
 Open access  Journal Article  DOI:10.1109/TMECH.2005.844718

Broad-band active vibration suppression using PPF focused on industrial application
— Source link 

A.J. den Hamer, Georgo Zorz Angelis, Nicolaas B. Roozen

Institutions: Eindhoven University of Technology

Published on: 18 Apr 2005 - IEEE-ASME Transactions on Mechatronics (IEEE)

Topics: Control theory, Vibration control and Vibration

Related papers:

 Positive position feedback control for large space structures

 High-performance damping based on a combination of conventional damping methods and the confinement approach

 Damped structure is a friendly structure

 A general vibration control methodology for human‐induced vibrations

 Model-based control of plate vibrations using active constrained layer damping

Share this paper:    

View more about this paper here: https://typeset.io/papers/broad-band-active-vibration-suppression-using-ppf-focused-on-
vuvmwbeau1

https://typeset.io/
https://www.doi.org/10.1109/TMECH.2005.844718
https://typeset.io/papers/broad-band-active-vibration-suppression-using-ppf-focused-on-vuvmwbeau1
https://typeset.io/authors/a-j-den-hamer-42dz87wlpj
https://typeset.io/authors/georgo-zorz-angelis-13m4n0jim9
https://typeset.io/authors/nicolaas-b-roozen-5bft4xwjik
https://typeset.io/institutions/eindhoven-university-of-technology-131kgvqf
https://typeset.io/journals/ieee-asme-transactions-on-mechatronics-1hnea2xf
https://typeset.io/topics/control-theory-3tznv960
https://typeset.io/topics/vibration-control-1fm36fjc
https://typeset.io/topics/vibration-1p45tu0z
https://typeset.io/papers/positive-position-feedback-control-for-large-space-2125hwkhr8
https://typeset.io/papers/high-performance-damping-based-on-a-combination-of-4k6c9f5l6l
https://typeset.io/papers/damped-structure-is-a-friendly-structure-12puxmkjc2
https://typeset.io/papers/a-general-vibration-control-methodology-for-human-induced-31g86jvw9t
https://typeset.io/papers/model-based-control-of-plate-vibrations-using-active-4utffj6nx0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/broad-band-active-vibration-suppression-using-ppf-focused-on-vuvmwbeau1
https://twitter.com/intent/tweet?text=Broad-band%20active%20vibration%20suppression%20using%20PPF%20focused%20on%20industrial%20application&url=https://typeset.io/papers/broad-band-active-vibration-suppression-using-ppf-focused-on-vuvmwbeau1
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/broad-band-active-vibration-suppression-using-ppf-focused-on-vuvmwbeau1
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/broad-band-active-vibration-suppression-using-ppf-focused-on-vuvmwbeau1
https://typeset.io/papers/broad-band-active-vibration-suppression-using-ppf-focused-on-vuvmwbeau1


Broad-band Active Vibration Suppression using PPF focused on

Industrial Application∗

A.J. den Hamer1), G.Z. Angelis2), N.B. Roozen2,3)

1) Control Systems Technology Group, Department of Mechanical Engineering,

Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.
2) PHILIPS Centre for Industrial Technology, 5600 MD Eindhoven, The Netherlands.

3) Dynamics and Control Group of the Department of Mechanical Engineering,

Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Summary

Due to the demand for higher accuracy and lower
acoustic noise levels, there is a growing interest for
active vibration suppression in industrial application.
Many control concepts have been proposed in this
field that are suited to introduce damping in systems
with a large number of modes. However tuning is
often focussed on reduction of one dominant mode.
Such control approaches are less transparent when
several dominant modes are involved.

A combined loop-shaping and root-locus tuning ap-
proach is proposed to reduce several dominant modes
with low-order controllers. The tuning approach is
experimentally evaluated on a vibrating plate using
piezo’s for both sensing and actuating. Based on the
given tuning rules and trade-offs, a SISO feed-back
controller is designed and implemented. This low
authority control approach shows that besides local
performance, also the global damping of the plate is
improved which consequently results in reduction of
vibration levels over the whole plate for a broad range
of frequencies. As a results, acoustic noise radiation
is reduced significantly.

