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Abstract  

The novel coronavirus SARS-CoV-2 is the cause of Coronavirus Disease-2019 (COVID-19). The main 

receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny 

to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique 

dataset of 410 vertebrates, including 252 mammals, to study cross-species conservation of ACE2 and its 

likelihood to function as a SARS-CoV-2 receptor. We designed a five-category ranking score based on the 

conservation properties of 25 amino acids important for the binding between receptor and virus, 

classifying all species from ​very high​ to ​very low​. Only mammals fell into the ​medium​ to ​very high 

categories, and only catarrhine primates in the ​very high​ category, suggesting that they are at high risk 

for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether 

amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 binding, and found 

the number of predicted unfavorable changes significantly correlated with the binding score. Extending 

this analysis to human population data, we found only rare (<0.1%) variants in 10/25 binding sites. In 

addition, we observed evidence of positive selection in ACE2 in multiple species, including bats. Utilized 

appropriately, our results may lead to the identification of intermediate host species for SARS-CoV-2, 

justify the selection of animal models of COVID-19, and assist the conservation of animals both in native 

habitats and in human care.  

  

 

Keywords:  SARS-CoV-2, COVID-19, ACE2, comparative genomics, host range, species conservation, 

evolution 
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Introduction 

The 2019-novel coronavirus (2019-nCoV, also, SARS-CoV-2 and COVID-19 virus) is the cause of 

Coronavirus Disease-2019 (COVID-19), a major pandemic that threatens millions of lives and the global 

economy ​(1) ​.  Comparative analysis of SARS-CoV-2 and related coronavirus sequences has shown that 

SARS-CoV and SARS-CoV-2 likely originated in bats, followed by transmission to an intermediate host, 

and that both viruses may have an extended host range that includes primates and other mammals 

(1–3) ​. However, the immediate source population/species for SARS-CoV and SARS-CoV-2 viruses has not 

yet been identified.  Several mammalian species host coronaviruses, and these infections are frequently 

associated with severe clinical diseases, such as respiratory and enteric disease in pigs and cattle ​(4, 5) ​. 
Molecular phylogenetics revealed that at least one human coronavirus (HCov-OC43), may have 

originated in cattle or swine ​(6) ​, and that this virus was associated with a human pandemic that 

emerged in the late 19​th ​ century ​(7) ​.  Recent data indicate that coronaviruses can move from bats to 

other wildlife species and humans ​(8) ​ and from humans to tigers ​(9) ​ and pigs ​(10) ​. Therefore, 

understanding the host range of SARS-CoV-2 and related coronaviruses is essential for improving our 

ability to predict and control future pandemics.  It is also crucial for protecting populations of wildlife 

species in native habitats and under human care, particularly non-human primates, who may also be 

susceptible to COVID-19 ​(11) ​.  

The angiotensin I converting enzyme 2 (ACE2) serves as a functional receptor for the spike protein (S) of 

SARS-CoV and SARS-CoV-2 ​(12, 13) ​. Under normal physiological conditions, ACE2 is a dipeptidyl 

carboxypeptidase that catalyzes the conversion of angiotensin I into angiotensin 1-9, a peptide of 

unknown function, and angiotensin II, a vasoconstrictor that is important in the regulation of blood 

pressure ​(14) ​.  ACE2 also converts angiotensin II into angiotensin 1-7, a vasodilator that affects the 

cardiovascular system ​(14) ​ and may regulate other components of the renin-angiotensin system ​(15) ​. 
The host range of SARS-CoV-2 may be extremely broad due to the conservation of ACE2 in mammals ​(2, 

13) ​ and its expression on ciliated bronchial epithelial cells and type II pneumocytes ​(10) ​. While 

coronaviruses related to SARS-CoV-2 use ACE2 as a primary receptor, coronaviruses may use other 

proteases as receptors, such as CD26 (DPP4) for MERS-CoV ​(16) ​, thus limiting or extending their host 

range.  

