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Broad CTL response is required to clear latent HIV-1
due to dominance of escape mutations
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Despite antiretroviral therapy (ART),human immunodeficiencyvirus
(HIV)-1 persists in a stable latent reservoir1,2, primarily in resting
memory CD41 T cells3,4. This reservoir presents a major barrier to
the cure of HIV-1 infection. To purge the reservoir, pharmacolog-
ical reactivationof latentHIV-1has beenproposed5 and testedboth
in vitro and in vivo6–8. A key remaining question is whether virus-
specific immune mechanisms, including cytotoxic T lymphocytes
(CTLs), can clear infected cells inART-treatedpatients after latency
is reversed. Here we show that there is a striking all or none pattern
for CTL escape mutations in HIV-1 Gag epitopes. Unless ART is
started early, the vast majority (.98%) of latent viruses carry CTL
escapemutations that render infectedcells insensitive toCTLsdirected
at common epitopes. To solve this problem, we identified CTLs that
could recognize epitopes from latentHIV-1 thatwere unmutated in
every chronically infected patient tested. Upon stimulation, these
CTLs eliminated target cells infected with autologous virus derived
fromthe latent reservoir, both in vitro and inpatient-derivedhuman-
izedmice. The predominance of CTL-resistant viruses in the latent
reservoir poses a major challenge to viral eradication. Our results
demonstrate that chronically infectedpatients retainabroad-spectrum
viral-specific CTL response and that appropriate boosting of this
responsemaybe required for the eliminationof the latent reservoir.
HIV-1 establishes latent infection in resting CD41 T cells3,4. Recent

efforts to eradicate HIV-1 infection have focused on reversing latency
without globalT-cell activation5.However, inducingHIV-1gene expres-
sion in latently infected cells is not sufficient to cause the death of these
cells if they remain in a resting state9. BoostingHIV-1-specific immune
responses, including CTL responses, may be required for clearance of
the latent reservoir9. CTLs have a significant role in suppressingHIV-1
replication in acute infection10–14. Because of this strong selective pres-
sure,HIV-1quickly acquiresmutations toevadeCTLrecognition12,13,15–18.
CTL escape has been studied primarily through the analysis of plasma
virus12,13,16,18–20, and CTL-based vaccines have been designed based on
conserved epitopes21,22. A systematic investigation of CTL escape in the
latent reservoir will be of great importance to the ongoing CTL-based
virus eradication efforts, because latent HIV-1 probably represents the
major source of viral rebound after treatment interruption. Earlier
studies have suggested the presence of CTL escape mutations in pro-
viralDNA15,17, but it remains unclear towhat extent the latent reservoir
in resting CD41 T cells is affected by CTL escape, whether mutations
detected in proviral DNA are representative of the very small fraction
of proviruses that are replication competent, and, most importantly,
whether the CTL response can recognize and clear infected cells after
latency is reversed.

To investigate CTL escape variants in the latent reservoir, we deep
sequenced the proviral HIV-1 DNA in resting CD41 T cells from 25
patients (ExtendedDataTable 1).Among them, 10 initiatedARTduring
the acute phase (AP; within 3 months of infection) while the other 15
initiatedARTduring the chronicphase (CP) of infection.The sequenc-
ing was focused onGag because it is an important target of the CTL re-
sponse23and is highly conserved,which facilitates thedetectionof escape
variants. Our data show that previously documented CTL escape var-
iants completely dominate the viral reservoirs of nearly all CP-treated
patients (ExtendedData Fig. 1 andSupplementaryTable 1).This trend is
especiallyobvious for severalwell characterizedCTLepitopes: thehuman
leukocyte antigen (HLA)-A2-restricted epitope SLYNTVATL(SL9), the
HLA-A3-restricted epitopeRLRPGGKKK(RK9) and theHLA-B57/58-
restricted epitopeTSTLQEQIGW(TW10) (Fig. 1a andExtendedData
Fig. 1, highlighted in coloured boxes.). In these epitopes, close to 100%
of the sequences harboured escape mutations. Comparison of muta-
tion frequencies betweenHLA allele-relevant and -irrelevant epitopes
inCP-treated patients suggests that theCTLescapemutations identified
are specific to each patient’sHLA type (Fig. 1b). By contrast, except for
SL9 from patient AP01 and RK9 from patient AP08, few if any CTL
escapemutations were archived in AP-treated patients (Fig. 1c and Ex-
tendedData Fig. 1). The strikingdifference betweenAP-andCP-treated
patients (Fig. 1c) indicates that, unless treatment is initiatedwithin the
first several months of infection, the latent reservoir becomes almost
completely dominatedbyvariants resistant to dominantCTL responses.
To confirm that variants detected at high frequency in the latent res-