1 introduction

Vibration problems typically occur in badly damped
distributed mechanical systems. Their high modal
density and badly damped modes can lead to a broad
spectrum of vibrations of relative high amplitude [1].
This leads at the one hand to noise radiation via
mechanical-acoustic coupling, on the other hand to
loss of position accuracy. To reduce these effects, ac-
tive vibration suppression has gained interest above
passive damping due to better tunable suppression
especially at lower frequencies and a lower amount of
added mass.

The high modal density of the structure and the
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lack of roll-off adds additional constraints on the type
of controller. In literature, several control approaches
are proposed in the field of active vibration suppres-
sion [2, 3, 4, 5, 6, 7]. These approaches can be roughly
split into high authority and low authority controllers.

The performance of high authority controllers such
as H2 and H∞ appear to be very sensitive to model
uncertainty and modelling errors as introduced by
model truncation [6, 8]. On the other hand, using
accurate high order models for synthesis of these con-
trollers leads to practical limitations. The resulting
high order controllers need to be reduced in order to
enable implementation in state-of-the-art digital con-
trollers. The order truncation however, causes a mis-
match which reduces control performance or even re-
sults in an unstable closed-loop system.

Low authority methods such as velocity feedback
(VF) and positive position feedback (PPF) are pro-
posed which can overcome the disadvantages men-
tioned above [4, 5]. This paper will be focussed on
the tuning of low authority controllers using collo-
cated sensor and actuator pairs.

Tuning of low authority controllers is often focussed
on damping of a single dominant mode [7, 2, 9]. This
does not comply with the industrial demands which
often ask for a more broad-banded approach [10].
This paper will show that adding damping in a broad
spectrum of resonances is possible using a controller
with low complexity whereas the tuning is based on
both root-locus and the Frequency Response Function
(FRF) of the open-loop.

The approach is evaluated for a flexible plate, which
is an example of a distributed system, often used in
industry as a light and stiff construction element.

2 experimental setup

The experimental setup as depicted in Fig. 1(a) con-
sists of a flexible aluminium plate mounted in a rigid
box as designed by Twente University [11]. Informa-
tion about geometry can be found in Table 2 whereas
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the dimensions are given with respect to the coordi-
nate frame in Fig. 1(b). Information about mode
shapes and resonance frequencies can be found in Ta-
ble 3.

Figure 1: a) Experimental setup, b) Schematic con-
figuration

Table 1: Dimension of experimental setup

Plate Piezo (each)
∆x 16 · 10−2 [m] ∆x 4.5 · 10−2 [m]
∆y 21 · 10−2 [m] ∆y 2.3 · 10−2 [m]
∆z 1.0 · 10−3 [m] ∆z 3.0 · 10−4 [m]

material Al material PZT

An array of PZT-piezo’s is mounted on the front
and back side of the plate by means of electrically
conductive glue. The piezo’s at the front side are used
for sensing while the piezo’s at the back side serve as
actuators.
The piezo pairs are numbered according to

Fig. 1(b). The control loop uses the signals u(t) and
y(t) of the piezo pair 1 whereas the level of vibration
suppression is evaluated using the signals d(t) and z(t)
of piezo pair 6. Note that due to symmetry, the un-
controlled dynamic behaviour of u(t) to g(t) equals
d(t) to z(t).
Identical locations are used for both sensing and ac-

tuating. This leads to collocated sensor-actuator pairs
which proves predictable phase behaviour, bounded
between 0 and −180◦ (Fig. 2), corresponding with an
alternating pattern in the pole-zero map [2] (Fig. 6
and 7). This collocated behaviour is desirable from a
stability point of view.

