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Abstract

Background: In the era of information overload, natural language processing (NLP)
techniques are increasingly needed to support advanced biomedical information
management and discovery applications. In this paper, we present an in-depth
description of SemRep, an NLP system that extracts semantic relations from PubMed
abstracts using linguistic principles and UMLS domain knowledge. We also evaluate
SemRep on two datasets. In one evaluation, we use a manually annotated test
collection and perform a comprehensive error analysis. In another evaluation, we assess
SemRep’s performance on the CDR dataset, a standard benchmark corpus annotated
with causal chemical-disease relationships.

Results: A strict evaluation of SemRep on our manually annotated dataset yields 0.55
precision, 0.34 recall, and 0.42 F; score. A relaxed evaluation, which more accurately
characterizes SemRep performance, yields 0.69 precision, 0.42 recall, and 0.52 F4 score.
An error analysis reveals named entity recognition/normalization as the largest source
of errors (26.9%), followed by argument identification (14%) and trigger detection
errors (12.5%). The evaluation on the CDR corpus yields 0.90 precision, 0.24 recall, and
0.38 F4 score. The recall and the Fy score increase to 0.35 and 0.50, respectively, when
the evaluation on this corpus is limited to sentence-bound relationships, which
represents a fairer evaluation, as SemRep operates at the sentence level.

Conclusions: SemRep is a broad-coverage, interpretable, strong baseline system for
extracting semantic relations from biomedical text. It also underpins SemMedDB, a
literature-scale knowledge graph based on semantic relations. Through SemMedDB,
SemRep has had significant impact in the scientific community, supporting a variety of
clinical and translational applications, including clinical decision making, medical
diagnosis, drug repurposing, literature-based discovery and hypothesis generation, and
contributing to improved health outcomes. In ongoing development, we are
redesigning SemRep to increase its modularity and flexibility, and addressing
weaknesses identified in the error analysis.

Keywords: Natural language processing, Biomedical relation extraction, Semantic
interpretation, Scientific publications
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Background

A massive amount of biomedical knowledge is buried in free text, including scientific
publications and clinical narratives. Natural language processing (NLP) techniques are
increasingly used to extract from free text biomedical concepts, such as disorders, medi-
cations, tests, and genes/proteins, as well as relationships between them, including disease
treatments, protein/drug interactions, and adverse drug events. Such techniques trans-
form unstructured text into computable semantic representations, which can in turn
support biomedical knowledge management and discovery applications, allowing clin-
icians and bench scientists to more efficiently access information and generate new
knowledge.

Relation extraction from the scientific literature is a foundational task in biomedical lan-
guage processing, and has been proposed as the basis of practical applications, including
biological database curation [1], drug repurposing [2], and clinical decision making [3].
This task has generally been studied within the context of shared task challenges, which
have considered extraction of specific relationship types, such as protein-protein interac-
tions [4], chemical-induced disease relationships [1], causal biological network relation-
ships [5], biological events [6—9], and drug-drug interactions [10, 11]. Benchmark corpora
have been developed within the context of these shared tasks (e.g.,[1, 10, 12]) and inde-
pendently (e.g., [13—15]). The majority of recent relation extraction approaches have been
trained on annotated corpora using supervised machine learning techniques (e.g., [16—20]).
Competitive rule-based systems have also been proposed [21-24]. More recently, deep
neural network architectures using distributed representations (word, dependency and
other types of embeddings) have also been proposed, often improving relation extraction
performance on standard benchmarks (e.g., [25-27]). A more comprehensive survey of
biomedical relation extraction from scientific literature can be found in Luo et al. [28].

SemRep

Developed at the U.S. National Library of Medicine, SemRep [29, 30] is a broad-coverage
NLP system that extracts semantic relations from biomedical text. It is a rule-based sys-
tem with a strong linguistic bent; it combines syntactic and semantic principles with
structured biomedical domain knowledge contained in the Unified Medical Language
System (UMLS) [31, 32] to extract semantic relations. The relations extracted by SemRep
are subject-predicate-object triples, also called semantic predications. The subject and
object pair are UMLS Metathesaurus concepts with specific semantic types and the pred-
icate is a relation type in an extended version of the UMLS Semantic Network [15]. While
the primary focus of SemRep has been on research literature in PubMed, it has also been
applied to clinical narratives (e.g., [33, 34]) and “gray” literature (e.g., [35]).

For an illustration of SemRep, consider the two semantic predications extracted
from the input sentence in example (1). Arguments of the predications (subject
and object) are represented as Concept Unique Identifier (CUI): Concept
Name (Semantic Type).

(1)  MRI revealed a lacunar infarction in the left internal capsule.

® (C0024485: Magnetic Resonance Imaging (Diagnostic
Procedure)
- DIAGNOSES -
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C0333559: Infarction, Lacunar (Disease or Syndrome)

® (C2339807: Left internal capsule (Body Part, Organ, or
Organ Component)
- LOCATION_OF -

C0333559: Infarction, Lacunar (Disease or Syndrome)

SemRep extracts a range of predicates relating to clinical medicine (e.g. TREATS,
DIAGNOSES, PROCESS_OF), molecular interactions (e.g., INTERACTS_WITH, INHIBITS,
STIMULATES), disease etiology (e.g., ASSOCIATED_WITH, CAUSES, PREDISPOSES), phar-
macogenomics (e.g., AFFECTS, AUGMENTS, DISRUPTS), as well as static relations (ISA,
PART_OF, LOCATION_OF).

The theoretical framework of SemRep, with its increased emphasis on lexical and
ontological domain knowledge, has been inspired by the lexical semantics [36] and the
ontological semantics [37] paradigms. SemRep also owes much to Meaning-Text The-
ory [38], with its notion of semantic representation as a network of predications and
mapping of syntactic structures to semantic representation by rules.

The groundwork for SemRep was laid out about two decades ago, in pioneering systems
such as ARBITER [39], EDGAR [40], and work on anatomic spatial relationships in clini-
cal text [33]. Its early development was conducted in parallel with that of MetaMap [41],
which SemRep continues to rely on for named entity recognition and normalization.
An offshoot of SemRep, named SemGen [42, 43], focused on genetic relations (such as
ASSOCIATED_WITH, STIMULATES, INHIBITS) and was supported by the ABGene gene
recognition system [44] in addition to MetaMap. SemGen was later incorporated into
the unified SemRep program. A major effort in the late 2000s concentrated on extending
SemRep to domains under-represented in the UMLS, such as disaster information man-
agement [35], public health [45], and medical informatics [46]. Over time, SemRep has
been incrementally enhanced in numerous ways, focusing on various linguistic phenom-
ena and relation types [42, 47-50]. Its reliability and scalability have also been improved.
Since 2013 (release 1.5), SemRep has been made publicly available as a standalone pro-
gram (previously, it was only available through a web interface). The latest version of
SemRep (release 1.8) was released in October 2018. Due partly to its roots in the PUN-
DIT system [51], SemRep is implemented in Prolog logic programming language. With
release 1.8, we are phasing out this implementation and plan to implement future releases
using Java.

Along with its use as a standalone biomedical relation extraction system, SemRep has
also underpinned advanced biomedical knowledge management/discovery tools, includ-
ing Semantic MEDLINE [52, 53], a Web-based application which combines SemRep
processing with automatic summarization and visualization to allow the user navigate the
literature through concepts and their relationships. Semantic MEDLINE and other simi-
lar tools are supported by SemMedDB [54], a publicly available PubMed-scale repository
of semantic predications. In its most recent release (as of June 30, 2019), SemMedDB
contains about 98 million predications from over 29 million PubMed abstracts.

In this paper, our objective is two-fold. First, we aim to address a gap by providing
an up-to-date, in-depth description of the SemRep pipeline (release 1.8). While vari-
ous aspects of SemRep processing have been reported and evaluated over the years
[29, 30, 42, 47-50], a complete overview and a comprehensive evaluation of the system
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has not been previously reported. Our second goal is to present a qualitative assessment
of SemRep, by comparing it to other relation extraction systems, illustrating its broader
impact on downstream applications, and discussing future directions.

