ friction coefficients. In this rather simple description, typically
referred to as Amonton-Coulomb friction laws, friction coefficients depend solely
on the material properties, which are independent of the loading configuration,
the geometry of the bodies and the nominal area of the frictional interface.

In the 1950’s Bowden and Tabor [35] laid the foundations for understanding
Amonton-Coulomb friction laws. They realized that the real area of contact A
formed by rough contacting surfaces is substantially smaller than the nominal
contact area, Anom, as it is composed of myriad discrete microscopic contacts
(Fig. 1a bottom). The applied nominal normal pressure, σ = FN/Anom, is
balanced by the mean pressure at these contacts. The real pressure at these
contacts is therefore huge, FN/A, often reaching the material hardness, σH . If
an ideal plastic model is considered, one expects that

A/Anom ∼ σ/σH (1)

as was demonstrated for some transparent materials [50]. The proportionality
between A and σ is not, however, unique to situations where the touching as-
perities deform plasticly and may occur even under fully elastic deformation
if a reasonable distribution of the asperities height and radius is taken into
account [72].

In the next step, frictional resistance per nominal unit area τ is related to
the shear strength of the micro-contacts τs by

τ = τs ·A/Anom (2)

By combining both equations we get µs = τs/σH , which encapsulates the salient
features of Amonton-Coulomb friction.

There have been a number of modifications to the Amonton-Coulomb fric-
tion laws. For completeness, we will briefly mention some of these. Pioneering
experiments by Rabinowicz [119] revealed two significant corrections; healing
and slip rate dependence. µs was shown to increase logarithmically with time
when surfaces are held in stationary contact under applied normal load. This
“healing” enables the static friction to recover from its lower dynamic value
attained during sliding. Slip rate dependence characterized by logarithmic ve-
locity weakening of µd for steady sliding was also observed for slow slip velocities
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v < 1 mm/s. Finally, the transition between one value of friction to another
was found to be accompanied by a critical slip distance. This phenomenology
is rather general and has been observed for metals [119], rock [51, 96, 132] and
polymer glasses [21, 22,30].

All of this phenomenology can be incorporated in rate-and-state formula-
tions of friction. The starting points are Eqs. 1 and 2 where an instantaneous
rate dependence of the micro-contact shear strength, τs = τs(v), is introduced.
Generally, τs(v) is an increasing function of v [17]. The history dependence and
the evolution of the contact area are given by A(φ), where φ is defined as a state
variable that is typically interpreted as the “contact life time”. Setting φ = t,
for instance, captures the logarithmic increase of A with contact time (aging) of
pressed materials [28, 49, 100] and therefore describes the “healing” of µs [30].
Note, however, that recent experiments indicate that A exhibits rich healing
effects which cannot be fully captured by a single state variable [53]. Extensive
efforts have been invested in formulating evolution laws for φ that typically have
the form φ̇ = f(φ, v) [31, 96, 100, 101]. Evolution laws are necessary to capture
the time and slip history of both the evolution of friction with v as well as the
dynamics of interface healing.

Typically, the above corrections to Amontons-Coulomb friction are both
small and are observed for conditions of low slip rates (v < 1mm/s) and modest
displacements (< 1 cm). At these rates, the heat generated at the contacts
can diffuse away appreciably over a contact lifetime (dc/v, where dc is a typi-
cal contact size), resulting in a rather small temperature increases. Motivated
by the high seismic slip rates characteristic of large earthquakes, rotary shear
apparatuses have recently tested much higher slip rates (∼ 1 m/s). At suffi-
ciently high slip rates, experiments in rock have demonstrated extreme reduc-
tions of the frictional resistance. These have been associated with a variety
of different mechanisms that include flash heating (local melting) of the con-
tacts [71,111,125] powder lubrication [45,123] of the ground rock (‘gouge’) that
is trapped within the frictional interfaces, triggering of mechanically and ther-
mally activated chemical reactions [70], and, eventually, melting [42]. For an
extensive review of this class of experiments, see Di-Toro et al. [47].

1.2 Spatio-temporal Dynamics at the Onset of Frictional

Motion

The underlying premise in the friction studies previously discussed is that the
sliding bodies are entirely rigid. Hence, their spatial degrees of freedom can
be neglected and their relative motion can be represented by a single degree of
freedom. The combined stiffness of the experimental apparatus and the elas-
ticity of the bodies surrounding the interface, in this view, is often modeled by
a single effective ”spring”. The applied shear force (deformation of the spring)
essentially provides a measure of the friction force, if inertia is neglected.

In realistic cases, however, these assumptions are not satisfied and frictional
motion entails rich and complex spatio-temporal dynamics. One such example
is the onset of frictional motion. As materials are both flexible and deformable,
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rather than rigid, it is not realistic to assume that sliding will initiate along
the entire frictional interface instantaneously and simultaneously at each con-
tacting point. Instead, motion (slip) initiates locally and overall sliding of the
bodies commences only after propagating crack-like rupture fronts, that sepa-
rate the sticking and sliding spatial regions, traverse the interface. Figures 1d &
e present typical examples of both slowly (Cf ∼ 0.1CR) and rapidly (Cf ∼ CR)
propagating ruptures, respectively, where Cf and CR are respectively the speed
of the fronts and the Rayeigh wave speed (the asymptotic velocity of singular
shear cracks). The propagating fronts are visualized by high-speed spatial mea-
surements of A [130]. In these examples, ruptures nucleate at x ≈ 0, accelerate
in the positive x direction, and leave in their wake a significantly reduced A.

Ignoring these rupture fronts by modeling the motion of spatially extended
sliding bodies by their center of mass, a single degree of freedom, may, therefore,
result in erroneous conclusions. Ben-David and Fineberg [27] demonstrated that
the macroscopically measured static friction coefficient, µs = FS/FN , is not only
a material constant but also may vary systematically with controlled variation
of the external loading configuration. These variations were tightly linked to
changes in the rupture dynamics. Furthermore, Fig. 1 demonstrates that µs may
significantly vary even within the same stick-slip sequence, with lower µs values
associated with nucleation of slower ruptures. The whole concept of a “static
friction coefficient” is therefore insufficient to determine the onset of global
frictional slip. This is exemplified by large reported variations in measurements
of µs [120] (up to a factor of 2) under ostensibly identical conditions. The
criterion for global slip, instead, is intimately related to the question of what
determines rupture nucleation.