ervoir represent functional CTL escape mutants, cells from seven CP-
treated subjectswere tested for reactivity to syntheticpeptides representing
wild-type and mutant versions of the relevant epitopes. As expected,
therewereonlyminimal responses topreviouslydocumentedCTLescape
mutants bypatientCD81Tcells, andnodenovo responsewas detected
(Fig. 1d andExtendedData Fig. 2). In contrast, all tested subjects retained
a strong response to peptides representing the wild-type epitopes, sug-
gesting that thewild-type viruswas initially transmitted,with subsequent
evolution of CTL escape variants. Most HIV-1 proviruses detected in
patients are defective24. Therefore, to determine whether these CTL
escape variants can be reactivated and lead to viral rebound if therapy
is stopped, we isolated replication-competent viruses from the latent
reservoirs of nine CP-treated patients.We found that all the dominant
CTL escapemutations that had been identified in proviruses in resting
CD41Tcellswere alsopresent in the replication-competent viruses that
grewout afterT-cell activation (Fig. 1e andExtendedDataFig. 3), indicat-
ing that theseCTL escape variants not only dominate the population of
proviruses, but can also be released and replicate once latency is reversed.
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We next asked whether the host CTL response could recognize and
eliminate the cells infectedwith these escape variants.We infected acti-
vated CD41 T cells from these patients with autologous, replication-
competent virusderived fromthe latent reservoir (ExtendedDataFig. 4a).
The infected cells were then co-culturedwith autologous CD81T cells,
either unstimulated or pre-stimulated, to assess HIV-1-specific cyto-
lytic activity. Non-specific activation of CD81T cells was not observed
after co-culture with phytohaemagglutinin (PHA)-activated CD41 T
cells (Extended Data Fig. 4b). From all 13 CP-treated subjects tested,
CD81T cells pre-stimulated by aGag peptidemixture efficiently killed
autologous infected CD41 T cells (median 61% elimination), while
unstimulated CD81 T cells from most subjects had significantly less
effect (median 23% elimination) (Fig. 2a and ExtendedData Fig. 4c, d).
CD81 T cells from 7/7 healthy donors completely failed to eliminate
autologous infected cells (Fig. 2a), confirming that the observed killing
was HIV-1 specific. The killing effect was enhanced by increasing the
effector to target ratio (ExtendedData Fig. 5a), andwas cell–cell contact
dependent (Extended Data Fig. 5b). When the co-culture was main-
tainedover time in the absence ofART, viral replicationwas significantly
reduced, but not completely inhibited by pre-stimulated CD81 T cells
(Fig. 2b). We found that peptide mixtures from other HIV-1 proteins
(Nef, Tat, Rev and Env) could also boost CTL responses and facilitate
the elimination of infected cells (Fig. 2c), and that CTLs pre-stimulated

byGagpeptides generally had thehighest activity.Together, these results
demonstrate that chronically infected patients retain CTL clones that
can recognize and eliminate autologous infected CD41 T cells, despite
the presence of CTL escapemutations in dominant epitopes. However,
these clones require stimulation with antigen for optimal activity.
To characterize further which CTL population contributed to the