Implementation
In this section, we present the steps of the SemRep pipeline, with minimal examples
for illustration. The interpretation of a full sentence, taken from the PubMed abstract
12975721, with the corresponding pipeline steps is provided as supplementary material
in Additional file 1.

The SemRep pipeline can be broken down into five broad analysis steps, illustrated
in Fig. 1: pre-linguistic analysis, lexical/syntactic analysis, referential analysis, post-
referential analysis, and relational analysis. Each of these steps consist of several specific
tasks, discussed below. First, we briefly touch upon SemRep input and output.

Input and output
SemRep takes as input ASCII-formatted plain text or text in PubMed’s MEDLINE format.
The output is made available in several formats:

e The simplified plain text format consists of sentences and the predications extracted
from them, as presented in example (1).

o The full-fielded format is more verbose, and consists of all entities as well as
predications along with the sentences they are extracted from. We include more
information about sentences, entities, predications, and (optionally) coreference
relations. Such information includes character offsets, entity confidence scores, and
predication indicator types (see https://github.com/lhncbc/SemRep/blob/master/
doc/SemRep_full_fielded_output.pdf for details).

e The XML format presents an XML representation of the full-fielded output format
(see https://github.com/lhncbc/SemRep/blob/master/doc/SemRep.v1.8_XML_
output_desc.txt for details).

Pre-linguistic analysis

The first step in SemRep processing, pre-linguistic analysis, consists of sentence splitting,
tokenization, and acronym/abbreviation detection. For the MEDLINE-formatted input
text, we also identify the PubMed ID, title, and abstract portions of the text. SemRep relies
entirely on MetaMap functionality to perform the pre-linguistic analysis tasks. It is worth
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Fig. 1 High-level overview of the SemRep pipeline. Processes marked with * are optional (domain processing
and sortal anaphora resolution).
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noting that the acronym/abbreviation detection algorithm used by MetaMap is an adap-
tation of the algorithm proposed by Schwartz and Hearst [55], which matches a bracketed
acronym/abbreviation with a potential expansion that precedes it in the same sentence.
SemRep tokenization treats hyphens and parentheses as individual tokens. For example,
the string betal-adrenergic receptor (betalAR) is tokenized as follows, and betalAR is
recognized as the acronym for betal-adrenergic receptor.

e [betal, -, adrenergic, receptor, (, betalAR, )]

The unit of processing for SemRep is the sentence. All the subsequent steps operate on
one sentence at a time.

Lexical/syntactic analysis

A lookup to the UMLS SPECIALIST Lexicon [56] provides lexical and syntactic infor-
mation about tokens identified in the pre-linguistic analysis. Such information includes
lemma, part-of-speech tags, subcategorization frames, grammatical number (singular,
plural), as well as inflectional and derivational variant information. Lexical lookup also
identifies some multi-word expressions. For illustration, lexical entries retrieved for the
verb reduced and the multi-word expression calcium antagonists are presented in Table 1.
The entry for reduced indicates that the lemma (base) of the verb is reduce, its general-
ized part-of-speech (cat) is verb, that reduced is a regular inflectional variant of the verb
reduce, that it can be used intransitively as well as transitively (e.g., attaching to a prepo-
sitional phrase (pphr) with the cue to), and that it has two nominalized forms reduction
and reducement.

Lexical lookup may reveal part-of-speech ambiguities, with multiple entries returned
for a given lexical unit. For example, two lexical entries are retrieved for have, one in
which the part-of-speech is auxiliary and one in which it is verb. In such cases, we consult
the MedPost part-of-speech tagger [57] for disambiguation.

Information retrieved from the SPECIALIST Lexicon and the MedPost Tagger is used
by our shallow parser (named minimal commitment parser) to generate a partial syntac-
tic analysis by identifying simple noun phrases (i.e., those with no post-modification) and
their internal structure (head and modifiers). Shallow parsing is based on the notion of

Table 1 Lexical entries retrieved for reduced and calcium antagonists

input=reduced input=calcium antagonists
base=reduce base=calcium antagonist
entry=E0052363 entry=E0515276

cat=verb cat=noun

variants=reg variants=reg

intran variants=suncount

tran=np spelling_variant=calcium-antagonist
tran=pphr (from, np, pphr (to, np) ) number=plural

tran=pphr (to,np)

ditran=np, pphr (from, np, pphr (to, np) )
ditran=np, pphr (to,npltears|)
cplxtran=np, pphr (to, ingcomp:objc)
nominalization=reduction|noun|E0052372
nominalization=reducement|noun|E0525409

tense=past,pastpart
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barrier words, which open a new phrase and close the preceding one. Verbs, prepositions,
conjunctions, modal auxiliaries, and complementizers are marked as barrier words. Any
phrase containing a noun is considered to be a simple noun phrase (henceforth referred
to as NP), and the right-most noun is labeled as the head. All other items except deter-
miners are labeled as modifiers. An NP whose first element is a preposition is treated as a
prepositional phrase!. Other syntactic categories, including verbs and conjunctions, are
simply given their part-of-speech label and treated as separate phrases.
The lexical/syntactic analysis step is also shared between MetaMap and SemRep.

Referential analysis

Referential analysis is the process of identifying named entity mentions in text and map-
ping them to the corresponding ontological concepts. Currently, this analysis consists of
three steps (one of them optional):

e Using MetaMap to map NPs to UMLS Metathesaurus concepts

e Using ABGene to identify gene/protein mentions and normalizing them to NCBI
Gene [58] identifiers

e Using domain extensions to recognize additional concepts or suppress identified

concepts (optional) (more below)

MetaMap

The UMLS Metathesaurus is the main source of terminological knowledge in SemRep.
MetaMap [41] is used to map NPs identified with lexical/syntactic analysis to UMLS
Metathesaurus concepts, with their concept unique identifiers (CUIs), preferred names,
and semantic types (see Aronson and Lang [41] for a general overview of MetaMap).
MetaMap usage in SemRep diverges from the default behavior of MetaMap as follows:

® We use MetaMap with the 2006AA UMLS Metathesaurus USABase dataset by
default, due to the prevalence of concept ambiguity in the later UMLS releases [41]
and SemRep’s optimized conceptual and relational modifications for said release
(though, the most recent UMLS dataset is available as an option).

e We use the word sense disambiguation option of MetaMap, with the semantic type
indexing method for disambiguation [59].

e We rely on the NegEx [60] algorithm as implemented in MetaMap to recognize
negated mentions, but we use a narrower window size than MetaMap for negation
(within a window of 2 concepts). We also use a customized negation trigger list for
biomedical literature (354 triggers, including fail toandno evidence)and
apply NegEx processing to all semantic types?.

e We suppress some mappings identified by MetaMap to account for spurious
ambiguity in the UMLS Metathesaurus. We start by blocking spurious
Metathesaurus synonyms, which we name dysonyms, from being considered by
MetaMap in candidate mapping evaluation. Dysonyms are only truly synonymous
with a specific UMLS concept in a limited domain covered by one of the constituent
UMLS terminologies, but are not valid broadly. We identify dysonyms by considering

INote that our definition of a noun phrase ignores concepts expressed over more complex, post-modified noun phrases,
such as pain in the leg, which would be parsed as a noun phrase followed by a prepositional phrase.

21t is worth noting that additional MetaMap options can be accommodated in SemRep using mm_add option, or the
default MetaMap options can be turned off using mm_sub option, though SemRep in generic mode uses neither.
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substring relationship between the synonym and the preferred name of the
corresponding UMLS concept. For example, in the Metathesaurus, influenza is a
synonym of the concept C0021403: Influenza virus vaccine, in addition
to being a synonym of the concept C0021400: Influenza. The validity of the
former is limited to specific contexts discussing the vaccine. The synonym
influenza is a substring of the preferred name Influenza virus vaccine,
so it is taken as a dysonym with respect to this concept. Thus, the concept
C0021403: Influenza virus vaccine is blocked from being used as a
mapping for the string influenza. There are some exceptions to dysonym processing.
Some synonyms are allowed even though they satisfy the substring constraint,
because the remaining part of the preferred name consists of a general term which
does not invalidate the mapping. Such terms include procedure, disorder, or gene. In
addition to substring processing, we maintain a list of dysonyms that do not satisfy
the substring constraint. Our current list includes 706 such items that allow us to
block mappings such as best mapping to C0339510: Vitelliform
dystrophy or favor to C0309050: FAVOR, a supplement brand name.