The importance of the spatio-temporal dynamics of these rapidly propagat-
ing fronts is further highlighted if one considers the hundreds of km long natural
faults that separate tectonic plates. The slow motion of tectonic plates over hun-
dreds of years results in a gradual increase of their stored elastic energy. The
release of this energy occurs through rapidly propagating rupture fronts that
generate the strong ground motion that we equate with earthquakes [134]. The
intimate relation between earthquakes and laboratory stick-slip instability, as
was recognized by Brace and Byerlee [36], has triggered extensive experimental
studies of crack-like dynamics along frictional interfaces [75, 76,103,107,150].

2 FRICTIONAL RUPTURE FRONTS - EX-

PERIMENTS AND MODELING

2.1 Singular Elastic Fields Drive Frictional Rupture Fronts

We will now show that the rupture fronts, such as those described in Fig. 1, are
essentially shear cracks. We will limit our discussion to ‘sub-Rayleigh’ ruptures
(Cf < CR) that propagate within an interface separating identical materials. To
proceed, we will first briefly review the basic concepts of Linear Elastic Fracture
Mechanics (LEFM), the theoretical framework that describes crack propagation.
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The dynamic behavior of deformed linearly elastic materials can be described
by two wave equations, one for longitudinal waves (with a characteristic wave
speed CL) and one for shear waves (with characteristic wave speed CS) [41,62].
Mathematically, a propagating crack in a two dimensional solid (see Fig. 2a) is
introduced by traction free boundary conditions at the crack faces i.e. σxy =
σyy = 0. These boundary conditions essentially couple both wave equations.
The in-plane opening mode of tensile crack deformation (mode I - σyy), the in-
plane shearing mode (mode II -σxy), and the anti-plane shearing mode (mode III
-σyz) can be treated separately. Solving the complete time-dependent boundary
value problem is a formidable task. A solution for a steadily moving crack,
propagating at speeds below CS , can be obtained, however, in the form of
an asymptotic expansion in powers of rn/2, where r is the distance from the
crack tip and n is an integer. In the close vicinity of a crack tip, stresses
are described by a singular term (with integrable energy) that dominates non-
singular contributions

σij =
∑

α=I,II,III

Kα√
2πr

Σα
ij(θ, Cf ) (3)

where (r, θ) are polar coordinates with respect to the crack tip. Σα
ij are known

universal functions. Here, α labels the different fracture modes and Cf is the
instantaneous crack velocity. The scalar quantities Kα are commonly called the
stress intensity factors. Kα are determined by the outer boundary conditions
(loading conditions) as well as crack’s profile, length l, history and instantaneous
dynamics [62]. σij are linearly related to the strain field εij via Hook’s law
σij = 2µ[εij + (1/2k2 − 1)εllδij ] where µ is the shear modulus and k = CS/CL

[41]. This square-root singularity of the elastic fields, which essentially defines
brittle fracture, is universal in the sense that its form does not depend on the
geometry and outer boundary conditions.

It is interesting that shear-driven (mode II) fracture is generally considered
to be impossible in bulk isotropic materials because it is believed that a crack
will rotate under imposed shear so as to fracture under pure tension [59]. The
highly anisotropic conditions embodied in the case of the weak interface plane
that defines a frictional interface, constrain the crack to this plane and thereby
provide one case where mode II fracture may indeed be realized. This important
case is the focus of this review. The problem of crack path selection, one of the
major unsolved fracture mechanics problems, is circumvented here since only
mode II straight cracks are considered.

With the elastic fields in hand, the energy flux through any closed contour
surrounding the crack tip can be calculated. It can be shown that within the
singular region (where the K-fields dominate) KII determines the energy flux
per unit crack advance, GII:

GII =
K2

II

4µ(1− k2)
fII(Cf , k) (4)

where fII(Cf , k) is a known function [41, 62] that is fairly constant for low
velocities and diverges as Cf approaches the Rayleigh wave speed, CR (note
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that CR < CS). CR is the limiting value of Cf so long as the point singularity
embodied in Eq 3 holds (see sec. 2.2).

The fracture energy Γ is defined as the energy dissipated per unit of newly
created surface area. Γ incorporates all unknown dissipation mechanisms. Its
calculation from first principles is very challenging and thus one relies on ex-
perimental measurements to determine its value. For a crack to propagate, the
elastic energy flowing into the crack tip must equal the energy dissipated by
creating new surface. Hence, the energy balance condition Γ = GII must hold.

A crucial difference exists between real cracks and frictional ruptures. While
crack faces are stress free (the material is broken), within the wake of frictional
ruptures the bodies are always in partial contact (σ0

yy(x) 6= 0) and the frictional
resistance, τr(x), opposes sliding. Using the linearity of the governing equations,
however, the problem of a frictional rupture front, propagating within an inter-
face separating identical materials, can be mapped to the stress-free conditions
that define the mode II crack problem [110]. Thus, stresses in a vicinity of a
frictional rupture tip are therefore predicted to be:

σij =
KII√
2πr

ΣII
ij(θ, Cf ) +

[
σ0
xx τr
τr σ0

yy

]
. (5)

Note however, that when friction depends on the sliding velocity, for example,
linear viscous friction, a new form of singularity may emerge [38]. We also note
that ruptures propagating along (bimaterial) interfaces that separate bodies
with different elastic properties [5, 7, 135,148,152] will have different dynamics.

The infinite stresses at the rupture tip are naturally regularized in some
vicinity of the rupture tip, which is called the process or cohesive zone. The
region where the square-root singular form dominates, therefore, should be in-
terpreted as an “intermediate asymptotic” region separating the “inner” scales
of dissipation from the “outer” region where non-singular contributions can not
be neglected (Fig. 2a). This assumption is typically coined “small scale yield-
ing” [124].