In humans, ACE2 may be a cell membrane protein or it may be secreted ​(14) ​.  The secreted form is 

created primarily by enzymatic cleavage of surface-bound ACE2 by ADAM17 and other proteases ​(14) ​. 
Sequence variation in ​ACE2​ affects the protein’s functions. ​ACE2​ is polymorphic in humans, with many 
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synonymous and nonsynonymous mutations identified, although most are rare at the population level 

(17) ​ and few are believed to affect cellular susceptibility to human coronavirus infections ​(18) ​. 
Site-directed mutagenesis and co-precipitation of SARS-CoV constructs have revealed critical residues on 

the ACE2 tertiary structure that are essential for binding to the virus receptor binding domain (RBD) 

(19) ​.  These findings have been strongly supported by co-crystallization and the structural determination 

of the SARS-CoV and SARS-CoV-2 S proteins with human ACE2 ​(13, 20, 21) ​, as well as binding-affinity 

with heterologous ACE2 ​(19) ​. The RBD of human coronaviruses may mutate to change the binding 

affinity of S for ACE2, and thus lead to adaptation in humans or other hosts.  The best studied example is 

the palm civet, believed to have been the intermediate host between bats and humans for SARS-CoV ​(2) ​. 
To date, an intermediate host for SARS-CoV-2 has not been identified definitively, although Malayan 

pangolins ( ​Manis javanica​) have been proposed as a possible reservoir ​(22) ​. 

Comparative analysis of ACE2 nucleotide and protein sequences can predict their ability to bind 

SARS-CoV-2 S and therefore will yield important insights into the biology and potential zoonotic 

transmission of SARS-CoV-2 infection. Recent work has examined ACE2 from different vertebrate species 

and predicted its ability to bind SARS-CoV-2 S, but phylogenetic sampling was extremely limited ​(11, 23) ​. 
Here, we made use of sequenced genomes of 410 vertebrates and protein structural analysis, to identify 

ACE2 homologs in all vertebrate classes (fishes, amphibians, birds, reptiles, and mammals) that have the 

potential to serve as a receptor for SARS-CoV-2, and to understand the evolution of ACE2 SARS-CoV-2 S 

binding sites. Our results reinforce earlier findings on the natural host range of SARS-CoV-2, and predict 

a broader group of species that may serve as a reservoir or intermediate host for this virus.  Importantly, 

many threatened and endangered species were found to be at potential risk for SARS-CoV-2 infection, 

suggesting that as the pandemic spreads, humans could inadvertently introduce a potentially 

devastating new threat to these already vulnerable populations, especially for great apes and other 

primates.  

 

Results 

Comparison of vertebrate ACE2 sequences and their predicted ability to bind SARS-CoV-2​. We identified 

410 unique vertebrate species with ​ACE2​ orthologs (Dataset S1) that included representatives of all 

vertebrate taxonomic classes. Among these were 252 mammals, 72 birds, 65 fishes, 17 reptiles and 4 

amphibians. Twenty-five amino acids corresponding to known SARS-CoV-2 S-binding residues ​(11, 13, 

21) ​ were examined for their similarity to the residues in human ACE2 (Fig. 1, Dataset S1). On the basis of 
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known interactions between specific residues on ACE2 and the RBD of SARS-CoV-2 S, a set of rules was 

developed for predicting the likelihood of S binding to ACE2 from each species (see Materials and 

Methods).  Five score categories were predicted: ​very high​, ​high ​, ​medium​, ​low​ and ​very low​. Results for 

all species and all SARS-CoV-2 S binding scores are shown in Dataset S1, and results for mammalian 

species are also shown in Fig. 1.  The ​very high​ classification had at least 23/25 ACE2 residues identical to 

their human homolog and other constraints on substitutions at SARS-CoV-2 S binding hot spots (see 

Materials and Methods).  The 18 species predicted as ​very high ​ were all Old World primates and apes 

completely identical to human across the 25 ACE2 binding residues. The ACE2 proteins of 28 species 

were classified as having a ​high ​ likelihood of binding the S RBD.  Among them are twelve cetaceans, 

seven rodents, three cervids (deer), three lemuriform primates, two representatives of the order Pilosa 

(Giant anteater and Southern tamandua), and one Old World primate (Angola colobus, Fig. 1). 

Fifty-seven species scored as ​medium ​ for the ability of their ACE2 to bind SARS-CoV-2 S. Like the ​high 

score, this category has at least 20/25 residues identical to human ACE2 but more relaxed constraints 

for critical binding residues. All species with ​medium​ score are mammals distributed across six orders.  