ABGene

NCBI Gene database [58] serves as a supplementary source to the UMLS Metathesaurus
with respect to gene/protein terms, as the Metathesaurus coverage for these terms is not
exhaustive. In SemRep, we recognize gene/protein mentions using ABGene [44] in addi-
tion to MetaMap. Mapping to NCBI Gene identifiers is facilitated by a pre-computed
index, in which gene aliases and the corresponding official symbols (and their identi-
fiers) in NCBI Gene are used as key-value pairs. This index is currently limited to human
genes/proteins. We use exact matching criterion between the mention and a gene alias to
map mentions identified by ABGene and MetaMap to NCBI Gene identifiers. The iden-
tified NCBI Gene term is assigned the semantic type Gene or Genome. A mention can
be mapped to several NCBI Gene terms. We do not perform disambiguation on these
terms and simply provide all NCBI Gene terms identified through exact matching. We do
not distinguish between genes and the gene products (proteins) using the same symbol, in
line with most other NLP systems. In the text snippet Ataxin-10 interacts with O-GlcNAc
transferase OGT below, Ataxin-10 is mapped to both UMLS Metathesaurus and NCBI
Gene and OGT only to NCBI Gene.

e Ataxin-10 — C1538308: ATXN10 gene|25814: ATXN10 (Gene or
Genome)
e OGT— 8473: OGT (Gene or Genome)

Domain extensions

Domain extensions to SemRep enable extraction of semantic relations in specific domains
under-represented in the UMLS (e.g., disaster information management [35]). These
extensions were later incorporated into unified SemRep as processing options (e.g.,
-domain disaster for disaster information management).

A domain extension is formalized as a set of Prolog statements about concepts and
relations in a new domain (see Rosemblat et al. [46] for a comprehensive discussion).
Briefly, four types of terminological extensions are formalized as presented below, with
illustrative examples from the disaster information management domain.
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e Semantic types relevant to the domain (e.g., Community Characteristics)

e Domain-inappropriate UMLS mappings to block (e.g., board — C0972401:
Boards (Medical Device))

e Recontextualized UMLS concepts (e.g., C0205848: Death Rate
(Quantitative Concept) recontextualized as C0205848: Death Rate
(Community Characteristics))

e New domain concepts and their synonyms (e.g., D0000233: Health Alert
Notice (Information Construct) with synonymshealth alert and
health alert notice)

These terminological extensions are applied as the last step of the referential analysis.
Extensions related to domain relationships, relevant in the relational analysis step, are
discussed in later sections.

Based on the domain extension formalization, beginning with the 1.8 release, we
provide two additional options to customize the generic SemRep processing for
increased coverage. The generic domain extension option (-N) allows SemRep to
use an extended set of concepts, while the generic domain modification (-n) allows
recontextualizing existing UMLS concepts. An example in the extended concept set
is G0000211: cancer-free survival (Organism Function) with the syn-
onym cancer-free survival, a common outcome measurement with no corre-
sponding concept in the UMLS Metathesaurus. An example of a recontextualized UMLS
concept is C0337664: Smoker, whose semantic type is changed from Finding to
Population Group/Human. These extensions, implemented through manual analy-
sis of SemRep results over the years, aim to address UMLS Metathesaurus limitations and
to increase SemRep precision/recall. The extended concept set currently consists of 588
new concepts and 336 recontextualized UMLS concepts.

Post-referential analysis

Referential analysis is followed by empty head marking, coordination processing, and
optionally, sortal anaphora resolution. These steps expand the scope and specificity of
relational analysis (see next section) by filtering out semantically empty words/phrases
and establishing semantic dependencies between NPs.

Empty head marking

SemRep considers the head of a NP its most salient semantic element, and the rela-
tional analysis relies heavily on the semantics of the head. A common feature in the
biomedical literature is that NP heads can be semantically empty with respect to the
UMLS Metathesaurus, as they can be generic expressions with a non-informative seman-
tic type. Such nouns are sometimes referred to as empty heads [61]. For example, in
the clause activation of CYP2C9 variants by dapsone, the head of the NP CYP2C9 vari-
ants (i.e., variants) is considered an empty head as it is mapped to a concept with the
uninformative semantic type Qualitative Concept. In such cases, the most salient
element of the phrase is generally the modifier preceding the empty head. We main-
tain a list of empty head nouns in SemRep (241 nouns), and adjust the syntactic analysis
when a NP is headed by an empty head. In these cases, the first modifier to the left
of the empty head (CYP2C9 in the example above) is relabeled as the semantic head
of the NP. In addition to genetic phenomena (such as variant, polymorphism), this list
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includes measurement- (e.g. concentration) and process-related words (e.g., synthesis,

metabolism).

Coordination processing
SemRep performs limited coordination processing, focusing primarily on NP coordina-
tion. The process first determines whether each coordinating conjunction (e.g., and, or)
conjoins NPs. Several multi-word expressions (followed by, in combination with, but not)
are also treated as coordinating conjunctions. Conjunctions preceding coordinate NPs
(e.g., either, both) are ignored.

For a conjunction that conjoins NPs, we check whether the NPs before and after the
conjunction are compatible (i.e., they are conjuncts). Two NPs are compatible only if one
of the following conditions apply:

e They are semantically compatible. The semantic types associated with their semantic
heads belong to the same semantic group [62] in the UMLS Semantic Network (i.e.,
coarse-grained semantic classes, such as Disorders or Drugs & Chemicals).

e They have the same head word.

e They are both relational nouns. SemRep currently uses a list of 151 relational nouns,
which includes application, analysis, and synthesis.

If the NPs to the left and to the right of the conjunction are conjuncts, we try to detect
series coordination by repeating the process for NPs occurring further to the left of the left
NP and separated from it by a comma. This process is terminated when an incompatible
NP or a barrier word is encountered. Barrier words in this case include between, either,
against, such as, including.

In the snippet osteosarcoma, melanoma, and breast cancer, SemRep is able to recog-
nize that the NPs osteosarcoma, melanoma, and breast cancer are conjuncts, as they are
semantically compatible (all belong to Disorders semantic group) and are separated by
the coordinating conjunction and and commas.

We currently do not address more complex cases of coordination, such as verbal/clausal
coordination (e.g., Infections can trigger GBS and exacerbate CIDP.) and coordination
ellipsis (e.g., the male and the female genital tract).

Sortal anaphora resolution

Coreference resolution is the task of identifying textual expressions referring to the
same real-word entity [63]. Sortal anaphora (also called nominal anaphora) is a type of
coreference indicated by a NP (anaphor), which refers to a previously mentioned entity
(antecedent). An example of sortal anaphora can be the NP this disease (anaphor) refer-
ring to diabetes (antecedent) mentioned earlier in the discourse. Resolution of sortal
anaphora is optional in SemRep and, when used, not only can it increase the specificity
of the generated relations, but it can also expand the scope of relation extraction beyond
the sentence level.