3 modelling for performance

The tuning of the controller, as will be described in
section 5, consist of two parts concerning a data-based
part to tune for stability and model based part to tune
for performance, i.e. reduction of vibration levels in
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Figure 2: Frequency Response Function Y (jω)
U(jω)

a global way. The model to describe Y (s)
U(s) , needed to

tune for performance, will be obtained in this para-
graph.

The transfer function of a lightly damped mechani-
cal distributed parameter system P (s) can in general
be written as a sum of an infinite number of weighted
modal components [12],

Y (s) = P (s)U(s)

Pij(s) =
n=∞∑
n=1

φinφjn

1

s2 + 2ξnωn + ω2
n

(1)

where U(s) and Y (s) are respectively the Laplace
transforms of the plant in- and outputs, i.e. the mea-
sured voltage y(t) and applied voltages at the piezo
u(t) as depicted in Fig. 1(b). ωn, ξn ∈ R and s ∈ C

are respectively the modal eigenfrequency, the modal
damping and the Laplace variable. φi and φj rep-
resent the modal participation factors of input i and
output j.
Since the aim is to increase damping up to ± 2 kHz,

only a limited number of resonances needs to be con-
sidered, allowing reduction of the model-order. For
the experimental setup, the first 12 non-Rigid Body
Modes (RBM) describe the given dynamics up to 2
kHz sufficiently accurate. The flexible behaviour, rep-
resented by Eq.(1), can in the low frequency range be
approximated by a truncated serie of non-RBM:

Pij(s) ≈

n=12∑
n=1

φinφjn

1

s2 + 2ξnωn + ω2
n

+Dij (2)

where the residual term Dij equals the steady state
behaviour of the modes 13 till∞ with respect to input
i and output j.

It can be observed from Eq.(1) that the modal
eigenfrequency ωn and modal damping ξn are inde-
pendent from the chosen input i and output j. So if
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the poles are shifted to other locations, every trans-
fer of the system is influenced according to Eq.(1).
Increasing the modal damping locally will show a re-
duction in the corresponding modal peaks of Pij in a
global manner.

In order to be able to shift the poles of a certain
mode, these poles need to be both observable and con-
trollable [13]. Therefore sensor and actuator locations
have to be chosen such that the value of φin and φjn

of a targeted mode n is as large as possible. Opti-
mal locations are typically associated with area’s of
maximum modal strain [2] as can be observed from
Eq.(3) [14] which supplies a relation between geomet-
ric mode-shapes and modal piezo-output voltages.

φin ≈
1

Cr

∫
Ωi

zm(
e31 ∂2win(x, y)

∂x2
+

e32 ∂2win(x, y)

∂y2
)dS

(3)

where win , Ωi and zm are respectively the displace-
ment in z-direction of piezo i for mode n at location
(x, y), the surface of piezo i and the distance between
the midplane of the piezo and the plate. e31 and e32
are the piezo constants which are equal for isotropic
material. Cr denotes the capacity of the charge am-
plifier.
Eq.(3) can be used to predict/model the input to

output behaviour of the piezo’s as described in [14].
This modelling can be done by a coupled piezo/me-
chanical Finite Element Modelling (FEM) approach.
In industrial applications however, involving complex
geometries, a measurement based approach is often
preferred above a model based one since it excludes
model errors due to imperfect modelling and omits
time consuming FEM modelling.
As a data-based approach, Laser vibrometer mea-

surements are used to measure operational deflection
shapes (ODS) and fit the modal strain shapes. Un-
der the assumption that structural properties of the
piezo are negligible, these modal strain shapes can be
used to predict and model dynamic behaviour from
the piezo actuators to the piezo sensors before actual
placement [14].
When the piezo’s are attached to the structure, the

model can be improved by fine-tuning the poles, zeros
and static gain based on the measured FRF. Fig. 2

depicts both the measured and modelled FRF of Y (s)
U(s) .