Among Carnivora, 9/43 scored ​medium​, 9/43 scored ​low​, and 25/43 scored ​very low​ (Fig. 1). The 

carnivores scoring ​medium​ were only felids, including the domestic cat and Siberian tiger. Among the 13 

Primates scoring ​medium​ there were 10 New World primates and three lemurs.  Of 45 Rodentia species, 

11 scored ​medium​. Twenty-one Artiodactyls scored ​medium​, including several important wild and 

domesticated ruminants, such as domesticated cattle, bison, sheep, goat, water buffalo, Masai giraffe, 

and Tibetan antelope. Species scoring ​medium ​also included 2/3 Lagomorphs and one Cetacean (sperm 

whale). 

All chiropterans (bats) scored ​low​ (N=8) or ​very low​ (N=29) (Fig. 1), including the Chinese rufous 

horseshoe bat ( ​Rhinolophus sinicus ​), from which ​a coronavirus very similar to SARS-CoV-2 was identified 

(1) ​. ​  Only 7.7% (3/39) primate species’ ACE2 scored ​low​ or ​very low, ​and 61% of rodent species scored 

low​ (10/46) or ​very low​ (18/46).  All monotremes (N=1) and marsupials (N=4) scored ​very low​.  All birds, 

fish, amphibians, and reptiles scored ​very low​, with less than 18/25 ACE2 residues identical to the 

human and many non-conservative residues at the remaining non-identical sites (Dataset S1). Notable 

species scoring ​very low​ include the Chinese pangolin ( ​Manis pentadactyla ​), Sunda pangolin ( ​Manis 

javanica ​), and white-bellied pangolin ( ​Phataginus tricuspis ​) (Fig. 1, Dataset S1).  

Structural analysis of the ACE2/ ​SARS-CoV-2 S binding interface​. ​  We ​complemented the 

sequence-identity based scoring scheme with a qualitative approach that combined structural homology 
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modeling and best fit rotamer positioning. We examined the 25 ACE2 binding residues in a subset of 28 

representative species (Fig. S1) and 17 sites were variable and not glycosylation sites.  First, we assessed 

the similarity of every contact at the binding interface between two recently solved crystal structures for 

the human ACE2/SARS-CoV-2 S RBD complex in humans, 6M0J and 6WV1 ​(13, 21) ​. Both structures were 

in agreement except for the position of S19, which was excluded from subsequent analysis ​(24) ​. We 

then generated homology models, and aligned them to the human ACE2/SARS-CoV-2 S RBD 6M0J 

structure. This showed a high degree of similarity along the C⍺ backbone ​(25) ​ for each of the 28 species. 

We selected the most favorable rotamer at each residue using CHIMERA (Fig. S2).  

We examined a total of 55 substitutions and assigned each to one of three types: ​neutral ​ (N;  likely to 

maintain similar contacts; 18 substitutions); ​weaken​ (W; likely to weaken the interaction; 14 

substitutions); or ​unfavorable​ (U; likely to introduce unfavorable interactions; 23 substitutions) (Fig. S1). 

Our assignments show good agreement with those made in a second study ​(26) ​ based on experimental 

data, with 83.4% of the 55 substitutions evaluated concordant between the two approaches (Fig. S1). 

The structural homology binding assessments support the sequence identity analysis, with the fraction 

of residues ranked as U, correlating very strongly with the substitution scoring scheme (Spearman 

correlation rho=0.76; p< 2.2e-16; Fig. 2).  

Structural analysis of variation in human ​ACE2​. We applied the same approach used to compare species, 

sequence identity and protein structural analysis, to examine the  variation in ACE binding residues 

within humans, some of which have been proposed to alter binding affinity ​(18, 27–30) ​. We integrated 

data from six different sources: dbSNP ​(31) ​, 1KGP ​(32) ​, Topmed ​(33) ​, UK10K ​(34) ​ and CHINAMAP ​(28) ​, 
and identified a total of 11 variants in ten of the 25 ACE2 binding residues (Dataset S2).  All variants 

found are rare, with allele frequency less than 0.01 in any populations, and less than 0.0007 over all 

populations. Three of the 11 variants were synonymous changes, seven were conservative missense 

variants, and one, S19P, was a semi-conservative substitution. S19P has the highest allele frequency of 

the 11 variants, with a global frequency of 0.0003 ​(17) ​. We evaluated, by structural homology, six 

missense variants. Four were ​neutral ​ and two weakening (E35K, frequency=0.000016; E35D, 

frequency=0.000279799).  S19P was not included in our structural homology assessment, but a recent 

study predicted it would increase binding affinity ​(26) ​. Thus, with an estimated summed frequency of 