Sortal anaphora resolution in SemRep and its effect on relation extraction is discussed
in depth in Kilicoglu et al. [50]. Briefly, this process consists of two steps: anaphor
detection and linking of anaphors to their corresponding antecedents. In the first step,
candidate anaphoric NPs are recognized based on whether they contain a determiner
or an adjective that can indicate a sortal anaphor (e.g., these, each, such). These phrases
are then checked for anaphoricity, and non-anaphoric phrases are filtered out. One
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anaphoricity filter ensures that the candidate NP is not in an appositive construction. For
example, in the clause the gene, BRCAI, is..., the gene is non-anaphoric because it is in
an appositive structure. Linking of anaphors to their antecedents relies on semantic com-
patibility and grammatical number agreement. One semantic compatibility constraint
relies on taxonomic relations between UMLS Metathesaurus concepts, and requires that
the concept associated with the anaphor (A) be an ancestor of the concept associated
with the candidate antecedent (B). For example, this constraint predicts that the NP cet-
irizine (B) can be an antecedent for the anaphor this drug (A). The anaphor and the
antecedent are also required to have number agreement (both singular or both plu-
ral). Sortal anaphora resolution accounts for coordination, potentially linking a sortal
anaphor like these drugs to several coordinate NPs as in the snippet low-dose diuretics,
beta-blockers, and dihydropyridine calcium antagonists.

Pronominal anaphora (e.g., the pronoun it referring to the drug cetirizine) is less
frequent in biomedical literature [64] and is currently unaddressed in SemRep.

Relational analysis

Relational analysis is the process of predication generation based on lexical, syntac-
tic and semantic knowledge collected in the previous steps. Two types of predications,
hypernymic predications (i.e., ISA) and comparative predications (e.g., HIGHER_THAN),
are generated through specialized machinery [29, 48]. All other associative predications
are generated using a uniform trigger detection and argument identification mecha-
nism. The final step of relational analysis is inferencing, in which generated predications
form the basis for generating additional, more specific predications. These steps are
described below. For brevity, we generally omit concept identifiers or semantic types in
the examples.

Hypernym resolution
A hypernymic predication involves two concepts in a taxonomic (ISA) relationship, the
subject argument semantically more specific (hyponym) and the object more general
(hypernym). The generation of such predications in SemRep is discussed in detail in
Rindflesch and Fiszman [29].

In short, SemRep focuses on three syntactic manifestations of such predications:

e Nominal modification: The head and the modifier of a NP correspond to a candidate
hyponym/hypernym pair (e.g., the anticonvulsant gabapentin).

® Appositive structures: Two NPs in an appositive construction contain the candidate
pair (e.g., Non-steroidal anti-inflammatory drugs such as indomethacin)

e Verbal triggers: Two NPs separated by one of two verbs (be or remain) and within a
pre-specified window size of each other (5 phrases) contain the candidate pair (e.g.,
Modafinil is a novel stimulant ...)

After a candidate pair has been identified, regardless of the structure, it is subjected
to UMLS-based semantic constraints. First, we require that the concepts of the pair be
in the same semantic group. Concepts in two specific semantic groups (Anatomy and
Concepts & Ideas) are excluded from consideration in this step; the former because
the UMLS hierarchy includes some meronymic relations (PART-OF) [65] that can interfere
with hypernymy processing and the latter because it is too heterogeneous with respect
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to the semantic types it contains to be useful (e.g., Temporal Concept and Group
Attribute). The second constraint is that the concepts must be in a hierarchical
relationship in the UMLS Metathesaurus concept hierarchy.

Based on the constraints, SemRep generates the predication gabapentin-ISA-
Anticonvulsants from the snippet the anticonvulsant gabapentin.

Comparative processing

SemRep focuses on interpretation of two types of comparative structures, one in which a
comparison is simply stated in the text, as in Example (2) below, and the other in which
the relative ranking of two compared terms on a scale is also indicated (Example (3)).
For both types, SemRep generates a COMPARED_WITH predication. For the second type,
it also generates a predication indicating the relative value on the scale (HIGHER_THAN,
LOWER_THAN, or SAME_AS), as well as the name of the scale that is the basis for compar-
ison. The scale in this example is identified as the EFFECTIVENESS scale, based on the cue
effective.

(2) To compare misoprostol with dinoprostone for cervical ripening ...
Misoprostol-COMPARED_WITH-Dinoprostone

(3)  Amoxicillin-clavulanate was not as effective as ciprofloxacin for treating

uncomplicated bladder infection ....
Amoxicillin-Potassium Clavulanate
Combination-COMPARED_WITH-Ciprofloxacin
Amoxicillin-Potassium Clavulanate

Combination-LOWER_THAN-Ciprofloxacin

The process for generating comparative predications is detailed in Fiszman et al. [48].
Briefly, two sets of lexico-syntactic patterns are used, one for each type of com-
parative structures. For example, the pattern <comparison of Terml with/to
Term2> identifies a construction of the first type, while <Terml BE as ADJ as
{BE} Term2> addresses the second type of construction, in which BE indicates a form
of the verb be, and {BE} indicates that this verb is optional. The patterns are recognized
using the syntactic structure already identified. In addition, semantic compatibility con-
straints are applied to Term1 and Term?2, as in hypernymy and coordination processing.
Comparative processing was initially limited to interventions and it was later expanded

to apply to all semantic groups.

SemRep relation ontology

Before describing the generation of associative predications, it is important to briefly dis-
cuss the SemRep relation ontology, as it is an essential resource underlying the rest of
the steps. The SemRep ontology is an extension of the UMLS Semantic Network, and
serves as an upper-level domain model consisting of predicate types (e.g., TREATS) and
the relationships that can hold between semantic types (i.e., ontological predications). An
example ontological predication is Pharmacologic Substance-TREATS-Disease
or Syndrome.

In the SemRep ontology, we use a subset of the 55 relations in the UMLS Semantic Net-
work. We redefined five relations (ASSOCIATED_WITH, DISRUPTS, INTERACTS_WITH,
OCCURS_IN, PROCESS_OF), added seven new relations (ADMINISTERED_TO, AUGMENTS,
COEXISTS_WITH, CONVERTS_TO, INHIBITS, PREDISPOSES, STIMULATES), and expanded
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13 relations with respect to their ontological predications (AFFECTS, CAUSES, COM-
PLICATES, DIAGNOSES, LOCATION_OF, MEASURES, METHOD_OF, PART_OF, PRECEDES,
PREVENTS, PRODUCES, TREATS, USES), while excluding 30 relations (e.g., ANALYZES,
ADJACENT_TO, BRANCH_OF). In all, 25 relations (excluding 1SA and comparative predi-
cates) are used in the SemRep ontology. For descriptions of all predicates and examples
in which they apply, see the Appendix in Kilicoglu et al. [15].

SemRep ontology defines semantic constraints on arguments and, thus, it plays a cen-
tral role in linking a predicate to its arguments. In this process, ontological predications
from the original UMLS Semantic Network are considered first, followed by those in a
supplementary ontology manually developed over time. Currently, we use a total of 7398
ontological predications: 3100 (41.9%) from the UMLS Semantic Network and the rest
(4298 - 58.1%) from the supplementary ontology. A full list of ontological predications in
the SemRep ontology is provided as supplementary material in Additional file 2.

Each domain extension of SemRep defines its own supplementary ontology to be used
to augment the UMLS Semantic Network. For example, the disaster information manage-
ment extension defines 14 predicate types (e.g., ALERTS) and 556 ontological predications
(e.g., Organization-MONITORS-Virus).

Trigger detection with indicator rules

Excluding hypernymic and comparative predications, generation of other types of predi-
cations begins with the detection of lexical elements and syntactic structures that trigger
particular predicate types. This is achieved using indicator rules, each of which maps a
lexical entry (with a specific part-of-speech tag and, optionally, an argument cue) to one
of the 25 predicates that SemRep uses. Some indicator rules are structural rather than
lexical, mapping the modifier-head structure in an NP to a predicate [66]. Lexical ele-
ments currently included in indicator rules are verbs, nominalizations and other relational
nouns (including gerunds), prepositions, and adjectives. Argument cues are only rele-
vant for verbs and nouns, and are used to place syntactic restrictions on the arguments
that the predicate can take. Two example indicator rules are given below (in the form of
LexicalItem:PartOfSpeech:Cue (Argument) — PREDICATE):

® treat:verb:none — TREATS
® treatment:noun:with (subject) — TREATS

The first rule indicates that a token with the lemma treat, when tagged as a verb (e.g.,
treated, treats), triggers the predicate TREATS. The fact that there is no Cue element
(none) indicates that the arguments of the verb should not be cued by a preposition (i.e.,
they can be in an NP). This rule would be fired for the snippet Aspirin treats headache.
The second rule indicates that the nominalization treatment can trigger the predicate
TREATS, provided that a subject argument can be found in a prepositional phrase intro-
duced by with. This rule would be triggered for the snippet treatment of headache with
aspirin. One modifier-head indicator rule involves the PROCESS_OF predicate, and would
be triggered for the NP diabetic patients.