elimination of cells infected by CTL escape variants, we compared the
killingactivityof twospecificCTLpopulations: thepopulation that targets
epitopes in which escape has been identified and the one that targets
unmutated epitopes (Fig. 3a). CD81 T cells from patients CP36 and
CP39werepre-stimulatedwith interleukin (IL)-2 anddifferent synthetic
peptides representing the wild-type forms of the relevant epitopes. After
incubation for 6 days, each CTL population exhibited significant pro-
liferationcomparedwithno treatmentor IL-2 alone (Fig. 3b, c). Pentamer
staining for three available epitopes revealed that the number of epitope-
specificCD81Tcells increaseddramatically after stimulationwithwild-
type peptides (Fig. 3b). After co-culture with autologous target cells
infected with latent reservoir-derived viruses, CTLs targeting unmu-
tated epitopes clearly showed stronger cytolytic activity than the IL-2
only controls, while CTLs targeting epitopes with identified escaped
mutations showed no significant killing (Fig. 3d). CTLs pre-stimulated
by the Gag peptide mixture exhibited stronger killing than all single-
peptide-stimulated populations (Fig. 3d).
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Figure 1 | CTL escape variants dominate the latent reservoir of CP-treated
but not AP-treated patients. a, Frequency of variants in Gag CTL epitopes
in proviruses from resting CD41 T cells. Representative results from six
patients are shown. Only optimal CTL epitopes relevant to each patient’s HLA
type are listed. Results from both PacBio (left bar) and MiSeq (right bar)
sequencing are shown. The effect on CTL recognition (denoted by colour) is
determined from information in the Los Alamos National Laboratory (LANL)
HIV Molecular Immunology Database. b, CTL escape variants identified by
sequencing are specific to HLA type. Frequencies of documented escape-
associated variants in four well characterized epitopes are shown for all 15
CP-treated patients. Medians and P values from Mann–Whitney test are
shown. c, Comparison of CTL escape variant frequency in proviruses between
CP- and AP-treated patients. Only well characterized epitopes are shown.

Medians andP values fromMann–Whitney test are shown. d, Characterization
of CTL responses against HIV-1 Gag epitopes by interferon-c ELISpot. The
peptides tested are listed below the x-axis (black type, epitopes in which
sequence variation was detected; blue type, no variation). The observed
mutation is underlined in red, and CTL escape (defined by the absence of
positive response after mutation) is denoted by an asterisk above the bar. The
peptide concentration was 10mgml21. PBMCs, peripheral bloodmononuclear
cells; SFC, spot-forming cell. Error bars represent standard error of the mean
(s.e.m.), n5 3. e, Sequences in Gag CTL epitopes for proviral DNA and
outgrowth virus from resting CD41 T cells in patient CP39. CTL epitopes with
no observed variation are highlighted in blue. Epitopes with documented
escape mutations are shaded in red.
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To test whether CTLs that recognize unmutated viral epitopes can
inhibit HIV-1 replication and clear infected cells in vivo, we generated
patient-derivedhumanizedmiceusing an improved versionof a recently

reported mouse system named MISTRG25. Whereas the previously
reported MISTRG mice bear a bacterial artificial chromosome (BAC)
transgene encoding human SIRP-a, the newly generated MIS(KI)TRG
mice harbour a knock-in replacement of the endogenous mouse Sirpa
genewith ahumanizedversion.Withhumanizationbyknock-in replace-
ment of theCsf1,Csf2, Il3,Tpo and Sirpa genes in theRag22/2 Il2rg2/2

genetic background,MIS(KI)TRGmice are highlypermissive for human
haematopoiesis and support the reconstitution of robust human lym-
phoidandmyelomonocytic systems.With thedemonstrateddevelopment
of functionalT lymphocytes andmonocytes/macrophages,MIS(KI)TRG
mice provide a useful humanizedmouse host for HIV-1 infection stud-
ies. Bone marrow biopsies were obtained from study participants and
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Figure 2 | CD81 T cells pre-stimulated with a mixture of Gag peptides
eliminate autologous CD41 T cells infected with autologous HIV-1 from
resting CD41 T cells. a, Pre-stimulated CD81 T cells (sCD81) eliminate
autologous infected CD41 T cells more efficiently than unstimulated CD81

T cells (uCD81). Each symbol represents themean of three replicates. Medians
and P values from Mann–Whitney test are shown. b, sCD81 cells inhibit viral
growth in autologous infected CD41 T cells with higher efficacy than uCD81

cells. p24, HIV-1 capsid (core) protein. c, sCD81 cells pre-stimulated by
different viral peptides eliminate autologous CD41 T cells infected with viruses
derived from restingCD41T cells.b, c, Results were comparedwithCD41 only
using paired t-tests. Error bars represent s.e.m., n5 3. *P, 0.05, **P, 0.01,
***P, 0.001, NS, not significant (P. 0.05).