4 Positive Position Feedback

In order to introduce modal damping, several ap-
proaches have been proposed in literature. Two well
known concepts are VF and PPF [4, 5]. The most
important advantages and disadvantages of PPF over
VF are shortly listed:

+ The infinite number of modal components of me-
chanical distributed systems (Eq.(1)) makes that

attention has to be paid to the effect of high fre-
quent dynamics on controller performance and
stability. For this reason, the low-pass behaviour
of PPF is preferred above the high-pass be-
haviour of VF in order to avoid high frequent
spill-over effects.

+ PPF is easy to tune for stability because the con-
troller gain is restricted by the static behaviour
of the plant [5]. This will be shown in section 5.1.

± PPF has more tuning freedom than VF. This
makes the tuning harder but can have benefits
if tuning is well understood.

− A PPF controller reduces the low frequent stiff-
ness of the controlled system [15, 16] which will
be shortly commented in section 5.1.2.

Because of these arguments and positive findings in
literature [15, 17], PPF is chosen for implementation.

Like the system itself, a PPF controller, denoted by
C(s) can be written as a sum of k modal components
each having their own eigenfrequency and damping.
Using negative feedback (see Fig. 3), the transfer func-
tion of a PPF controller can be written as

U(s) = C(s)Y (s)

C(s) =

n=k∑
n=1

Gn

−1

s2 + 2ξcnωcns+ ω2
cn

(4)

where U(s) and Y (s) are the control-output and -
input according to Fig. 1 and 3, whereas Gn, ωcn and
ξcn are the chosen gain, eigenfrequency and damping
of controller mode n, respectively.
The idea of PPF control is to create auxiliary De-

gree’s of Freedom (DoFs) [18], i.e. controller modes,
which join particular modal movements of the system.
Due to the damping introduced by this auxiliary DoF,
energy is dissipated from the modes in which the ad-
ditional DoFs participate. This can be physically in-
terpreted using the analogy of a tuned-mass-damper
vibration absorber as stated in [16].

5 Controller tuning

A combined approach of both root-locus and open-
loop tuning is proposed. Open-loop information is
used to tune for stability and to derive limits of per-
formance whereas root-locus is used to tune for per-
formance by shifting initially undamped poles of the
system into the left half-plane, as shortly mentioned
in section 3. Afterwards both methods are linked to-
gether.

5.1 Open-loop

5.1.1 Local vs. global performance

Closing the control-loop as depicted in Fig. 3 creates
new dynamic behaviour of the plant which is denoted
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Figure 3: SISO closed-loop configuration

as Pcl. The local SISO closed-loop disturbance re-
jection of this new configuration with respect to the
uncontrolled system can be written as:

S(jω) =
Pcl(jω)

P (jω)
=

1

1 + PC
(5)

whereas the sensitivity, S(jω), can be graphically in-
terpreted as the inverse of the vector PC(jω) to the
point minus one in the Nyquist plot (Fig. 4). Eq.(5)
shows that an open-loop transfer within the unit-
circle around −1 results in performance degradation
with respect to the uncontrolled system, known as
spill-over (|S(jω)| > 1) [19]. An open-loop transfer
outside this circle results in an increasing performance
for the corresponding frequency (|S(jω)| < 1).

Figure 4: Graphical interpretation of S(jω)

Note that the local-performance specified by Eq.(5)
does not imply global performance. It is shown in [2]
that high feedback gains, i.e. a low sensitivity, lead to
much disturbance rejection in the loop however also
makes that the controlled DoF becomes fixed. As
a result, situation 5a behaves like 5b for high feed-
back gains. This makes the system sensitive for dis-
turbances acting on other DoFs than the controlled
ones. So in order to reduce vibration levels of the
whole plate, the objective is not to minimize local
displacement but maximize local energy dissipation
from dominant modes and consequently introducing
damping as mentioned in section 3.

(a)

(b)

Figure 5: High feedback gains in (a) results in un-
damped behaviour of (b).