Is Eq. 5 together with the assumption of small scale yielding valid for fric-
tional rupture fronts? Recent experiments [137] have shed light on this question.
The complete 2D strain tensor εij was measured slightly above the frictional
interface formed by two acrylic (PMMA) plates (see Fig. 1a and Fig. 2a). Fig-
ures 2c and 2d show measured εij for the slow and fast rupture events presented
in Fig. 1d and Fig. 1e, respectively. As Cf increases, all εij amplitudes grow
significantly and strain oscillations are strongly amplified. Comparison with the
square-root singular form predicted by LEFM shows that for slow ruptures all
of the measured strain components εij agree well with the strains corresponding
to equation 5 (black lines), where the only free parameter used was the value
of KII. Because the strain measurements were, necessarily, displaced from the
interface, each εij measurement involved both radial and angular variations (see
Fig. 2b). KII is related uniquely to Γ for each Cf by using Eq. 4 and energy
balance GII = Γ. These measurements therefore provided the explicit value of
Γ at the interface.
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Figure 2d demonstrates that for the same constant value of Γ nearly all of
the characteristic features of εij observed at higher rupture velocities are also
well described by the 1/

√
r form. For example, the violent high-amplitude strain

oscillations that occur when the rupture tip passes beneath the measurement
point (Fig. 2b) are due to the singular nature of ΣII

ij(θ, Cf ) as Cf → CR. In fact,
ref. [137] concluded that with a single input value of Γ, the theory quantitatively
describes the strain variations throughout the entire sub-Rayleigh velocity range
0.1CR < Cf < 0.99CR. Figure 2d, top, however, shows that Eq. 5 clearly
fails to describe εxy ahead of the rupture tip (x − xtip > 0). This apparent
“discrepancy” with the singular solution was shown to be due to non-singular
contributions [139]. Its importance will be discussed in section 2.4.

The ability of LEFM to describe the strain fields in the rupture tip vicinity is
entirely general. The characteristic signature of the 1/

√
r form, (for example the

strong oscillations in εxy in Fig. 2d) have been observed in a variety of different
brittle materials, homalite (Fig. 4 in ref. [129]), granite (Fig. 1 in ref. [106],
Fig. 10 in ref. [104] and Fig. 1 in ref. [98]) and Indian meta-gabbro (Fig. 9 in
ref. [154]).

The generality of LEFM was further demonstrated in ref. [23], where the
onset of motion in the boundary lubrication regime was explored. In this regime,
the contacting surfaces are covered by a thin lubricant layer, and the discrete
asperities still bear the entire normal load, as they are not entirely immersed
in the fluid layer. As in dry friction (Fig. 1 and Fig. 2), each sliding event is
preceded by propagating rupture fronts that break the solid contacts forming
the interface. Figure 3(a) shows explicitly that the strain field variations in the
rupture tip vicinity are, again, well described by LEFM. Hence, these ruptures
are true brittle shear cracks. Surprisingly, while the lubricated interface reduces
the dynamic and static friction relative to the dry interface, the inferred value of
Γ, for the same applied normal load, can be order of magnitude greater than for
the same non-lubricated interfaces. It is interesting that, as Fig. 3b shows, the
values of Γ are independent of the lubricant viscosity, although highly dependent
on the lubricant’s chemical composition.

What determines the value of Γ? Let’s first consider dry interfaces. Whereas
the bulk fracture energy, ΓBulk is a material property (≈ 2, 000 J/m2 for
PMMA), the interface value, Γ, linearly increases with σyy as shown in Fig.
(3)b. As σyy ∝ A (Eq. 1), Γ essentially accounts for the change in contact
area necessary for a rupture to propagate. In fact, when the sparseness of the
contacts [49] (A << Anom) was accounted for, the measured values of Γ were
indeed found [137] to be consistent with ΓBulk. This suggests that significant
plastic deformation (the major contribution to ΓBulk in PMMA) should also
take place within the contacting asperities.

Why does Γ increase with the addition of a lubricant? The proportionality
of Γ in this regime with σyy (hence A) suggests that the enhancement of Γ
by the lubricant layer only takes place at contacts. The enhancement mecha-
nism and its dependence on the chemical composition of the lubricant is both
intriguing and not completely understood [23]. While at the microscopic level
these results are puzzling, these findings highlight the fact that the fracture
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mechanics description of frictional motion provides a new way to probe the oth-
erwise hidden and complex dynamics of the all-important interface. Without
the “microscope” that the fracture mechanical analysis of the strength of the
frictional layer described in this section provides, we would be entirely blind to
the detailed properties of this critical region. This (often) micron-thick layer
both possesses wholly different properties than those of the bulk material and
determines the strength of the entire macroscopic system.

2.2 Equation of Motion of Frictional Rupture Fronts

How fast can rupture fronts propagate? A wide range of rupture front veloci-
ties within laboratory experiments have been observed. These range from slow
ruptures [26, 102, 105, 130, 137] propagating at a small fraction of the Rayleigh
wave speed, CR, to ruptures that asymptotically approach CR. Typical sub-
Rayleigh examples are shown in Fig. 1d and Fig. 1e and their velocities are
plotted in Fig. 4d. Under suitable conditions rupture fronts may also sur-
pass the shear wave speed, CS , and approach the longitudinal speed of sound,
CL [26, 85, 99,111,127,139,151,153].

Experiments by Ben-David et al. [26] first revealed that rupture fronts in-
crease their speed with increased shear to normal stress ratios. Motivated
by fracture mechanics, it was suggested that this stress ratio reflects the bal-
ance between the potential energy available, prior to rupture, and the energy
required to rupture the interface. Later experiments in rock [112], simula-
tions [77, 122, 142–144] and analytical 1D models [15] confirmed these obser-
vations.