0

50

100

0

50

100

KK9 RK9 LY9 SV9 TL9 HA9 GL9

0

20

40

60

80

100

120

CFSElow 0.9% CFSElow 2.3%

CFSElow 5.7% CFSElow 6.2%

CFSElow 14.9% CFSElow 15.5%

CFSElow 16.7% CFSElow 16.6%

P
e
n
ta

m
e
r+

CFSE

uCD8+

sCD8+

Single- 

peptide-

stimulated 

CD8+

uCD8+

+IL-2

0.01% 0.02%

0% 0.01%

0.08% 0.07%

0.41% 0.46%

CP39 RK9 CP39 GL9

CFSElow 1.4%

0.01%

CP36 SL9

0.01%

0.06%

CFSElow 6.3%

CFSElow 17.6%

CFSElow 14.9%

0.22%

CFSE

C
D

8
+

CP36 CP39

CFSElow

9.1%

CFSElow

CFSElow

CFSElow

CFSElow

TV9

WF9

EW10

LY9

TL9

14.2%

12.7%

20.6%

16.5%

0

20

40

60

80

100

120

b c

d
**

**

***

NS

NS *
*

**

NS

NS

CP36 CP39

CFSElow
CFSElow

4.5% 5.9%

uCD8+ + IL-2 uCD8+ + IL-2

CTL epitopes in HIV-1 Gag

F
re

q
u
e
n
c
y
 o

f 
v
a
ri
a
n
ts

 (
%

)

a
CP36

CP39

R
e
s
id

u
a
l 
G

a
g

+
 C

D
4

+
 T

 c
e
lls

 (
%

)

R
e
s
id

u
a
l 
G

a
g

+
 C

D
4

+
 T

 c
e
lls

 (
%

)

C
D
4
+  o

nl
y

uC
D
8
+  +

 IL
-2

uC
D
8
+

sC
D
8
+

SL9
-C

D
8

TV
9-

C
D
8

EW
10

-C
D
8

W
F9

-C
D
8

C
D
4
+  o

nl
y

uC
D
8
+  +

 IL
-2

uC
D
8
+

sC
D
8
+

R
K
9-

C
D
8

LY
9-

C
D
8

G
L9

-C
D
8

TL
9-

C
D
8

K
K
9

R
K
9

SL9
W

F9
H
A9

Q
W

9
TV

9

EW
10

Figure 3 | CD81 T cells targeting unmutated
epitopes, not epitopes with identified escape
mutations, eliminate CTL escape variants.
a, Frequency of variants in Gag CTL epitopes in
proviruses from resting CD41T cells from patients
CP36 and CP39. Epitopes tested with single-
peptide stimulation are denoted in colours (red
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purified CD341 cells were used to reconstitute the MIS(KI)TRGmice.
We infected thesepatient-derivedhumanizedmicewithprimaryHIV-1
isolates grown from resting CD41 T cells from the same patient and
then evaluated the antiviral effect of autologousCD81T cells (Fig. 4a).
MIS(KI)TRGmice engraftedwithbonemarrowCD341 cells frompatient
CP18 successfully developed human T-lymphocyte and monocyte/
macrophage subsets (Fig. 4b, c), which were sufficient to support HIV-1
infection (Fig. 4d). PlasmaHIV-1 RNA levels peaked 20–30 days after
infection (Extended Data Fig. 6a). Depletion of CD41 T cells was
clearly evident 12 days after infection in peripheral blood and spleen
(Fig. 4e andExtendedData Fig. 6b, c). Cell-associatedHIV-1RNAwas
detected in both T cells and macrophages/monocytes (Extended Data
Fig. 6d). Viral infection was also observed in various tissues in which a
large number of memory CD41 T cells were detected (Extended Data
Fig. 7). In controlmice ormice that received autologous patient CD81

Tcells pre-stimulatedwith a peptide representing the unmutated dom-
inant SL9 epitope, levels of plasma HIV-1 RNA and proviral DNA in
peripheral blood continued to increase from day 14 to day 29 after
infection (Fig. 4f). In sharp contrast, mice that received CD81 T cells
pre-stimulated with unmutated epitopes (Gag mix orWF9) had a sig-
nificantly lower level of viral replication (Fig. 4g, h).Dramatic decreases
in plasma HIV-1 RNA of 100- to 1,000-fold were observed in all three
mice that received CD81 T cells pre-stimulated with the mixture of
Gag peptides including dominant and subdominant epitopes. Two of
threemice had undetectable levels of plasmaHIV-1 RNA and proviral
DNA in peripheral blood measured at three time points (Fig. 4g). We
performed the same experiments using patient CP36-derived human-
izedmice and a reductionof peripheralHIV-1RNAandDNAlevelswas
also observed inmice that received CP36 CD81T cells pre-stimulated
with themixture ofGagpeptides (ExtendedData Fig. 8). Since the post-
engraftment lifespanofMIS(KI)TRGmice isonly 10–12weeks25, wewere
only able to investigate the acute phase of HIV-1 infection and dem-
onstrate the in vivo functionality of patient CD81T cells. Future devel-
opments of the MIS(KI)TRGmodel will prolong the post-engraftment
lifespan of thesemice and allow studies of the establishment and clear-
ance of theHIV-1 latent reservoir in vivo. Together, our in vitro and in
vivo experiments demonstrate that only CTL clones targeting unmu-
tated epitopes are effective against cells infected with the viral variants
that are likely to represent the major source of rebound HIV-1 after
reversal of latency.
The seeding of the HIV-1 latent reservoir starts just a few days after