5.1.2 Stability

Despite the lack of open-loop tuning to tune for
global performance, the open-loop is still very valu-
able for stability analysis via Nyquist stability crite-
rion since it can be directly based on measurement
data and therefore does not suffer from modelling er-
rors like root-locus inevitably does. Measurements of
the open-loop FRF include all effects like time-delay
in the control-system and amplifier dynamics which
can tread stability, especially at higher frequencies.

Using positive feedback, the stiffness of the me-
chanical system line in the low frequent region ap-
pears at −180◦ in the Nyquist plot. This makes that
low-frequent behaviour becomes the limiting factor
for stability, resulting in a non-dynamic stability cri-
terium according to the Nyquist stability criterium
[13]. Using the Nyquist-plot, it can be derived that a
necessary condition for stability is:

|PC(ω = 0)| < 1 (6)

Eq.(6) shows that the static controller gain is re-
stricted by the stiffness of the plant.

This static-stability criterium is closely related to
the well known fact that PPF reduces the stiffness
of the closed-loop plant at low frequencies. Because
the open-loop starts at 180◦, it can directly be de-
rived from Eq.(5) that spill-over effects occur in this
frequency region.

5.1.3 Limits of performance

Besides stability, open-loop analysis shows that the
achievable local performance is limited by the sensi-
tivity function. Assuming that there are at least two
more poles than zeros, the bode-sensitivity integral
holds [13, 19].

∫
∞

0

log|S(jω)|dω = 0 (7)

It follows from Eq.(7) that the surface under a con-
trolled FRF is invariant and therefore shows a funda-
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mental bound on the controller performance. Com-
bining Eq.(5) and (7) gives:

∫
∞

0

log|S|dω =

∫
∞

0

log|Pcl|dω −

∫
∞

0

log|P |dω = 0

(8)

The maximum value of the transfer function Pcl(jω) is
often determining for performance. As a consequence,
a constant FRF would be optimal. If it is supposed
that the transfer function can only be manipulated
till a certain frequency fu, this constant of optimal
performance can be derived after manipulating Eq.(8)

|Pcl| = 10

∫ fu
0

log |P |dω

fu (9)

This line is depicted in Fig. 2. Further reduction
can not be obtained by feedback. However for badly
damped systems, this fundamental upper-bound for
performance will not be a limiting factor.
Note that for noise radiation problems an A-

weighted constant would be more appropriate. This
curve can be derived by multiplying Eq.(8) with the
inverse frequency response of an A-weighting.

5.1.4 Open-loop for damping

Controllers proposed for active damping such as VF
and PPF add respectively +90◦ or −270◦ phase in
the open-loop. This supposes that this phase-shift
in the open-loop is responsible for optimal damping.
This can be understood since the measured velocity
and the applied control-force are 180◦ out of phase
implying energy dissipation. However in closed-loop,
the dynamic controller properties change due to feed-
back by the plant such that expressions about optimal
phase for energy dissipation are harder to make using
information of the open-loop.
Instead of open-loop, root-locus tuning is used to

maximize energy dissipation in particular modes.

5.2 Root-locus

A measure for the energy dissipation from a certain
mode can be found in the damping of the closed-loop
poles represented by the angle β with the imaginary
axis of the complex plane as plotted in Fig. 6 and 7.
The damping of these modes is maximized in the con-
trol loop using piezo pair 1 (Y

U
), which results in an

increasing performance at other places (Z
D
) as men-

tioned in section 3. As a consequence, β can be used
as tuning criterium to place the closed loop poles.
These closed-loop poles are calculated using the ob-
tained model for Y

U
as derived in section 3.

Having positive feedback, damped closed-loop poles
attract poles of undamped modes which are in the
same frequency region. Therefore placement of
damped closed-loop poles, coming from the controller,
can be used to attract the undamped poles further

into the left half-plane. However during the place-
ment of the controller poles, i.e. choosing the con-
troller parameters, several trade-offs appear.