Once the LEFM predictions (Fig. 2) for the functional forms of the near-tip
stress fields were verified [137], it became possible to test the theory’s quanti-
tative predictions for sub-Rayleigh rupture dynamics. These are provided by
the energy balance Γ = GII criterion, that provides an implicit equation of
motion for shear crack. Quantitative predictions can be made if one is able
to explicitly calculate GII, or equivalently KII (see Eq. 4). Such calculations
for a general loading configuration are extremely challenging. Freund, in sem-
inal work [60–62], considered a semi-infinite crack in an unbounded medium
subjected to time independent loading. The crack is initially at rest and then
moves at Cf < CR. The stress intensity factor for this type of loading can be
explicitly calculated. KII has the following decomposition KII(l, Cf ,∆σxy) =
κII(Cf )K

S
II(l,∆σxy). Here κII(Cf ) is a known [62] universal dynamic func-

tion that depends solely on the instantaneous value of Cf . KS
II(l,∆σxy), the

static/equilibrium stress intensity factor, depends on the instantaneous crack
length, l, and incorporates all of the information about the loading through
the dynamic stress drop ∆σxy = σ0

xy − τr. Here, σ0
xy is the initial stress level,

prior to the rupture’s arrival, while τr is the residual frictional resistance (see
Fig. 2.2a).

Following Eq. 4 and the decomposition of KII, G can now be decomposed
intoGII = GS

II(l,∆σxy)gII(Cf ) whereG
S
II(l,∆σxy), the static energy release rate,

can be explicitly calculated once KS
II(l,∆σxy) is known. For example, under
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uniformly applied shear, where ∆σxy is independent of x, GS
II is an increasing

function of the crack length; GS
II ∝ (∆σxy)

2l/µ. The dynamic correction to the
energy flux is given by gII(Cf ), a universal monotonically decreasing function
of Cf that is unity at the limit Cf → 0 and zero at Cf = CR (see [62] for
details). Under these conditions, the equation of motion, Cf (l), for arbitrary
stress configurations is implicitly given by

Γ = GII = GS
II(l,∆σxy)gII(Cf ). (6)

Two main consequences can be directly deduced from Eq. 6 and the proper-
ties of gII(Cf ). (1) Crack propagation is energetically possible if and only if
GS

II(l,∆σxy) ≥ Γ. In particular, under uniformly applied shear, crack propaga-
tion is possible only above a critical crack length, termed the Griffith length,
lc ∼ µΓ/(∆σxy)

2. (2) CR is the limiting crack velocity which can only be reached
asymptotically when GS

II(l,∆σxy) → ∞. In particular, under these conditions,
cracks will accelerate asymptotically to CR as l → ∞.

In Ref. [138] a quantitative test of Eq. 6 was conducted for both unlubri-
cated (dry) and boundary lubricated interfaces. These results are shown in
Fig. 4. Figure 4c presents the measured profiles of Γ together with the profiles
of GS

II(l,∆σxy) that were calculated using the measured fields ∆σxy(x) shown in
Fig. 4b. Note that while Γ was obtained by direct measurement of the dynamic
singular fields (in the “near-field”) at the rupture tip, GS

II was calculated using
solely the stress drops, ∆σxy, ahead of the rupture tip (“far field” stresses).
Figures 4c&d demonstrate that slow ruptures (e.g. blue line) propagate when
the static elastic energy released by a unit advance of the crack is nearly bal-
anced by the dissipated energy, GS

II ≈ Γ. Loading conditions that result in
significant excess elastic energies, GS

II ≫ Γ, generate rapid acceleration to CR

(e.g. green line). All of the rupture velocities Cf (l), when plotted with respect
to GS

II(l,∆σxy)/Γ, collapse onto the precise functional form predicted by Eq. 6
(Figure 4e). These experiments explicitly demonstrate that, with no adjustable
parameters, the classical equation of motion for brittle shear cracks provides an
excellent quantitative description of the velocity evolution of frictional rupture
fronts.

Slow ruptures, Cf ≪ CR, observed in laboratory experiments have drawn
much recent attention due to accumulating numbers of observed slow earth-
quakes [114]. In geoscience, slow earthquakes have often been regarded as an
entirely different entity than the more traditionally observed rapid (Cf ∼ CR)
earthquakes. As a result, the driving mechanisms for slow earthquakes are still
very much under debate. It has been suggested that slow ruptures emerge as
a result of a crossover from velocity-weakening friction at slow slip to velocity-
strengthening at higher slip rates [15, 16, 33, 81]. Alternatively, slow ruptures
have been observed in stochastic multi-scale simulations [143, 144]. While non-
trivial friction laws might well be an important mechanism for stabilizing slow
ruptures, measurements such as those presented in Fig. 4 suggest that slow
ruptures may simply emerge from any nontrivial stress distribution that would
retain a nearly “static” energy balance defined by GS

II ≈ Γ, along the propaga-
tion path.
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The experiments in Fig. 4 describe rupture dynamics that result from a
relatively broad range of imposed shear stress levels prior to rupture initiation
- hence each took place for very different values of the applied shear force, FS

(see Fig. 1b). Each of these experiments, however, was performed with the
same imposed value of FN . This observation underlines the fact that there is
really no characteristic value of µs. In fact, it was the shear stress at which
each rupture nucleated that determined the explicit value of µs. This stick-slip
sequence is an excellent demonstration that frictional interfaces can be either
stable or unstable for the same loading conditions, in stark contradiction to the
picture of frictional onset implied by ‘single degree of freedom’ descriptions of
friction described in sec. 1.1. Instability of a frictional interface is triggered by
the nucleation process - the process by which an initial “crack” emerges from
within a rough interface.

2.3 Rupture Arrest

Frictional ruptures can arrest well before spanning an entire interface. These
types of arrested frictional ruptures were first observed in experiments by Ru-
binstein et al. [131] and a comprehensive review of interface rupture arrest can
be found in ref. [24]. Here we briefly describe the main physics of how interface
ruptures arrest.

Two typical examples of such arrested ruptures are presented in Fig. 5c.
Rupture arrest can, for example, result from inhomogeneous stress distributions
along the interface. In laboratory experiments, such distributions are often
observed if shear forces FS are preferentially applied at one edge of a sample
(see Fig. 5a-inset). Under such loading conditions, a succession of arrested
ruptures of increasing lengths are typically observed (e.g. examples A and B in
Fig. 5), well before FS reaches the threshold for the overall stick-slip motion of
the blocks (e.g. example C in Fig. 5).