A small number of indicator rules involve more complex phrasal and clausal elements,
such as increased risk and {increase, odds}, both with the object cue for,
corresponding to the predicate PREDISPOSES. In the latter, the comma indicates that
determiners or other modifiers are allowed between the trigger words (e.g., increase the
odds).
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SemRep currently uses a total of 1366 indicator rules: 1256 consist of a single word,
105 based on phrases and clausal elements, and 5 based on the modifier-head struc-
ture. INTERACTS_WITH is the predicate with the highest number of indicator rules (195)
and MEASURES the one with the lowest (6). A full list of indicator rules is provided as
supplementary material in Additional file 3.

Domain extensions in SemRep also incorporate a set of indicator rules. Two indicator

rules from the disaster information management domain are:

® caution:verb:none — ALERTS

e contamination:noun:none — INFECTS

Argument identification

SemRep ontology and indicator rules in conjunction with the syntactic/semantic knowl-
edge associated with phrases underpin argument identification. Different syntactic
argument identification rules are triggered based on the class of the indicator (verb,
preposition, etc.). Other constraints apply broadly. For example, one constraint limits the
use of an argument in multiple predications (argument reuse below). The arguments of
a predicate are not allowed to be conjuncts unless the triggering indicator rule has the
argument cue between-and. Most importantly, the predication generated by the argu-
ment identification process must be licensed by an ontological predication in the SemRep
ontology. Below, we briefly describe and exemplify the syntactic rules. These rules also

apply in domain extensions without any modifications.

Verbal indicator rules Syntactic argument identification rules for verbal indicators
stipulate that the subject argument must occur to the left of the verb and the object
to the right. If a verb is recognized as being in passive voice, the order of its argu-
ments is reversed. If the indicator rule being applied specifies an argument cue, we
require that the argument be in a prepositional phrase marked by that cue. In the
example below, Urinary tract infection (Disease or Syndrome) is rec-
ognized as the subject argument and Pyelonephritis (Disease or Syndrome)
as the object, due to the indicator rule and the ontological predication below.

(4) ...pyelonephritis in cattle most commonly result from ascending urinary tract
infection
Indicator rule: result :verb: from(subject) — CAUSES
Ontological predication: Disease or Syndrome-CAUSES-Disease or
Syndrome

SemRep output: Urinary tract infection-CAUSES-Pyelonephritis

Prepositional indicator rules The primary constraint for prepositional indicators is
that the subject be to its left, with the object being in the NP introduced by the prepo-
sition. Two other constraints are aimed at more precise recognition of the subject
arguments [67]. One uses subcategorization information from the lexical lookup so only
those prepositions not subcategorized for by the head word preceding the preposition
can act as triggers. The other constraint limits the subject argument of prepositions of,
for, from, and with to the preceding NP. An example of a predication generated due to
a prepositional indicator rule is:
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(5) ...vertical banded gastroplasty for morbid obesity

Indicator rule: for : prep:none — TREATS

Ontological predication: Therapeutic or Preventive
Procedure-TREATS-Disease or Syndrome

SemRep output: Vertical-Banded Gastroplasty-TREATS-Obesity,
Morbid

Nominal indicator rules Syntactic constraints that apply to nominalizations and other
argument-taking nouns (e.g., treatment and therapy, respectively) are significantly
more complex and are based on 14 nominal alternation patterns identified in prior
work [49]. These patterns include one in which both arguments are to the right of the
indicator (treatment of fracture with surgery) and another in which both arguments pre-
cede the indicator as modifiers (surgical fracture treatment). Syntactic constraints based
on these alternation patterns consider the position of the arguments with respect to each
other and to the nominal trigger, and whether they modify the trigger or not (see Kilicoglu
et al. [49] for details). A few points are worth repeating here. First, syntactic constraints
for nominal triggers consider not only prepositional cues specified in the indicator rules
but also verbs (most commonly a form of be), comma, or parenthesis as cues. Second,
verbs, comma, parenthesis, and the prepositions by, with, and via act as cues for sub-
ject arguments only. Third, the preposition of acts as a cue for subjects only if the trigger
has an obligatory object cue (e.g., the contribution of stem cells to kidney repair where
to is an obligatory object cue for contribution). Lastly, a class of nominal indicators (e.g.,
cause) do not allow a prepositionally cued subject. An example is given below.

(6) ...the contribution of stem cells to kidney repair
Indicator rule: contribution:noun:to (object) — AFFECTS
Ontological Predication: Ce11-AFFECTS-Organism Function
SemRep output: Stem cells-AFFECTS-Wound healing

Adjectival indicator rules Syntactic constraints for adjectival indicators are largely sim-
ilar to those for verbs, except for hyphenated adjectives, for which the subject and object
arguments are required to be in the same phrase as the indicator, to its left and to its right,
respectively [67].

(7)  ErbB2-mediated tumorigenesis
Indicator rule: mediated:adj :none — AFFECTS
Ontological predication: Gene or Genome-AFFECTS-Neoplastic Process
SemRep output: ERBB2 Gene-AFFECTS-Tumorigenesis

Argument reuse A broadly applicable syntactic constraint concerns argument reuse,
which stipulates that no argument can be used in the interpretation of more than one
predication without license. Two licensing phenomena are accounted for: coordination
and relativization. With respect to coordination, if a conjoined NP is found to be an
argument of a semantic predicate, then all NPs conjoined with that NP must also be
arguments of a predication with that predicate. In the example below, pyelonephritis is
coordinated with cystitis and urethritis. For this reason, in addition to Urinary tract
infection-CAUSES-Pyelonephritis, two additional predications are generated,
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illustrating the reuse of the subject argument Urinary tract infection dueto NP
coordination.
(8)  Cystitis, urethritis and pyelonephritis in cattle most commonly result from
ascending urinary tract infection ...
Urinary tract infection-CAUSES-Pyelonephritis
Urinary tract infection-CAUSES-Cystitis
Urinary tract infection-CAUSES-Urethritis

Heads of relative clauses are also allowed to be used in more than one predication.
The syntactic structure identified by SemRep does not explicitly mark relative clauses. As
an approximation, we recognize the head of a relative clause when it precedes an overt
relativizer (such as which) or when it precedes a prepositional phrase, of which it is an
argument (a reduced relative clause). This licensing rule allows construction of the first
CAUSES predication from the example above (Urinary tract infection-CAUSES-
Pyelonephritis). This is because the predication in (9) below has already been
generated from this snippet; the preposition in acts as the indicator and is immediately to
the right of the NP pyelonephritis, the reduced relative clause head.

(9) Pyelonephritis-PROCESS_OF-Cattle

Negation processing

Once the arguments of a semantic predicate are identified, we check whether the predi-
cate or either of the arguments is negated. If so, a negated counterpart of the predication
is generated (e.g., Aspirin-NEG_TREATS-Headache, instead of Aspirin-TREATS-
Headache). To recognize negation of arguments, we rely on NegEx machinery in
MetaMap, with customizations (described earlier).

For the negation of predicates, several rules have been implemented. One is restricted to
predications generated from modifier-head structures. We look for the prefix non- before
the modifier in such cases, and if found, we generate a negated predication. For example,
in non-diabetic patients, the generated predication is Diabetes-NEG_PROCESS_OF-
Patients.