The tuning of the controller, represented by the pa-
rameters ωcn , ξcn and Gn, is done by hand in an iter-
ative way based on the root-locus plot and the FRF
of the open-loop. The influence of the parameters on
the root-locus plot and it’s relations to the expected
damping in several modes will be shortly discussed
and illustrated.

The influence of the gain variable is intrinsically
depicted in the root-loci plot. Since closed-loop poles
start at the undamped open-loop poles and end in
the undamped zeros [13, 2], there exist an optimum
as already discussed in subsection 5.1.1. However this
optimal gain can differ per mode such that an average
has to be found over the modes weighted with their
dominance while still remaining stability according to
the open-loop stability criterion (Eq.(6)). The relative
gain between the PPF-modes, which determines the
placement of the controller zero’s, can also be used to
shape the root-loci whereas the rule of thumb given
in subsection 5.3 can be useful.

The influence of the parameter ωcn is rather
straightforward since it makes the damping work ei-
ther in a lower or higher frequency region. Note that
the placement of the closed-loop poles originated from
the controller are determining for damping such that,
according to Fig. 6 and 7 , the controller pole is in
general placed higher frequent than the region where
much damping is achieved.

With respect to damping, there appears to be a
trade-off between placing a closed-loop pole close to
an undamped pole resulting in maximum attraction
of that pole [9], as depicted by the dotted root-loci in
Fig. 7, or choosing to use more damped poles such
that the attraction of the damped closed-loop pole is
spread over more undamped closed-loop poles which
is illustrated by the continuous root-loci in Fig. 7.
Note that further increase of damping results in loss
of effectiveness meaning that undamped poles are less
attracted into the left half-plane. Due to high amount
of damping, less gain is generated by the resonance of
the controller resulting in a demand for higher static
gain which can tread stability.

Fig. 6 and 7 shows the root-locus of the tuned sys-
tem using one PPF DoF and two PPF DoFs, respec-
tively. The controller parameters are tuned to sup-
press the dominant modes of Z

D
which, by symme-

try, also equal the dominant modes of Y
U
. By placing

damped controller poles and zero’s, damped closed-
loop poles are generated that attract poles of modes
which were initially undamped.

Parameters which results in a broad-band reduc-
tion of the dominant resonances of piezo pair 6, are
given in Table 2. Fig. 6 and 7 show that the maxi-
mum achievable modal damping of both controllers is
comparable. It is expected that if the dominant reso-
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nance peaks are more grouped in several frequency re-
gions, a summation of several controller modes could
be more advantageous compared to the use of one
controller mode. Another option to achieve broad-
banded reduction, is to tune each piezo for damping
in another frequency region using single DoF PPF
controllers with multiple loops [20].
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Figure 6: Root-locus of piezo pair 1 using one PPF
DoF
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Figure 7: Root-locus of piezo pair 1 using two PPF
DoFs, (-) Controller focussed on broad-band reduc-
tion, (-.) Controller focussed on one particular mode
(closed-loop poles indicated by � and ⋄ respectively)

Note that the maximum achievable damping de-
pends on the distance between poles and zeros in the
root-locus [2, 9], i.e. observability and controllability
of particular modes. High modal density and high
residual terms leads to close poles and zeros spacing
which limits the achievable damping for distributed
parameter systems.

Trade-offs were needed to find the optimal tuning
for several modes. One could wonder if the usage of
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Figure 8: Bode-plot of measured open-loop using
piezo pair 1 with 2 PPF DoFs

−5 0 5 10
−2

0

2

4

6

8

10

Real Axis

Im
a
g
 A

x
is

Figure 9: Nyquist of measured open-loop for piezo
pair 1 using 2 PPF DoFs

more PPF modes would be beneficial since the addi-
tional freedom can better meet these trade-offs. How-
ever this has several drawbacks. Due to the summa-
tion of PPF modes, less gain is possible per mode due
to the low-frequent stability criterion. This makes
that the PPF modes of the controller have to be less
damped in order to achieve enough gain at the fre-
quency of interest. This makes the performance less
robust to changes in dynamics behaviour of the plant.
On the other hand, the resulting high order controllers
lead to practical problems as already mentioned in the
introduction.