Rupture arrest has been observed numerically [82, 121, 122] and variety of
models have been designed to describe the dynamics of precursory ruptures in
frictional systems. Aimed at reproducing nucleation and arrest, these include
minimalistic one-dimensional (1D) [94] and scalar [140] models, discrete contact
descriptions [37, 142] and rate-and-state friction laws [18]. While these models
were able to reproduce arrested ruptures, they provided no explicit general
predictions of where and how arrest occurs in real systems.

Recently, Kammer et al. [78] demonstrated that fracture mechanics can be
used to predict the rupture arrest locations observed in ref. [131]. In the LEFM
framework, crack arrest will take place if the energy flux to the tip of a quasi-
statically propagating crack (see definition in section 2.2) is insufficient to over-
come the fracture energy; GS

II(l,∆σxy) < Γ. This criterion for rupture arrest
was explicitly verified in experiments [25], in which a number of different load-
ing conditions and system geometries were considered. In these experiments
there were no free parameters; the experimental “ingredients” required by Eq.
6, Γ and GS

II(l,∆σxy), were either directly measured or calculated by means of
direct measurements of ∆σxy(l). Calculated profiles GS

II(l,∆σxy) for the typical
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stick-slip sequence described in Fig. 5a are presented in Fig. 5b. As the figure
demonstrates, the predicted arrest locations, lpredicted, for each event are in-
deed the precise locations where GS

II(l,∆σxy) < Γ (denoted by the solid circles
in Figs. 5b,c). Figure 5c (bottom) demonstrates that, in general, lpredicted is in
excellent agreement with measured arrest lengths, lmeasured, obtained from the
contact area measurements.

It is critical to note that while rupture nucleation, as discussed in the previ-
ous section, is a necessary condition for the onset of motion it is insufficient to
determine global sliding of the blocks. In this sense, overall frictional slip may
occur only if a rupture front reaches the system size, L. Only when lpredicted = L
will the entire interface be ruptured and will overall slip of the contacting bodies
ensue.

While the results described above are generally relevant for any frictional in-
terface, they are especially important to understand the essentially unresolved
question of what determines the size of an earthquake [108]. In fact, fracture
mechanics had been used to relate the spatial stress heterogeneities to earth-
quake sizes distribution [8] and recently [66] was successfully implemented to
predict the arrest of injection-induced earthquakes. Eq. 6 demonstrates that
earthquake magnitudes can be determined by:

• Nonuniform values of Γ along an interface; at any location whereGS
II(l,∆σxy) <

Γ an earthquake should immediately arrest.

• The effects of nonuniform stress profiles; this is an integral effect, as the
value of GS

II(l,∆σxy) is determined by a weighted integral of the stresses
∆σxy(l) distributed along an interface.

.

2.4 High Amplitude Stress-Wave Radiation - Non-Singular

Contributions

It has long been suggested that nonsteady processes such as the rapid rupture
velocity variation during the nucleation or arrest phases result in the generation
of stress-wave radiation [56, 93]. In the study of earthquakes, understanding
the source mechanism of those waves is of primary importance. Laboratory
experiments, therefore, have provided a unique opportunity to shed light on
this subject.

A typical example of a rupture front, asymptotically accelerating to rupture
velocities, Cf → CR, is presented in Fig. 6a (adapted from [139]). Figure 6b
presents measurements of shear stresses σxy, at two distinct time steps, t1 and t2
(as noted in Fig. 6a). It is evident that prominent peaks in σxy precede the rup-
ture tip arrival. Analysis of peak arrival times (e.g., the black circles in Fig. 6a)
reveals that they propagate at CS and, therefore, progressively distance them-
selves from the rupture tips that created them. Extrapolating the space–time
peak trajectories to the intersection point with the rupture trajectory implies
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that the initiation of this radiated stress wave originates within the latter stages
of the accelerating phase.

In crack tip vicinities, all stress (strain) components have the universal 1/
√
r

form, as this singular contribution dominates the near-tip stress fields in brittle
fracture. These stress peaks, as was mentioned in section 2.1, are not described
by this 1/

√
r form (black line in Fig. 6b). A general description of these ra-

diated stress-waves does not exist. Any such analytical description must go
beyond the singular contributions to the stress fields. Such full solutions of gen-
erally nonsteady dynamic crack problems are extremely difficult to obtain [84].
In some simplified cases, however, analytical solutions for accelerating shear
cracks are available and have provided much insight [41, 56, 62, 93]. One such
solution, which was derived both for tension [40] and shear [44], describes bilat-
erally expanding cracks that initiate with zero initial length and propagate at a
constant velocity (Cf < CR) under uniformly applied remote shear stresses (see
also [41, 62]). In this problem, there is no characteristic time or length scale so
self-similar propagating solutions can be found.

The resulting normalized shear stress on the interface (y = 0) is plotted in
Fig. 6c. This solution reveals a singular propagating crack tip that is preceded
by a sharp and relatively localized shear stress peak that propagates at CS . The
form and amplitude of this stress peak is generally considered to be an upper
bound for the realistic stress-wave radiation of smoothly accelerating ruptures.

Figure 6b shows that this self-similar solution of an expanding shear rupture
can describe the measured shear stress rather well. In particular, this solution
can capture both the initial shear loading, σ0

xy, as well as the propagating shear
stress peak far before the rupture tip arrival. This particular solution demon-
strates the importance of the nonsingular contributions to strains at finite dis-
tances from the rupture front tip [63]. Furthermore, the apparent “discrepancy”
with the singular solution (observed in Fig. 6b and the upper panel of Fig. 2d)
is not a simple technical issue of accounting for nonsingular contributions to the
singular description, but actually is a nontrivial radiated wave that possesses a
life (and extensive history) of its own. Analytical solutions [56, 93] and accom-
panying finite element simulations [139] demonstrate that these radiated shear
stress peaks have a characteristic near-field signature: high-amplitude radiation
(comparable to the dynamic stress drop) that is both localized and strongly
focused in the direction of rupture propagation.