When the arguments are from different NPs, the process is more involved. We begin
by marking triggers that may indicate predicate negation. These include not, neither,
no, without, unable, and failure. Some of these triggers do not indicate nega-
tion (pseudo-negation) when they are followed or preceded by particular words (e.g., not
only, not necessarily, without doubt, and no more than). We exclude
pseudo-negation from consideration. For each predicate, we check whether it is in the
scope of a negation trigger. A predicate is in the scope of a negation trigger if it immedi-
ately follows the trigger or the tokens between the predicate and the negation trigger are
adverbs or part of a verbal complex (i.e., they have the part-of-speech tag modal, verb, or
auxiliary). If this constraint is satisfied, a negated predication is generated. In the example
below, the negation trigger is not.

(10)  Overnight incubation with 1 microM safrole did not alter cell proliferation

Indicator rule: alter:verb, none — AFFECTS
SemRep output: Safrole-NEG_AFFECTS-Cell Proliferation

It is also worth noting that some indicator rules accommodate negation implic-
itly. For example, the verb lack is directly mapped to several negated predicates
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(NEG_PROCESS_OF, NEG_PART_OF, among others). If such an indicator is negated in

text (as in did not lack), a positive predication gets generated (PROCESS_OF instead of
NEG_PROCESS_OF).

Incorporating sortal anaphora resolution with predication generation

In the discussion of argument reuse above, we illustrated how coordination can lead

to the generation of additional predications. Similarly, when used as an option, sor-

tal anaphora resolution can lead to the construction of additional predications. It

can also lead to a more specific predication than originally generated. In the sim-

ple case, if one of the identified arguments corresponds to an anaphoric expression,

the resulting predication will have the antecedent in the same argument position.

If the anaphora is a case of set-membership anaphora, we generate multiple predi-

cations, with each antecedent occupying the same argument position in a different

predication [50]. In the example presented below, without anaphora resolution we only

generate the predication Pharmaceutical Preparations-TREATS-Pulmonary

arterial hypertension in the second sentence. With anaphora resolution, this

predication is substituted by three more specific, cross-sentence predications.

(11)

There are currently 3 classes of drugs approved for the treatment of PAH:
prostacyclin analogues, endothelin receptor antagonists, and phosphodiesterase
type 5 inhibitors. .. the current evidence supports the long-term use of these drugs
for the treatment of patients with PAH. S

e Before: Pharmaceutical Preparations-TREATS-Pulmonary

arterial hypertension
e After: Epoprostenol-TREATS-Pulmonary arterial

hypertension
After: Endothelin receptor antagonist-TREATS-Pulmonary

arterial hypertension
After: Phosphodiesterase 5 inhibitor-TREATS-Pulmonary
arterial hypertension

Inferencing

The final step in relational analysis is drawing inferences based on generated predications.

Inferencing is based on a set of rules that combine two predications into a single more spe-

cific one, increasing expressivity of predications and potentially their usefulness. These

rules are applied at the sentence level. There are currently 13 inference rules. The rules

are implemented in the form of IF < premise > THEN < conclusion > rules.

The premise is stated as a pair of generated predications and the conclusion as a new

predication. An example is given below, with the predications generated with inferencing
marked as such (INFER).

(12)

replacement arthroplasty for adults with an extracapsular hip fracture
Rule: IF <X-TREATS-Y AND Z-PROCESS OF-Y> THEN
<X-TREATS-Z>

Premisel: Hip Fractures-PROCESS_OF-Adult

Premise2: Arthroplasty, Replacement-TREATS-Adult
Conclusion: Arthroplasty, Replacement-TREATS(INFER)-Hip

Fractures
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Table 2 Results of prior intrinsic SemRep evaluations

Evaluation type # Sentences # Predications Precision Recall
Gene-disease relations [42] 1000 1124 0.76 -
Pharmacogenomic relations [47] 300 850 0.73 0.55
Hypernymic relations [29] - 830 0.83 -
Comparative structures [48] 287 288 0.96 0.70
Nominal predications [49] 300 300 0.75 0.57
Substance interactions [73] 200 489 0.59 044
Gene-function relations [73] 100 200 0.65 042
Results

In this section, we first briefly discuss prior focused evaluations of SemRep. Next,
we present two new evaluations of SemRep performance, one using the SemRep test
collection [15] and the other using the CDR corpus [1].

Prior evaluations

Some of prior SemRep evaluations were intrinsic, focusing on SemRep performance on
a specific linguistic structure (e.g., comparative predications [48]) or a specific domain of
predications (e.g., pharmacogenomics [47]). With the considerable difficulty of generating
a gold standard of semantic predications based on the UMLS domain knowledge, some
of these intrinsic evaluations focused only on precision, while others considered both
precision and recall. We present a summary of these evaluations, along with citations to
the corresponding studies, in Table 2.

SemRep has also been extrinsically evaluated for its contribution to downstream tasks.
These tasks include automatic summarization [68-70], ranking drug interventions for
diseases [71], drug indication extraction [72], discovery of drug-drug interactions in
clinical data [73], and question answering [74].

Evaluation on the SemRep test collection

In this study, we used the SemRep test collection [15] for a broad performance evaluation
of SemRep release 1.8. The SemRep test collection consists of 1371 semantic predications
from 500 sentences randomly selected from 308 PubMed abstracts on a wide range of top-
ics. We used the default processing options of SemRep, and calculated precision, recall,
and F; score as evaluation metrics.

The results of this evaluation are given in Table 3. In strict evaluation, in which a perfect
match of concepts and predicates was required for a true positive predication, SemRep
yielded 0.55 precision, 0.34 recall, and 0.42 F; score. We noted that in some cases strict
evaluation overpenalized SemRep or that the test collection had problems (i.e., missing
predications or incorrect annotations). The relaxed evaluation, which takes these issues
into account, yielded 0.69 precision, 0.42 recall, and 0.52 F; score. We consider the relaxed
evaluation as a more accurate characterization of SemRep performance.

Table 3 SemRep 1.8 evaluation against the test collection

Precision Recall Fi
Strict evaluation 0.55 0.34 042
Relaxed evaluation 0.69 042 0.52

Relaxed evaluation allows interchangeable concepts and ignores test collection annotation errors



Kilicoglu et al. BMC Bioinformatics (2020) 21:188 Page 18 of 28

We also analyzed the errors that SemRep made (false positives and false negatives)
and categorized them according to their root causes. In brief, we found that most errors
occurred in the relational analysis steps (51.5%). On the other hand, MetaMap processing
was the subcategory that accounted for the highest number of errors (26.9%). More details
about the error analysis and relevant examples are provided as supplementary material in
Additional file 1.

Evaluation on the CDR corpus

In the second evaluation, we assessed SemRep on a standard benchmark corpus. We
considered the CDR corpus [1], developed for the BioCreative V CID task and manu-
ally annotated for chemical-induced disease relationships. We used the test set portion
of this corpus, which consists of 500 abstracts. Each abstract in the corpus is annotated
with chemical and disease mentions normalized to MeSH identifiers. Causal relation-
ships between normalized chemical-disease pairs are annotated at the abstract level.
No relation triggers are annotated. In 27.2% of the relationships, entity pairs do not
co-occur in the same sentence of the abstract (i.e., they are cross-sentence relation-
ships) [75]. In addition to measuring SemRep performance on the entire CDR test
set (SemRep-ALL, 1066 ground truth relationships), we also measured it limiting the
ground truth relations to those involving entities that co-occur within the same sen-
tence, as SemRep operates at the sentence level by default (SemRep-SENTENCE, 746
relationships).

To enable automatic evaluation on the CDR corpus, we mapped all MeSH identifiers in
this corpus to UMLS CUIs using the UMLS REST API. As the relationships in the cor-
pus are causal, we limited the evaluation to semantic predications with causal predicates:
CAUSES, AFFECTS, AUGMENTS, STIMULATES, PREDISPOSES, and ASSOCIATED_WITH.
We measured precision, recall, and F; score. We assessed semantic predications using the

following criteria:

e True positive: SemRep predication arguments match the chemical-disease pair with
respect to CUI identifiers, UMLS preferred names, or mentions. If a predication
argument is a more specific concept than the corresponding entity in the CDR
corpus, this is also considered a match (e.g., the ground truth disease is seizures and
the predication disease is clonic seizures).

e False positive: Predication arguments match entities in the ground truth but no
relationship is annotated between the entities in the corpus. Another case is one in
which a predication contradicts a ground truth relationship, i.e., predication
arguments match those of a ground truth relationship, but the predicate type is an
opposing relation type. Opposing types in this case are TREATS, PREVENTS, in
addition to the negated counterparts of the causal predicate types above [76].