5.3 Best of both worlds

Optimal gain is reached if the open-loop crosses the
0 dB in the middle of the logarithmic frequency scale
between anti-resonance- and resonance [1]. This ad-
ditional condition can be seen as a rule of thumb to
find the optimal gain tuning of the controller. This
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correspond with Fig. 8, which shows the bode plot of
the open-loop of the tuned system using a controller
with two degrees of freedom.

Fig. 9 depicts the corresponding Nyquist plots of
the open-loop for positive frequencies using a con-
troller with 2 DoFs as tuned according to Fig. 7. Note
that the resonances of the stable open-loop FRF lead
to phase loss and therefor to resonance circles that run
clockwise in the Nyquist plot. Fig. 9 supposes that
damping is optimal if the resonances lie in the first
quarter of the Nyquist-plot, which can be explained
from the fact that the controller still reduces local
stiffness, leading to higher local deformations, while
starting the damping action by shifting the phase of
the controller. This again shows a trade-off between
fulfilling this phase condition for a broad frequency
band implying much damping which results in loss of
effectiveness and local fulfilment resulting in adding
damping in one particular mode.

As a fine tuning, the controller parameters can
be slightly varied while measuring the amount of
damping in loop 6 using the FRF of Z

D
according to

Fig. 1(b). Based on the open-loop, the root-locus plot
and fine-tuning on the system, the following controller
parameters are chosen for experimental evaluation:

Table 2: Controller parameters

Gn ωn ξn
2 DoF’s
mode 1 5.8 · 107 [-] 915 [Hz] 0.35 [-]
mode 2 2.6 · 108 [-] 1435 [Hz] 0.25 [-]
1 DoF
mode 1 5.6 · 108 [-] 1499 [Hz] 0.3 [-]

6 Experimental results

The following experimental equipment is used:
Dspace Alfa Combo Dual Processor Board used for
controller implementation at 20 kHz, Siglab 5021 used
for data acquisition and Polytec scanning laser vi-
brometer for measuring Operating Deflection Shapes
(ODS) analysis. The input voltage to the actuators
is amplified whereas the output voltage of the sensing
piezo’s is directly fed to the devices.

A 4th order PPF controller using 2 DoFs, tuned ac-
cording to Fig. 7 and Table 2, is implemented. The
control loop is closed around piezo pair 1 whereas the
performance is evaluated by measuring the FRF at
piezo actuator/sensor pair 6. Fig. 10 shows the FRF
of piezo pair 6 for the controlled and uncontrolled
case.

Note that the low-frequent reduction of stiffness is
not observed at piezo pair 6 which shows that reduc-
tion of stiffness is only a local effect.
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Figure 10: Measured Frequency Response Function
Z(jω)
D(jω )

Tabel 3 shows that reduction in vibration level of
modal peaks is achieved for a broad frequency band,
up to 13.8 dB for the (2,2) mode. Remark that not all
frequencies are well damped. Further investigations
using scanning laser vibrometer measurements show
that the mode at 1190 Hz is not a structural mode
but an air mode inside the box which is apparently
harder to damp.