The comparison with the self-similar solution highlights the underlying phys-
ical picture. Rapid rupture front acceleration (mimicked by the infinite accel-
eration in the self-similar problem) results in radiation having the form of a
localized shear stress peak propagating at CS . The measurements of A(x, t)
presented in Fig. 6a furthermore reveal the sudden nucleation (x ≈ 155 mm)
of a secondary supershear rupture front (propagating at Cf > CS), which sur-
passes the classic “speed limit”, CR, for singular cracks. The synchronized
measurements of σxy and A(x, t) provide direct evidence that the supershear
rupture was triggered by the arrival of the shear stress peak. This nucleation
mechanism was first postulated in ref. [44]. Later numerical work [10] found
that a sufficiently strong shear stress peak can overcome interfacial strength
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and nucleate a daughter crack that could propagate at supershear velocities.
Supershear ruptures have been observed along natural fault planes [34, 55], in
laboratory experiments [26, 85, 99, 111, 127, 151, 154] and have been extensively
investigated by numerical simulations [1,4,20,43,58,65,67,87,88,118]. A further
description, however, is beyond the scope of this review.

2.5 Regularization of the Singular Fields

In the previous section we briefly described the role of nonsingular “far field”
contributions to the singular description of LEFM. As we discussed in sec-
tion 2.1, the singular 1/

√
r region is interpreted as an “intermediate asymp-

totic”; the region that connects the process/cohesive zone in which dissipation
takes place to the “outer” region, where non-singular contributions cannot be
neglected (see the schematic view in Fig. 2a). In section 2.1 the “intermediate”
1/
√
r singular region was described. From the singular fields one can directly

characterize the interface by means of the fracture energy, Γ. In general, how-
ever, very little is known about how the singular fields are regularized within
the process zone. How different materials regularize the rupture tip singularities
is an interesting and rather important question, as the properties of different
materials in this elusive region entirely determine interface strengths. These
questions are central to numerous (rather disparate) applications that range
from the effects of additives on frictional wear to how natural fault properties
affect earthquake dynamics. As interface conditions are extreme, interface prop-
erties may have little in common with a material’s bulk equilibrium properties
(as we saw for the case of boundary layer lubrication).

Regularization of rupture tip singularities is not expected to be universal,
as various dissipative processes may take place. Simple models, however, can
be used to capture the essential physical mechanisms that take place near the
rupture tip. The simplest regularization model was implemented by Barenblatt
[19], Dugdale [54], Ida [74] and others, who showed that the singularity of the
stress fields can be eliminated by postulating cohesive forces working across the
weak plane. In this approach, which is typically termed “slip-weakening” [110],
weakening of the local frictional resistance, τ , is initiated once the shear stress
has reached a finite peak strength, τp. Subsequently, τ(d) gradually decreases
with the local slip, d, until reaching the dynamic friction level, τr. This occurs
at a critical slip distance, dc. The fracture energy is defined as the energy

dissipated during weakening, Γ =
∫ dc

0
(τ(d) − τr)dd. Note that Γ does not

account for the dissipation due to residual level of friction τr. Due to the
linearity of the governing equations, subtracting away τr (and its associated
dissipation) enables the mapping of the friction problem to fracture (see Eq. 5).

The simplicity of slip-weakening models makes them extremely useful. They
have been extensively used to simulate frictional rupture fronts in a number of
contexts which include the superhear transition [11, 12, 32, 87, 88, 90], off-fault
damage [13,14,153] and 3D rupture propagation [149].

Analytically, however, it is often more convenient to use cohesive zone models
[110, 117, 133], where shear stresses gradually decrease from τp to τr with the
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spatial position, according to a prescribed spatial stress profile, τ(x) = (τp −
τr) · τ̃(x/xc) + τr [see Fig. 7a (inset)]. Here x = 0 is the rupture tip and xc is
defined to be the cohesive zone size. Small scale yielding is assumed and the
problem is closed by the universal boundary conditions dictated by the singular
K− fields, i.e., far ahead of the crack tip the solution matches the square-root
singular form, σxy(x >> xc, y = 0) → KII/

√
2πx [133]. Therefore, (τp − τr), xc

and Γ are related through Eq. 4 and

KII = (τp − τr) ·
√
xc ·

√
2

π
·
∫ 0

−∞

τ̃(ξ)√
−ξ

dξ (7)

Once the solution is obtained, the equivalent slip-weakening constitutive law
τ(d), can be calculated.

These models are often criticized as being too simple since they do not
take into account the rate and history dependence of the frictional resistance.
As discussed in sec. 1.1, an intensive and on-going effort is directed towards
formulation of constitutive laws which endeavors to address these effects.

Direct measurements of the constitutive evolution law of friction are im-
peded by the singular nature of the fields. On the other hand, measurements
of the real contact area, as performed in the reviewed experiments, shed light
on how these singular fields are regularized, since these measurements, by defi-
nition, take place on the interface. Figures 7a demonstrate that A(x, t) indeed
decreases gradually behind the propagating rupture tip, in clear contrast to ide-
alized singular cracks for which an abrupt reduction A(x, t) is expected. The
length scale over which A(x, t) is reduced [137] provides an estimate of the co-
hesive zone size, xc. Figure 7a&b demonstrate that xc is not constant, but sys-
tematically contracts with increasing Cf . It was shown [137] that this effective
“Lorenz” contraction is predicted by LEFM (Eq. 4 and Eq. 7) and is described
by xc(Cf ) = xc(Cf = 0)/fII(Cf , k), where fII(Cf , k) (note that fII → 0 as
Cf → CR) is the same universal function that appears in Eq. 4 (see Fig. 7b).

Knowledge of Γ, xc and the assumption of the simplest cohesive zone model,
enable us to estimate elusive but long sought after constitutive parameters that
characterize the dissipative processes and material properties at the extreme
conditions that take place near the rupture tip. These include the peak shear
strength τp (Fig. 7c,d - top), maximal slip velocity 2u̇x(Fig. 7c,d - bottom), and
critical slip distance, dc.

Figure 7 reveals that measurements performed slightly above the frictional
interface do not reflect any of the cohesive zone dynamics or properties. This
is especially true for Cf → CR, since xc → 0 in this regime. Measurements at
finite distances from a frictional interface should, therefore, be interpreted with
extreme caution as the divergence of the near-tip fields may result in erroneous
conclusions. Credible measurements of the interface properties are particularly,
challenging as they can only be obtained if measurements are performed at dis-
tances from the rupture tip that are much smaller than xc. It is progressively
harder to meet this requirement as xc contracts with the rupture velocity. Com-
bined measurements of the real area of contact, slip and stresses at the interface
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and their evolution is certainly an important research direction, if one would
like to assess interface properties under friction.