All ground truth relationships without a matching predication are considered false
negative instances.

The results of this evaluation are provided in Table 4, along with comparable results
from the best-performing system in the BioCreative V CID task [19] as well as the
state-of-the-art results [20]. Note that we limited the comparison to those systems
that performed named entity recognition as well as relation extraction (i.e., end-to-end
systems). Using SemRep 1.8, we achieved superior precision (0.90), at the expense of
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Table 4 Evaluation against the CDR corpus

Precision Recall Fi
SemRep-ALL 0.90 0.24 0.38
SemRep-SENTENCE 0.90 0.35 0.50
Xuetal. [19] 0.56 0.58 0.57
Peng et al. [20] 0.66 0.57 061

SemRep-ALL indicates the case in which all ground truth relations are taken into account. SemRep-SENTENCE indicates the
scenario in which only the intra-sentence ground truth relations are considered. Xu et al. [19] was the top-ranking system in the
BioCreative V CID task and Peng et al. [20] reported best post-challenge results. Both systems perform end-to-end relation
extraction

relatively low recall (0.24 with SemRep-ALL and 0.35 with SemRep-SENTENCE). Sem-
Rep does not attempt to recognize cross-sentence relationships; thus, the performance
reported on the sentence-level evaluation (SemRep-SENTENCE) can be considered a
fairer representation of its capabilities.

Discussion

SemRep evaluation

Considering its breadth, SemRep provides reasonable precision on the test collection
(0.69), while its recall is low (0.42), as is typical of rule-based systems. Error analysis
revealed named entity recognition and normalization (NER) using MetaMap/UMLS as
the single most problematic area in SemRep processing (26.9% of errors). This is not
entirely surprising; in a recent evaluation [77], MetaMap yielded F; scores in the range of
0.37-0.67 on various benchmark biomedical corpora. Limitations of MetaMap are com-
pounded by the fact that the UMLS Metathaurus has been designed as a compendium
of biomedical vocabularies, rather than a single, internally consistent terminology with a
common architecture, rendering problematic its use as an terminological resource.

With respect to core aspects of SemRep processing (post-referential and relational anal-
ysis steps), the limitations of argument identification rules are the biggest source of errors
(14%), followed by trigger detection errors (12.5%). In the absence of full dependency
grammar, syntactic argument identification rules are underspecified and leave most of
the heavy lifting to semantic constraints, which can fail in complex sentences contain-
ing multiple concepts of the same semantic group, leading to precision (type I) errors.
Trigger detection errors, on the other hand, are mostly recall (type II) errors, indicating
missing indicator rules. We note that some of these missing indicator rules had in fact
been part of SemRep before, but have later been deactivated, as they led to too many false
positives. This trade-off between precision and recall is an ongoing concern with Sem-
Rep. Prepositional indicators can be too ambiguous, and while recent enhancements [67]
improved precision of predications generated by prepositional indicators, they still cause
a significant number of errors.

Pre-processing (pre-linguistic and lexical/syntactic analysis steps) causes about 5% of
the errors. A significant portion of these errors are due to part-of-speech disambiguation
with the MedPost tagger, which was unexpected considering its restricted use in SemRep.
A particular difficulty is the tagging of gerunds and participles, which can lead to errors
in downstream shallow parsing, and in turn, referential and relational analysis. Shallow
parsing per se did not cause as many errors as might have been expected (1.4%), suggest-
ing that underspecified argument identification rules combined with semantic constraints
compensate, to some extent, the lack of full constituent or dependency parsing in SemRep.
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Comparison to other relation extraction systems

Comparison of SemRep to other systems has been rare, primarily because there is no
single relation extraction system targeting the UMLS domain knowledge with the same
scope and coverage. A fair comparison requires adapting SemRep to task/corpus spec-
ifications or significant post-processing of its output. One notable exception was the
evaluation of SemRep’s sortal anaphora resolution module on the BioNLP protein coref-
erence dataset [78], which yielded results slightly better than the state-of-the-art results
at the time [50].

In this study, we evaluated SemRep on the CDR corpus, a widely-used relation extrac-
tion benchmark. While precision was significantly higher than the reported best results
on this corpus, recall lagged behind. Low recall was not surprising, as SemRep did not
attempt to extract relations beyond sentences, which accounted for about 27% of all rela-
tions in the corpus. It is also important to note the several important differences between

SemRep and the systems to which it was compared:

e SemRep was not trained on the CDR corpus or on any other weakly labeled data.

e These systems incorporate named entity recognizers also specifically trained on this
corpus, which yield higher performance than MetaMap.

e High-performing systems use external knowledge base features that are highly
predictive, such as those derived from Comparative Toxicogenomics Database which
contains curated chemical-induced disease relationships.

® A significant portion of the relations in the CDR corpus are implicit, temporal
inferences®, rather than explicit assertions [75], and SemRep’s inferencing machinery
does not extend to such veiled inferences.

On the other hand, SemRep’s high precision on the corpus was state-of-the-art, and con-
firms that SemRep predications can be beneficial for this task as features or embeddings
with high predictive value, as was explored to some extent previously by Pons et al. [79].
Most current relation extraction systems are based on machine learning models, trained
and evaluated on standard benchmark corpora. Their generalizability to unseen relation
and text types is generally found to be limited. While types of features used by systems
trained on different corpora are generally similar, they often require retraining and fine-
tuning to be successful on a different corpus [28]. Domain adaptation techniques have
been applied to address this problem [17, 18, 80] with limited success, depending on
the similarity of the source and target corpora. Given these issues and the difficulty of
manually annotating corpora, it can be desirable to develop systems that can be gener-
ally applicable without much training data or customization. Even when such systems
are less successful on a given benchmark corpus than models specifically trained on that
corpus, they can still have great value as strong baseline systems, as demonstrated by
MetaMap [41], one such system focusing on biomedical NER that has found widespread
use. SemRep aims to serve as such a broad-coverage, strong baseline relation extraction
system. SemRep also adopts an incremental development philosophy, allowing gradual
improvements to the program. More importantly, its results are interpretable/explainable,
because it is a rule-based system. This is unlike most machine learning approaches that
produce black-box models, which is increasingly seen as a problem, particularly in the

3 An example is the causal relationship between methotrexate and acute renal failure inferred from the sentence Acute
renal failure after high-dose methotrexate therapy in a patient with ileostomy.
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biomedical domain [81]. With these features and goals, SemRep stands apart from most
biomedical relation extraction systems currently available. It is worth noting that some of
the more successful systems that have been developed under DARPA’s recent Big Mech-
anism program [82], which focused on machine reading of full-text articles on cancer
signaling pathways, have been rule-based and share similarities with SemRep. For exam-
ple, TRIPS [24] is a deep semantic parser that uses syntactic, semantic, and ontological
constraints and REACH [23] is a cascade of automata that relies on grammars to extract

entities and events.

Uses and Impact of SemRep

Despite its known limitations, SemRep has found widespread use in the scientific
community. This has been facilitated primarily by SemMedDB [54], which provides a
computable, semantic predication-based snapshot of the biomedical literature knowl-
edge (essentially a massive knowledge graph), suitable for large-scale data mining and
machine learning. SemRep has supported many tasks through SemMedDB, includ-
ing identification of various types of biomedical associations (e.g., drug-drug interac-
tions in clinical data [73], adverse drug reactions [83], chemical-disease relations [79],
treatment/causation relations [84]), clinical decision making [85, 86], clinical guideline
development [87], in silico screening for drug repurposing [88-90], gene regulatory
network inference [91], biomedical question answering [74], elucidating gene-disease
associations [92], medical diagnosis [93], link prediction [94], semantic relatedness assess-
ment [95], and fact checking [96]. SemMedDB has also been used to generate new
resources, including corpora (e.g., contradictions [76, 97], drug-drug interactions [98]),
distributed representations of literature knowledge (i.e., embeddings) [99, 100], as well as
vocabularies for alternative medicine therapies [101].