0.001, genetic variation in the ACE2 S-binding interface is overall rare, and it is unclear whether the 

variation that does exist increases or decreases susceptibility to infection.  
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Evolution of ACE2 across mammals ​. We next investigated the evolution of ACE2 variation in vertebrates, 

including how patterns of positive selection compare between bats, a mammalian lineage known to 

harbor a diversity of coronaviruses ​(35) ​, and other mammalian clades. We first inferred the phylogeny of 

ACE2​ using our 410-vertebrate alignment and IQTREE, using the best-fit model of sequence evolution 

(JTT+F+R7) and rooting the topology on fishes (Dataset S3; Fig. S3). We then assayed sequence 

conservation with PhyloP ​(36) ​. The majority of ACE2 codons are significantly conserved across 

vertebrates and across mammals, likely reflecting its critical function in the renin-angiotensin system 

(37) ​ (Dataset S4.1), with ten residues in the ACE2 binding domain exceptionally conserved in Chiroptera 

and/or Rodentia (Dataset S4.2).  

We next used phyloP and CODEML to test for acceleration and positive selection ​(36) ​. PhyloP compares 

the rate of evolution at each codon to the expected rate in a model estimated from third nucleotide 

positions of the codon, and is agnostic to synonymous versus nonsynonymous substitutions (dN/dS). 

CODEML uses ⍵=dN/dS>1 and Bayes Empirical Bayes (BEB) scores to identify codons under positive 

selection, and was run on a subset of 64 representative mammals (see Materials and Methods).  

ACE2​ shows significant evidence of positive selection across mammals (⍵=1.83, LRT=194.13, p<0.001; 

Dataset S4.3, 4.4).  Almost 10% of codons (N=73; 9 near the RBD) are accelerated within mammals 

(Dataset S4.1, 4.5), and 18 of these have BEB scores greater than 0.95, indicating positively selected 

residues (Dataset S4.5, 4.6, Fig. S4). Nineteen accelerated residues, including two positively-selected 

codons (Q24, H34), are critical for the binding of the ACE2 RBD and SARS-CoV-2 S (Dataset S4.5; Fig. 3; 

Fig. S5). Q24 has not been observed to be polymorphic within the human population, and H34 harbors a 

synonymous polymorphism (AF=0.00063) but no non-synonymous polymorphisms (Dataset S2).  

This pattern of acceleration and positive selection in ​ACE2 ​also holds for individual mammalian lineages. 

Using CODEML, positive selection was detected within the orders Chiroptera (LRT=346.40, ⍵=3.44 

p<0.001), Cetartiodactyla (LRT=92.86, ⍵=3.83, p<0.001), Carnivora (LRT=65.66, ⍵=2.27. p<0.001), 

Primates (LRT=72.33, ⍵=3.16, p<0.001) and Rodentia (LRT=91.26, ⍵=1.77, p<0.001). Overall, bats had 

more positively selected sites with significant BEB scores (29 sites in Chiroptera compared to 10, 8, 7 and 

15 sites in Cetartiodactyla, Carnivora, Primates and Rodentia, respectively). Positive selection at key sites 

for the binding of ACE2 and SARS-CoV-2 was only found in the bat-specific alignment. PhyloP was used 

to assess shifts in evolutionary rate within mammalian lineages, for each assessing signal relative to a 

neutral model trained on species from the specified lineage (Dataset S4.6-11, Fig. S6). We discovered six 

important binding residues, five of which showed evidence for positive selection, that are accelerated in 
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one or more of Chiroptera, Rodentia, or Carnivora, with G354 accelerated in all of these lineages 

(Dataset S4.12).  

Given pervasive signatures of adaptive evolution in ​ACE2​ across mammals, we next sought to test if any 

mammalian lineages are evolving particularly rapidly compared to the others. CODEML branch-site tests 

identified positive selection in both the ancestral Chiroptera branch (1 amino acid, ⍵=26.7, LRT= 4.22, 

p=0.039) and ancestral Cetartiodactyla branch (2 amino acids, ⍵=10.38, LRT= 7.89, p=0.004, Dataset 

S4.3) using 64 mammals. These residues did not correspond to known viral binding sites. We found no 

evidence for lineage-specific positive selection in the ancestral primate, rodent or carnivore lineages. 