infection26, before the development of a robust CTL response14. This is
consistent with our finding that patients who initiated treatment early,
in the acute infection stage, have few if anyCTLescapevariants archived
in the latent reservoir. However, if treatment was initiated in chronic
infection, CTL escape variants becamedominant in the latent reservoir,
indicating a complete replacementof the initially established ‘wild-type’
reservoir. The mechanism behind this replacement warrants further
investigation, but probably reflects the dynamic nature of the reservoir
in untreated infection. In any event, the overwhelming presence of
escape variants in the latent reservoir of chronicpatients certainly pres-
ents an additional barrier to eradication efforts. The striking difference
between AP- and CP-treated patients presents another argument for
early treatment of HIV-1 infection; early treatment not only reduces
the size of the latent reservoir27, but also alters the composition of the
reservoir, as shownhere, inaway thatmay enhance the efficacyofpoten-
tial CTL-based eradication therapies.
The hierarchy of HIV-1-specific CTL response in acute infection

appears to have an important role in initial viral suppression, as dem-
onstrated by the fact that certain immunodominant CTL populations
are frequently linked to lower set point viraemia later in infection17,28.
These immunodominant responses in acute infection have been iden-
tified as themajor selection forcedriving thedevelopmentofCTLescape
mutations13,20. Here we show that these immunodominant response-
drivenmutations are not only archived in the latent reservoir, but also
in fact dominate the latent provirus population in CP-treated patients.