A research area that has particularly benefitted from SemRep/SemMedDB is
literature-based discovery and hypothesis generation [93, 94, 102-115] (see Henry
and Mclnnes [116] for a survey of this research area, including the use of Sem-
Rep/SemMedDB). An exciting recent development is the incorporation of SemMedDB
into the Biomedical Data Translator platform [117], developed at the National Center for
Advancing Translational Sciences (NCATS), which brings together disparate biomedical
data sources (e.g., patient data, exposure data, biological pathways, literature) to sup-
port the translation of data into knowledge by applying automated reasoning methods to
a graph representation of biomedical entities and their relationships. In one of its suc-
cess stories, the platform was used to propose potential treatments for a five-year old
patient with a rare genetic disorder, leading to significant improvement in his quality
of life*.

Future directions

The evaluation results presented in this paper inform our priorities and future direc-
tions, as we redesign SemRep as a more modular, flexible architecture and reimplement
it in the Java programming language, which has the major advantage of allowing us to
more easily incorporate third-party tools for specific tasks. For example, SemRep cur-
rently does not perform pronominal anaphora resolution, for which we presented a

4https://ncats.nih.gov/tidbit/tidbit_04.html
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successful approach implemented in Java [118]. Similarly, a method for coordination ellip-
sis recognition and resolution [119] could be used to address this significant mapping
problem. Furthermore, some third-party tools SemRep currently uses can be replaced
by more recent state-of-the-art alternatives (e.g., GNormPlus [120] as a substitute for
ABGene). Even more broadly, it becomes feasible to replace MetaMap with another
NER tool that targets a specific domain when we process text in that domain. Com-
parison of SemRep to other systems on various tasks/corpora also becomes less of a
challenge.

With the current availability and high performance of constituent and dependency
parsers (e.g., Stanford CoreNLP [121]), an important question is whether SemRep should
use such a parser instead of its shallow parsing approach, which could simplify some of
the analysis steps at the expense of processing speed. However, we did not find evidence
that the shallow parsing approach was a significant source of SemRep errors; therefore,
we plan to continue using shallow parsing as the primary syntactic analysis approach. On
the other hand, some rule-based systems incorporating dependency parsing with trig-
ger detection and argument identification rules have yielded competitive performance in
shared task competitions [21, 22], and we will consider incorporating dependency parsing
as a processing option.

The prevalence of NER errors suggests that this mapping procedure needs closer
scrutiny. By default, SemRep treats all vocabularies in the UMLS Metathesaurus the
same way and prefers longest string matching. Earlier, we noted the problems with
using the UMLS Metathesaurus as an terminological resource. Some research focusing
on generating UMLS views for NLP [122] and community efforts like Open Biomedi-
cal Ontologies Foundry [123] aim to address these shortcomings of the UMLS. Almost
all research in biomedical NER focuses on specific entity types (disorders, drugs,
chemicals, etc.) and in benchmark corpora, entities are generally normalized to a sin-
gle vocabulary/ontology (e.g., SNOMED CT [124] for disorders, NCBI Gene [58] for
genes). This kind of selective use of the UMLS Metathesaurus vocabularies seems sen-
sible and cleaner, given the interchangeable concepts and other issues we observed,
and the additional processing we perform to mitigate these issues, such as dysonym
processing. MetaMap already provides the ability to map only to specific vocabular-
ies, and we will explore this option in more depth. Furthermore, given that Sem-
Rep does not generate predications involving some semantic types (e.g, Idea or
Concept), it may be reasonable to invoke the semantic type selection option of MetaMap
with SemRep.

Our evaluation also reveals shortcomings in our test collection, even when we put aside
the annotation errors and its relatively small size. Relation annotation against the entire
UMLS Metathesaurus is extremely difficult given its size (more than 4M concepts in the
2019AB release). This difficulty is exacerbated by the need to keep the test collection
up-to-date with each UMLS release, which requires significant resources. A more reason-
able evaluation approach for us could be to use benchmark relation extraction corpora,
which are becoming increasingly common [1, 12]. This strategy is similar to the recent
MetaMap evaluation strategy [77]. However, in contrast to NER corpora, relation cor-
pora differ from each other and SemRep in their representation formalism, and not all
map to the UMLS vocabularies, making this evaluation challenging. As we have shown
with the evaluation on the CDR corpus, SemRep output needs to be tailored to some
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extent to make evaluation and comparison possible. The ability to map to non-UMLS
vocabularies/ontologies can facilitate such evaluation. A MetaMap-related tool, Data File
Builder [125], which allows building vocabularies from other resources, can be helpful in
this regard.

SemRep development involves a significant amount of manual work in the form of lin-
guistic analysis and refinement. Another future direction is to streamline this process
and, to some extent, to semi-automate it. Automatic ontology learning [126] approaches
can be used as the first step toward semi-automation. For example, keyphrase extraction
techniques [127] can be used to identify concepts for specific domains using large-scale
text corpora. New ontological predications and indicator rules can be learned based on
concept-concept and concept-predicate co-occurrence patterns in corpora and statisti-
cal analysis. We plan to explore the use and expansion of another MetaMap-related tool,
Custom Taxonomy Builder [128], to streamline these tasks.

Other research directions for SemRep include full-text processing and cross-sentence
relation extraction. The former is largely a matter of building infrastructure, and
potentially, refining some aspects of SemRep, such as sentence splitting, as full text
articles exhibit structural differences from abstracts [129]. SemRep currently limits
cross-sentence relation extraction to cases licensed by sortal anaphora resolution, but
other types of discourse phenomena (e.g., document topic as implicit argument) also
license such relations [75], and we plan to expand SemRep processing to consider such
phenomena.

Conclusions

We presented an in-depth description of SemRep and proposed it as a broad-coverage,
high-performing baseline relation extraction system. Our depiction of SemRep in this
paper is the most complete to date, and supersedes the more focused descriptions pro-
vided in earlier publications. Our evaluation provided a more accurate characterization
of overall SemRep performance than those presented in prior evaluations. Our additional
evaluation on a standard benchmark corpus confirmed its position as a strong baseline
relation extraction system.

Through gradual improvements over time, SemRep has attained a level of maturity, with
meaningful impact on clinical applications and biomedical research. While most users
of SemRep choose the SemMedDB repository as the point of access, a command line
version publicly available for Linux systems can also be used when documents of interest
are not PubMed abstracts. For convenience, a web interface that can be used to process
text interactively or in batch mode without installing the system is also provided (https://
ii.nlm.nih.gov/Interactive/UTS_Required/semrep.shtml). A UMLS license is required to
use SemRep.

Going forward, the incremental nature of SemRep development will allow us to address
specific linguistic structures, relation types, and domains, as well as weaknesses identi-
fied through error analysis, while it remains strongly grounded in linguistic theory. We
believe that this, combined with the fact that future development will take place in Java, a
language more flexible and modular than Prolog, will enable us to improve SemRep per-
formance and coverage more efficiently and increase its utility for clinical applications
and biomedical discovery.
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Availability and requirements

Project name: SemRep

Project home page: https://github.com/lhncbc/SemRep

Operating system(s): Linux

Programming language: SICStus Prolog with C/C++ extensions

Other requirements: Approximately 60G disk space (assuming installation of all SemRep
data files)

License: UMLS license

Any restrictions to use by non-academics: UMLS license needed
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Additional file 1: Appendix. A PDF file that contains illustration of SemRep processing steps on an example
sentence from PubMed abstract 12975721. It also contains a detailed exposition of SemRep error analysis.

Additional file 2: SemRep ontology. A text file that includes all Semant i cType-PREDICATE-Semant i cType
triples (ontological predications) used by SemRep.

Additional file 3: SemRep indicator rules. A text file that includes all SemRep indicator rules, which are used to map
textua expressions to semantic predicates.
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