PhyloP identified lineage-specific acceleration in Chiroptera, Carnivora, Rodentia, Artiodactyla and 

Cetaceans relative to mammals (Dataset S4.13-17, Fig. S7). Bats have a particularly high level of 

accelerated evolution (18 codons; p<0.05). Of these accelerated residues, T27 and M82 are known to be 

important for binding SARS-CoV-2, with some bat subgroups having amino acids predicted to lead to less 

favorable binding of SARS-CoV-2 (Fig. S1, Fig. S8). Surprisingly, a residue that is conserved overall in our 

410 species alignment and in the mammalian subset, Q728, is perfectly conserved in all 37 species of 

bats except for fruit bats (Pteropodidae), which have a substitution from Q to E. These results support 

the theory that ​ACE2​ is under lineage-specific selective pressures in bats relative to other mammals. 

Positive selection in SARS-CoV-2 S protein ​. Positive selection was found using CODEML at sites L455, 

E484, F490 and S494 in the SARS-CoV-2 S sequence (⍵=1.15, LRT=116.7, p<0.001); however this signal 

was not particularly high, possibly due to the small sample size (N=8). All of these sites lie within or near 

the ACE2 SARS-CoV-2 S RBD binding sites (Fig. 3) ​(38) ​.  

 

Discussion 

Phylogenetic analysis of coronaviruses has demonstrated that SARS-CoV-2 most likely originated in a bat 

species ​(1) ​.  However, whether SARS-CoV-2 or the progenitor of this virus was transmitted directly to 

humans or through an intermediary host is not yet resolved.  To determine if amino acid substitution 

analysis and structural information could be used to identify candidate intermediate host species, we 

undertook a deep comparative genomic, evolutionary and structural analysis of ACE2, the SARS-CoV-2 

receptor in humans.  To accomplish this we drew on the rapidly growing dataset of annotated 

vertebrate genomes as well as predicted protein sequences from recently acquired whole genome 

sequences produced by the Genomes 10K-affiliated Bat1K Consortium, Zoonomia, and Vertebrate 
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Genomes Project, and other sources ​(39, 40) ​.  We conducted a phylogenetic analysis of ACE2 orthologs 

from 410 vertebrate species and made predictions of their likelihood to bind the SARS-CoV-2 S using a 

score that was based on amino acid substitutions at 25 consensus human ACE2 binding residues ​(13, 

21) ​. We supported these predictions with comprehensive homology modeling of the ACE2 binding site. 

We also tested the hypothesis that the ACE2 receptor is under selective constraints in different 

mammalian lineages, and correlated these results with data on the known species distribution of 

coronaviruses.  

Several recent studies examined the role of ACE2 in SARS-CoV-2 binding and cellular infection, and its 

relationship to experimental and natural infections in different species ​(30, 41–46) ​.  Our study design 

differs substantially from those studies in several aspects: 1) we analyzed a larger number of primates, 

carnivores, rodents, cetartiodactyls and other mammalian orders, and an extensive phylogenetic 

sampling of fishes, birds, amphibians and reptiles; 2) we analyzed the full complement of S-binding 

residues across the ACE2 binding site, which was based on a consensus set from two independent 

studies ​(13, 21) ​; 3) we used different methodologies to assess ACE2 binding capacity for SARS-CoV-2 S; 

and, 4) our study tested for selection and accelerated evolution across the entire ACE2 protein. While 

our results are strongly consistent with the results and conclusions of Melin and colleagues ​(44) ​ on the 

predicted susceptibility of primates to SARS-CoV-2, particularly Old World primates, our work made 

predictions for a larger number of primates (N=39 vs N=27), bats (N=37 vs N=7), other mammals (N=176 

vs N=5) and other vertebrates (N=158 vs N=0). When ACE2 from species in our study were compared 

with results of other studies there were many consistencies, such as for rodents, but some predictions 

that differ, such as the relatively high risk described for SARS-CoV-2 binding in pangolin and horse ​(45) ​, 
civet ​(46) ​, ​Rhinolophus sinicus ​ bats ​(46) ​ and turtles ​(45) ​. In one recent study, binding affinity of soluble 

ACE2 for the SARS-CoV-2 S RBD was analyzed by saturation mutagenesis ​(26) ​. Results obtained at each 

ACE2 binding residue were generally consistent with ours, particularly in the binding hotspot region of 

ACE2 residues 353-357.  Importantly, as compared with other studies, our results greatly expanded the 

potential number of intermediate hosts and identified many more threatened species that could be 

infected by SARS-CoV-2 via their ACE2 receptors.  