Therefore, directingCTLresponses tounmutated viral epitopes is essen-
tial to clear latent HIV-1. Owing to bias in antigen presentation or
recognition29, commonvaccination strategieswill probably re-stimulate
immunodominant CTL clones that do not kill infected cells after the
reversal of latency. Stimulation of CTL responses with viral peptides
circumvents antigen processing and is able to elicit broad-spectrum
CTL responses against unmutated regions of viral proteins. Our study
suggests that latent HIV-1 can be eliminated in chronically infected
patients despite the overwhelming presence of CTL escape variants.
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Future directions in therapeutic vaccine design need to focus on boost-
ing broad CTL responses, as also reported elsewhere30, and/or manip-
ulating immunodominance.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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METHODS
Human subjects. Peripheral blood or bone marrow for the isolation of primary
CD41, CD81Tcells orCD341 cellswasobtained from30HIV-1-infected patients
(Extended Data Table 1) and 7 healthy adult volunteers. All patients had been on
ART for at least 2 years andhadmaintainedundetectable plasmaHIV-1RNA levels
(,50 copies per ml) for at least 1 year before study. Ten AP-treated patients were
recruited from theOPTIONS cohort at the University of California San Francisco
(UCSF). This study was approved by the Johns Hopkins Internal Review Board
and by theUCSFCommittee onHumanResearch.Written informed consent was
provided by all study participants. HLA typing for each patient was performed by
the Johns Hopkins University Immunogenetics Laboratory.
Sample preparation for deep sequencing. Peripheral blood mononuculear cells
(PBMCs) were isolated from whole blood by Ficoll gradient separation. CD41 T
cells were purified from PBMCs by negative selection using CD41 Isolation Kit II
(Miltenyi). RestingCD41T cells were thenpurified fromCD41T cells by negative
selection using CD25, CD69 andHLA-DRmicrobeads (Miltenyi). GenomicDNA
was extracted from5million restingCD41Tcells fromeachpatient usingQIAamp
DNAMiniKit (Qiagen). The gag genewas amplified fromgenomicDNAby a two-
round nested PCR using these primers: 59 outer primer (59-TTGACTAGCGGAG
GCTAGAAGG-39); 39 outer primer (59-GATAAAACCTCCAATTCCCCCTAT
C-39); 59 innerprimer (59-GAGAGATGGGTGCGAGAGCGTC-39); 39 innerprimer
(59-CTGCTCCTGTATCTAATAGAGC-39). For each patient, the entire genomic
DNA from 5million restingCD41T cells was evenly distributed as a template into
80 PCR reactions. The reactionswere performedby usingHighFidelity Plantinum
Taq Polymerase (Life Technologies) following the manufacturer’s instructions.
PCR amplicons were purified by gel extraction after gel electrophoresis.
Deep sequencing. ForPacBioRS single-molecule sequencing, ampliconswere bar-
codedwith a group of 10 bp indexes and thenmultiple sampleswere pooled together
to generate a SMRTbell sequencing library following the Pacific Biosciences tem-
plate preparation and sequencing-C2 user guide for 2 kb insert size and using the
PacificBiosciencesDNAtemplate preparationkit. ForMiSeqsequencing, thepooled
amplicon DNAwas end repaired, adenylated, and ligated to Illumina TruSeq adap-
tors and PCR enriched for 10 cycles. The resulting library was then run on a bio-
analyser high-sensitivityDNAchip for size and concentrationdetermination. The
library was then sequenced on MiSeq for paired-end 250 bp reads. The sequence
reads from PacBio and MiSeq were demultiplexed using Fastx-Toolkit.
Data analysis for deep-sequencing results. For the paired MiSeq reads, the two
reads were first merged using FLASH31. MiSeq and PacBio reads from each indi-
vidual were then aligned to the reference HIV-1 consensus B Gag sequence using
Bowtie2 (ref. 32). A custom programwas written using Perl scripts to identify and
compute the frequency of all sequence variants that caused non-synonymous amino
acid changes in each individual’s relevant optimalGag epitopes (based on reported
information in the HIV Molecular Immunology Database, Los Alamos National
Laboratory (http://www.hiv.lanl.gov/content/immunology/index.html)) according
to their HLA type. For each individual, variants that occurred at a frequency.3%
were retained. Additionally, for PacBio reads, sequences with identified premature
stop codons were eliminated from the analysed results. For each identified vari-
ation, the mutation type regarding CTL recognition was determined by matching
with the information in the before-mentioned database. The five mutation types
adopted in this paper are: documented escape (noCTL responsewhen patient cells
are challenged with the variant peptide); inferred escape (variant is predicted to be
an escapemutant by longitudinal study or transmission study, but the reactivity of
the variant is not tested experimentally); diminished response (experimental data
suggest partial escape as evidenced by decreased CTL response); susceptible form
(CTL response is elicited when patient cells are challenged with the variant pep-
tide); and mutation type not determined (no experimental data on CTL recog-
nition of this variant).
ELISpot assays.The ELISpot assayswere performedusingHuman IFN-cELISpot
PLUS kit (Mabtech) according to methods previously described33 and the manu-
facturer’s instructions. PBMCs were added at 200,000 cells per well and synthetic
peptides were added in a final concentration of 0.1, 1 or 10mgml21. A response
was considered positive if it was threefold higher than the mean background (cell
only control) and greater than 55 SFC per million cells. The number of specific T
cells was calculated by subtracting the mean background values.
Recovery and sequencing of patient viruses from resting CD41 T cells. Co-
culture assays were performed to recover and amplify replication-competent viruses
as previously described34. The viruses were recovered from 5–10 million resting
CD41 T cells. The concentration of outgrowth viruses was determined by p24
ELISA (PerkinElmer). Total RNAof outgrowth viruses was extracted usingTRIzol
LS reagent (Life Technologies). ResidualDNAwas then removed byTURBODNase
(Life Technologies) treatment. First-strand complementaryDNAwas synthesized
using SuperScript III Reverse Transcriptase (Life Technologies) and the gag gene
was amplified from cDNA using the gag outer primer pair mentioned above. The

PCR amplicons were then purified by gel extraction and sequenced by regular
Sanger sequencing.

In vitroHIV-1 infection.PBMCs fromHIV-1-infectedpatients andhealthydonors
were stimulated by adding 0.5mgml21PHAand IL-2 (100Uml21) to basalmedia
(RPMI with 10% heat-inactivated fetal bovine serum and antibiotics) for 3 days
before isolation ofCD41Tcells. Eachpatient’s activatedCD41Tcellswere infected
withviruses recovered fromthe samepatient’s restingCD41Tcells.Healthydonors’
CD41 T cells were infected with a laboratory strain virus, BaL. The virus concen-
tration used in infection was equivalent to the p24 concentration of 200 ngml21.
All infections were performed by centrifugation of target cells with virus at 1,200g
for 2 h.