Nevertheless, Tabel 3 shows that the maximum
peak value of the transfer-function is reduced by 6.2
dB. If only structural modes are taken into account,
a reduction of the maximum peak value of 9.1 dB is
achieved.
Resonances at high frequencies puts high demands

on digital equipment with respect to sampling and
computational delay. The resulting time-delay causes
phase lag which rotates the resonances in the Nyquist
open-loop plot into the circle around -1 leading to
spill-over effects according section 5.1. These high
frequent spill-over effects appear in the 4 kHz region
where the controller does not have enough roll-off to
cancel delay-effects (Fig. 11).
The relative low complexity of the controller makes

it possible to implement these controllers analogue
[21, 22]. This overcomes the problem of time-delay
and on the other hand opens possibilities to ex-
tent damping to much higher frequencies than could
be achieved by means of digitally implemented con-
trollers. Experiments have been done with Universal
State Variable filters and Switched Capacitor Filters
[22] leading to comparable results. Fig. 11 shows that
spill-over effects in the 4 kHz range are vanished using
an analogue implementation.
To improve the flexibility of the analogue imple-

mentation, digitally controlled potentiometers could
be used to vary the parameters of the analogue filter.
This combines the flexibility of digital implementation
and the advantages of analogue filters with respect to
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Figure 11: Measured high frequent spill-over effects

time-delay.
An ODS scan is made in order to quantify the

reduction of vibration levels over the entire plate.
Fig. 12a and 12b shows a global reduction of 12 dB
in the ODS at 1 kHz. This proves that global vibra-
tion levels can be reduced by locally added damping.
Fig. 13 shows the appearance of complex modes for
the controlled system opposed to real modes for the
uncontrolled structure. This confirms that a signifi-
cant amount of damping is added by the controller.

As a confirmation of global broad-band vibration
suppression, an acoustic reduction in the order of 5
dB is measured during excitation with random noise
in the frequency range till 1 kHz [23].

Table 3: Modal reductions

mode (l,w) freq [Hz] max max
uncontr. [dB] contr. [dB]

(1,1) 228 -3.4 -3.7
(2,1) 424 3.3 -1.3
(1,2) 634 7.6 3.2
(3,1) 720 9.6 -1.0
(2,2) 763 12.3 -1.5
(3,2) 1014 7.5 -3.5
air 1189 5.5 6.2
(2,3) 1338 7.6 0.5
(4,2) 1504 3.0 -8.0
(3,3) 1556 4.0 -3.0
(5,1) 1754 -9.6 -9.5
(1,4) 1938 -6.0 -6.5

7 Conclusion

It is shown that broad-band vibration suppression can
be obtained for mechanical distributed systems us-
ing low-authority controllers. Modelling shows that
global performance can be reached by locally adding
damping into the modal components. Both open-loop

(a)

(b)

Figure 12: ODS measured velocities at 1 kHz of un-
controlled (a) and controlled (b) system

and root-locus tuning were used to assure stability
and maximize performance.

Open-loop appeared to be valuable to guarantee
stability, leading to a necessary non-dynamic stability
criterium and prediction of spill-over effects especially
in the low-frequent region. The bode-sensitivity inte-
gral shows that the performance of feed-back is con-
strained to a fundamental bound.

Maximizing modal damping is translated into a
root-locus tuning criterium. A trade-off appears be-
tween putting less damping into the closed-loop poles
(coming from the controller) resulting in attraction
of one particular mode into left half-plane or adding
more damping such that attraction is spread over
more modes, thereby losing a part of the attraction.

A 4th order PPF controller is tuned and experi-
mentally evaluated for broad-band vibration suppres-
sion by closing a control-loop over one collocated piezo
pair. Frf’s and ODS measurements show that broad-
band vibration suppression is achieved. Vibration re-
ductions up to 13.8 dB are achieved for particular
modes whereas the maximum value of the FRF is re-
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Figure 13: Measured Frequency Response Functions
of velocities at ODS grid-points at 1kHz of uncon-
trolled and controlled system

duced by 9 dB for structural modes.

During experiments, the limitation of a digital im-
plementation becomes visible in terms of spill-over ef-
fects in the high frequent region. An analogue imple-
mentation of the low order PPF controllers success-
fully reduced these high frequent spill-over effects and
opens new possibilities to extend the frequency range
of control.
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