3 CONCLUSIONS AND OPEN QUESTIONS

As we have demonstrated above, the transition from stick to slip is mediated by
propagating rupture fronts. These ruptures couple dynamics at time and length
scales that are separated by many orders of magnitude and determine whether
macroscopic motion will ensue or not.

Although rupture fronts have long been considered to have much in common
with propagating cracks, there had been little direct experimental evidence that
quantitative universal predictions of linear elastic fracture mechanics really de-
scribe frictional failure. This brief review has summarized recent experimental
results that have established the extensive applicability of brittle fracture the-
ory to our understanding of both frictional rupture dynamics and to earthquake
dynamics, an important but particular case. In particular, we have seen that:

• The elastic fields in the vicinity of both rapidly propagating and slow fric-
tional rupture tips are extremely well-described by the universal square-
root singular solutions originally developed to describe brittle shear cracks.

• The singularity and dynamics of frictional ruptures are identical for both
dry and boundary lubricated interfaces.

• The singular fields provide a quantitative measure of the fracture energy,
Γ, that is needed to advance a rupture.

• The dynamic behavior and arrest of frictional ruptures is entirely described
by the classical fracture mechanics description of shear crack dynamics.
Both of these have important implications for a fundamental understand-
ing of earthquake dynamics. This ‘simple’ description describes both
extremely slow and rapid rupture fronts. The only physical quantities
needed to differentiate between these extremes is the amount of elastic
energy stored in the system prior to rupture nucleation and, of course, the
distribution of the fracture energy along the interface.

The general “simplicity” and beauty of this approach should be emphasized.
Once Γ, the sole free parameter that encapsulates the dissipative processes at
the rupture tip has been measured, rupture propagation, acceleration and arrest
are entirely predicted by the balance with the energy flux to the crack tip. This
energy flux depends solely on the difference between the initial shear stress and
the dynamic frictional resistance along the interface. Whereas a specific mate-
rial (with both dry and boundary-lubricated interfaces) has been considered in
this review, the results are general so long as several necessary conditions are
satisfied. First, a small scale yielding approximation should apply; a region in
the rupture tip’s vicinity should exist where σ ∼ 1/

√
r. Second, there should be

no significant rate dependence of the frictional resistance within the rupture tail.
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This condition enables one to map the frictional interface to stress free boundary
conditions. Third, the particular analysis that we have used is valid for all times
prior to the arrival of waves reflected from a sample’s far boundaries back to the
rupture tip. Once this occurs, fracture mechanics should still describe rupture
evolution, but a different (time-dependent) analysis of the singular fields will be
necessary (see e.g. [69, 95] for examples in tensile fracture).

Seismic inversions of earthquakes [73] and some laboratory experiments
[89,91,92] have implied that ruptures may also be “pulse-like”, where frictional
slip ceases shortly behind the rupture front. This is in contrast to the “crack-
like” modes considered here, where the slip velocity is not confined to a finite
zone. Pulse-like behavior can occur when an interface is formed by two bodies
with different elastic properties [7,135] (forming a “bimaterial interface”) or for
materials that undergo enhanced velocity weakening (stronger than logarithmic)
at high slip rates [7, 46,65,91,155]. The form of the cohesive law governing the
interface strength is quite important in this respect; for example, slip-weakening
friction laws were unable to reproduce this rich phenomenology [91,155]. While
in PMMA slip-pulse modes haven’t been observed, there is experimental ev-
idence for slip-pulse modes in a different brittle plastic, Homalite [89, 91, 92].
One key difference may be the behavior of the residual stress, τr, behind the
rupture tip. In PMMA τr only mildly varies with the slip velocity [136] whereas
in Homolite strong velocity weakening has been reported [129].

The propagation criterion outlined in Section 2.1 is a necessary condition
for the onset of frictional motion. The onset of frictional motion, however, also
requires rupture nucleation. We have shown that, once nucleation takes place,
fracture mechanics will quantitatively describe ensuing rupture dynamics and/or
arrest. It is however, unclear how to predict when and via what mechanisms
will nucleation take place. For the Griffith criterion for rupture propagation
to apply, for example, a singular “seed” crack must first exist. Understanding
the spontaneous formation of such a seed crack from within a rough frictional
interface is a fundamental question of great importance. Despite a large number
of interesting theoretical [6, 9, 16, 52, 79, 80, 103, 128, 145, 147] and experimental
[64, 86, 97, 102] efforts, it is still, however, not very well understood. From
an experimental perspective there is a striking paucity of direct experimental
observations of how nucleation takes place. Local measurements, within the
nucleation region and cohesive zone, of stresses, slip and contact area are very
much needed.
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Figure 1: Stick-slip motion is mediated by propagating rupture fronts. (a) Ex-
perimental system. Two poly(methylmethacrylate) (PMMA) plates are pressed
together with a normal force FN . The real area of contact A(x, t) along the
200 mm quasi-one-dimensional interface is measured by a method of total inter-
nal reflection (bottom) [130] at a rate of 580, 000 frames per second and averaged
along the z direction. In parallel, the complete two-dimensional strain tensor,εij ,
is measured along and slightly above the frictional interface at 1, 000, 000 sam-
ples per second at 14-19 points along the interface (blue squares in upper fig-
ure). (b) A shear force Fs is quasi-statically incremented during the stick phase
(FN ≈ 5500 N and its variation is negligible). The onset of motion is charac-
terized by rapid drops in Fs and (c) a rapid reduction of A(x, t). Note that the
events 1,2 and 3 labeled in (b) correspond to those described in (c), (d) and (e).
In the inter-event times A re-heals due to aging [28, 100] and the interface re-
gains its strength. In (c) A(x, t) was normalized at the nucleation time of event
2. Color bar appears on the right. (d,e) Typical examples of the short time
evolution of A(x, t) (normalized by A0 = A(x, tnuc) at the time tnuc at which
the nucleation of each event occurred) for (d) a slow and (e) a fast rupture front.
Here, all ruptures nucleated at x ≈ 0 and accelerated while propagating in the
positive x direction. For PMMA CR ≈ 1237 m/s.
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Figure 2: The 1/
√
r form of the elastic strains. (a) Stresses at the vicinity of the