Stimulation of CD81 T cells. PBMCs from CP-treated patients were cultured in
the presence of IL-2 (100Uml21) with amixture of consensus B Gag (or Nef, Rev,
Tat, Env) peptides (800 ngml21 for each) (NIH AIDS Reagent Program), or with
individual synthetic peptide (0.5mgml21) (GenemedSynthesis). CD81Tcellswere
purified after 6 days of incubation by positive selection using humanCD8microbe-
ads (Miltenyi). TomonitorCTLproliferation, PBMCswere stainedwithCFSE (Life
Technologies) before incubation and with the relevant pentamer (Proimmune)
after incubation. PBMCswere then stainedwithCD8-APC (BectonDickson (BD))
and analysed by flow cytometry using FACS Canto II (BD).

Co-culture of autologous CD41 and CD81 T cells. Three hours after infection,
CD41 T cells were mixed with autologous unstimulated or stimulated CD81 T
cells at a 1:1 ratio in basalmedia at 5million cells perml. Two days after co-culture,
enfuvirtide (T-20, Roche) was added into the culture at 10mM to prevent further
infection events except if the measurement was p24 ELISA. Three days after co-
culture, cells were stained with CD8-APC (BD) first, fixed and permeabilized with
Cytoperm/Cytofix (BD pharmingen), then stained for intracellular p24 Gag (PE,
Coulter). Cells were analysed by flow cytometry using FACS Canto II (BD). For
measurement of viral growth, 5ml of supernatant was taken from the co-culture at
days 0, 3 and 6, and subjected to p24ELISA. For analysis of cell contact dependence,
CD41 and CD81 T cells were placed in separate chambers of trans-well plates
(0.4mm, Costar).

Generation and infection of patient-derived humanized mice. The previously
reportedMISTRGmouse in theRag22/2 Il2rg2/2 1293Balb/c (N2) genetic back-
ground harbours knock-in replacements of the endogenous mouse Csf1, Csf2, Il3
and Tpo genes with humanized versions and a BAC transgene encoding human
SIRP-a25. We generated the Sirpa(KI) mouse, which harbours a knock-in replace-
ment of the endogenousmouse Sirpa genewith a humanized version. The Sirpa(KI)

mouse will be thoroughly described elsewhere (manuscript in preparation). The
improvedMIS(KI)TRGmousewas generated by breeding Sirpa(KI)mice toMITRG
mice. All animal experimentations were performed in compliance with Yale Insti-
tutionalAnimalCare andUseCommittee protocols.MIS(KI)TRGmiceweremain-
tainedwith continuous treatment with enrofloxacin in the drinkingwater (Baytril,
0.27mgml21). Patient bone marrow or fetal liver CD341 cells were isolated by
CD34 microbeads selection (miltenyi). Newborn mice (within their first 3 days of
life) were sublethally irradiated (X-ray irradiationwithX-RAD320 irradiator, PXi;
13 150 cGy) and 100,000 fetal liver or 250,000 patient CD341 cells in 20ml of PBS
were injected into the liver with a 22-gauge needle (Hamilton Company). Both
male and femalemicewith comparable engraftment levels (percentageof hCD451,
hCD31 and hCD141 cells in the blood) were separated randomly into the experi-
mental groups 6–8 weeks after engraftment. Mice engrafted with patient CD341

cells were infected by retro-orbital injection with HIV-1 (100 ng p24), which was
recovered andexpanded fromthe restingCD41Tcells of the samepatient (CD341