crack tip have a universal 1/
√
r singular form (gray region). Singular stresses

are regularized in the process zone (green region), where dissipation takes place.
Non-singular contributions should be taken into account at distances from the
crack tip where they become comparable to the singular contribution. (b) The
calculated shear strain εxy surrounding the rupture tip predicted by equation 5
for Cf = 0.1CR. The white dashed line corresponds to the strain measurement
location relative to the frictional interface y = 0. Note the angular dependence
that drives the rapid oscillations evident in the measurements presented in c and
d. Measurements of strain tensor variations, εij , slightly above the frictional
interface (y = 4 mm), for (c) a slowly propagating rupture (Cf ≈ 0.1CR) and (d)
a rapid rupture (Cf ≈ 0.94CR). These measurements were acquired during the
rupture events presented in Fig. 1d&e. The corresponding LEFM predictions
of Eq. 5 are plotted in black. Here both measurements were performed for
the same normal load, but for different values of the imposed shear. In both,
Γ ≈ 2.5 J/m2 is the sole free parameter. εrxy, ε

0
xx, and ε0yy are, respectively,

the residual shear strain after passage of the fronts and the initial values of the
strain tensor in the propagation and normal directions.
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and Cf ≈ 0.3CR. Black solid lines are fits to the LEFM solution (Eq. 5). The
only fitting parameter is the fracture energy; Γdry = 2.6± 0.3 J/m2 for the dry
and Γlub = 23 ± 3 J/m2 for the lubricated interfaces. (b) Measured values Γ
for both the dry and lubricated interfaces versus the normal load. All Γ vary
linearly with FN ; Γ is independent of the lubricant viscosity while being highly
dependent on lubricant composition. Data were taken from Ref. [23].
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shots, σxy, calculated from the measured εxy presented in Fig. 2. σ0

xy is the
initial stress level, prior to the rupture arrival, while τr denotes the residual
stress measured behind the rupture tip. Their difference ∆σxy = σ0

xy − τr de-
fines the dynamic stress drop. (b) Measured values of ∆σxy for a number of
different experiments - each with the same value of applied FN . ∆σxy near
x = 0 are extrapolated to ∆σxy = 0 at x = 0 with (d) their corresponding
rupture velocity profiles Cf (l). (c) The ∆σxy profiles in (b) yield static energy
release rates, GS

II(l,∆σxy). Dashed line - the measured fracture energy pro-
file, Γ(l). Slow rupture fronts (blue) are associated with GS

II ≈ Γ while ruptures
rapidly accelerate towards CR (green) once GS

II ≫ Γ. (e) All of the Cf (l) profiles
collapse to a single functional form Cf (G

S
II/Γ), given by the classical equation

of motion for shear cracks, Eq. 6 (black line). The blue and green examples
correspond to the slow and fast events in Fig. 1d&e and Fig. 2c&d. l - rupture
length. Data were taken from Ref. [138].
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Figure 5: Prediction of rupture arrest locations. (a) Loading conditions charac-
terized by FS applied locally (inset) are considered. Well before global sliding
(event C) a sequence of small force drops are observed. (b) The computed static
energy release rate GS

II along x for the slip events in (a). Circles denote the pre-
dicted location of the arrest, x = lpredicted, as determined by GS

II = Γ (Γ is
denoted by the dashed line). Note that for event C, the first system-wide slid-
ing event, GS

II > Γ. (c) Comparison of the measured arrested rupture lengths,
lmeasured, as determined from the contact area measurements to the predicted
lengths, lpredicted computed in b. 12 additional experiments, each with different
normal loads, fracture energies and stress distributions are given by the gray
dots. The dashed line has a slope of 1. Data were taken from Ref. [25].
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Figure 6: Stress wave radiation of accelerating ruptures. (a)A(x, t) evolution
(normalized at nucleation time, t = 0), along the quasi-1D interface due to a
rupture front that nucleated at x ≈ 0, rapidly accelerated to CR, and transi-
tioned to supershear at x ≈ 155 mm. (b) σxy relative to the rupture tip position
xtip at the two instances, t1 (green) and t2 (blue) denoted in (a), show promi-
nent amplitude shear strain peaks preceding the rupture tip arrival. Successive
measurements (black points in (a)) reveal that these peaks propagate at CS ,
and trigger supershear rupture. Measurements at t2 are compared with both
the singular LEFM predictions and the self-similar solution. While the singular
prediction fails at x − xtip > 0 the self-similar solution entirely captures the
measurements including the initial shear strain σ0

xy and the shear stress peak
far before the rupture tip arrival. (c) Close-up of the self-similar solution (see
text), at y = 0 shows a pronounced shear stress peak propagating ahead of the
singular rupture tip at CS . Data were taken from Ref. [139].
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Figure 7: Regularization of the elastic singular fields at the rupture tip. (a) The
normalized real area of contact, A, is plotted relative to the rupture tip position
for the two rupture events described in Fig. 1d&e and Fig. 2. A0 and Ar are
the initial (prior to rupture arrival) and residual (after rupture passage) values
of A, respectively. xc is the length scale corresponding to a 60% reduction of A
and represents the scale at which the singular fields are regularized. Note the
contraction of xc with increasing Cf . (inset) Schematic drawing of a nonsingular
cohesive zone model in which the shear stress is reduced exponentially behind
the crack tip once the peak strength, τp, is reached (blue line). Far ahead of the
crack tip the solution matches the square-root singular form (black line). (b)
xc contracts as Cf → CR. Black line - LEFM prediction. (c,d) Measurements
of the shear stress variation (top) and particle velocity u̇x = −εxxCf [137] at
the measurement plane located 4 mm above the interface for (c) slow and (d)
rapid ruptures. The exponential cohesive zone model at the interface is defined
by two parameters, Γ and xc. xc is estimated from measurements of A in (a).
Γ was measured in Fig. 2. Interface (dashed lines) and off-interface (solid lines)
predictions of the cohesive zone model.
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