cell donor), as mentioned earlier. Mice engrafted with fetal liver CD341 cells were
infected by intravenous injectionwithHIV-1BaL (100 ngp24).Micewith less than
5% human CD451 cells in the peripheral blood were excluded from the infection
study.Mice with more than 70% human CD451 cells in the peripheral blood were
also excluded because they were unhealthy due to humanmacrophage/monocyte-
caused anaemia25. Twenty million autologous CD81 T cells with or without pre-
stimulationwere injected intravenously 9or 14days after infection.Groupallocation
was blinded. Peripheral blood samples were collected by retro-orbital bleeding at
different time points before and after injection of CD81 T cells. Engraftment of
human CD451 cells as well as lymphoid and myeloid subsets was determined by
flow cytometry. PlasmaHIV-1RNA inperipheral bloodwasmeasured byone-step
reverse transcriptase (Invitrogen) real-time PCR using the following primers and
probe, describedpreviously8: forward (59R 39)ACATCAAGCAGCCATGCAAAT,
reverse (59R 39) TCTGGCCTGGTGCAATAGG, and probe (59R 39)VIC-CTA
TCCCATTCTGCAGCTTCCTCATTGATG-TAMRA.Assay sensitivity is 200RNA
copies perml ofplasma.HIV-1DNAinperipheral bloodwas alsomeasuredby real-
time PCR using the same primers and probe mentioned earlier, with assay sens-
itivity at 5 copies per 100ml of blood. Total viral DNA in PBMCs was determined
by measuring copies of viral DNA per 100 ml blood and blood volume per mouse
(80ml blood per 1 g bodyweight). To quantitate total viralDNA in tissues, spleens,
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livers and lungs of infectedmice were collected. For the spleen, single-cell suspen-
sionswere treatedwithACKlysis buffer. Liver and lung leukocyteswere isolatedby

digesting tissueswith 100Uml21 collagenase IVand0.02mgml21DNase I (Sigma),
followed by density gradient centrifugation.

Statistical analysis. For comparison of HIV-1 variant frequency (Fig. 1b, c) and

viral infection in HIV-1 BaL-infected mice (Extended Data Figs 6 and 7), we
applied Mann–Whitney tests. For comparison of the inhibitory effect of autolo-

gous CTLs (Fig. 2a), we applied aWilcoxonmatched pairs test. For comparison of
viral replication in humanized mice (Fig. 4f–h), we applied an unpaired t-test. For

all other comparisons, paired t-tests were applied. All tests were calculated by the

GraphPad Prism 6 software, and conducted as two-tailed tests with a type I error
rate of 5%. No statistical method was used to predetermine sample size.

31. Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to
improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).
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ExtendedData Figure 1 | CTL escape variants dominate the latent reservoir
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Frequency of variants in Gag CTL epitopes in proviruses from resting CD41
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Extended Data Figure 3 | Partial Gag sequences from proviral DNA and
outgrowth virus from resting CD41 T cells from eight CP-treated patients.
CTL epitopes with no observed variation are highlighted in blue. Documented
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Extended Data Figure 6 | Viral dynamics and depletion of CD41 T cells in
humanized mice. a, Viral dynamics in CP18-infected MIS(KI)TRG mice.
CP18-derived MIS(KI)TRGmice were infected with autologous HIV-1. Plasma
HIV-1 RNA levels were measured from day 0 to day 56. b, Depletion of CD41

T cells in peripheral blood of HIV-1 BaL-infected mice. MIS(KI)TRG mice
engrafted with fetal liver CD341 cells were infected with HIV-1 BaL. The
CD4 to CD8 ratio in peripheral blood was measured by fluorescence-activated
cell sorting (FACS) from day 0 to day 29 after infection. Error bars represent
s.e.m., n5 5. c, Depletion of CD41 T cells in spleen of HIV-1 BaL-infected

mice. MIS(KI)TRG mice engrafted with fetal liver CD341 cells were infected
with HIV-1 BaL. The CD4 to CD8 ratio in spleen was measured by FACS
20 days after infection. Medians and P values from Mann–Whitney test are
shown. d, Detection of cell-associatedHIV-1 RNA in T cells andmacrophages/
monocytes. CD31 and CD141 human cells from HIV-1-infected MIS(KI)TRG
mice from spleen and lung were purified by FACS. CD32CD142 cells were
also collected as controls. Cell-associated HIV-1 RNA was quantified by
gag-specific quantitative polymerase chain reaction (qPCR). Error bars
represent s.e.m., n5 3. *P, 0.05, unpaired t-test.
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Extended Data Figure 7 | HIV-1 infection occurs in peripheral blood
and tissues in humanized mice. a, Engraftment levels of MIS(KI)TRG mice
with fetal liver or patient CD341 cells. b, Memory CD41 T cells are detected
in MIS(KI)TRG mice after infection. MIS(KI)TRG mice were infected with
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PCR. b, c, Medians and P values from Mann–Whitney test are shown.
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Extended Data Table 1 | Characteristics of study subjects

*Patient CD4 count was measured during this study.

{Plasma HIV-1 RNA levels for all patients were ,50copies per ml for at least 1 year before this study.
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