Evolution of ​ACE2​.  Variation of ​ACE2​ in the human population is rare ​(17) ​. We examined a large set of 

ACE2​ variants for their potential differences in binding to SARS-CoV-2 S and their relationship to selected 

and accelerated sites.  ​We found rare variants that would result in missense mutations in 7 out of the 25 

binding residues (Dataset S2) ​.  Some of those (e.g. E35K with an AF of 0.00001636) could reduce the 

virus binding affinity, thus potentially lowering the susceptibility to the virus in a very small fraction of 
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the population. The analysis suggests that some variants (e.g. D38E) might not affect the binding while 

others (e.g. S19P) have uncertain effects. Further studies are needed to confirm and correctly address 

recent discoveries ​(18, 27, 28) ​ and the data presented here, investigating the possible effect of these 

rare variants in specific populations. 

When exploring patterns of codon evolution in ACE2, we found that a number of sites are evolving at 

different rates in the different lineages represented in our 410-species vertebrate alignment. Multiple 

ACE2​ ​RBD residues important for the binding of SARS-CoV-2 are evolving rapidly across mammals, with 

two (Q24 and H34) under positive selection (Fig. 3, Fig. S5). Relative to other lineages analyzed, 

Chiroptera has a greater proportion of accelerated versus conserved residues, particularly at the 

SARS-CoV-2 S RBD, suggesting the possibility of selective forces on these codons in Chiroptera driven by 

their interactions with SARS-CoV-2-like viruses (Dataset S4.12, Fig. S8). Indeed, distinct signatures of 

positive selection found in bats and in the SARS-CoV S protein support this hypothesis that bats are 

evolving to tolerate SARS-CoV-2-like viruses.  

Relationship of the ACE2 binding score to known infectivity of SARS-CoV-2​. Data on susceptibility of wild 

animals to SARS-CoV-2 is still very limited. It has been reported that a captive Malayan tiger was infected 

by SARS-CoV-2 ​(9) ​ and that domestic cats, ferrets ​(47) ​, rhesus macaques ​(48) ​ and Syrian golden 

hamsters ​(49) ​ are susceptible to experimental infection by SARS-CoV-2. These results agree with our 

predictions of ACE2 binding ability to SARS-CoV-2 S (Fig. 1, Dataset S1); 4/5 five species with 

demonstrated susceptibility to SARS-CoV-2 score ​very high ​ (Rhesus macaque) or ​medium​ (domestic cat, 

tiger and Golden hamster).  The only inconsistency was observed for ferrets, which had a ​low​ ACE2 

binding score. This inconsistency could be related to the high infectivity dose used for experimental 

infection that likely does not correspond to virus exposure in nature. Dogs have low susceptibility to 

SARS-CoV-2 under experimental conditions ​(47) ​, and score ​low​ for binding of their ACE2 to SARS-CoV-2 

S. However, kidney cell lines derived from dog showed ACE2-dependent SARS-CoV-2 S entry, suggesting 

that​ in vitro ​ experiments may be overestimating true infectivity potential ​(39, 50) ​.  Pigs ( ​low​), ducks 

( ​very low​) and chickens ( ​very low​) were similarly exposed to SARS-CoV-2 and showed no susceptibility 

(47) ​, providing further support of our methodology.  A recent publication reporting that SARS-CoV-2 

could use pig, masked palm civet and Chinese rufous horseshoe bat ACE2 expressed in HeLa cells were 

inconsistent with our predictions, while data for mouse was in agreement ​(1) ​. Indeed, while mouse ACE2 

scored ​very low​ in our analysis, pig and Chinese rufous horseshoe bat score ​low​, while the masked palm 

civet scored ​very low​.  As for the ferret, high-level exposure to the virus ​in vitro​ could potentially result 

in infection via low affinity interactions with ACE2.  Another possibility is that other cellular machinery 
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present in the human HeLa cells is facilitating the infection, and that infectivity does not relate directly 

to ACE2 differences in these species. Confirmation of ​in vitro​ and ​in vivo ​susceptibility of these species 

under physiological conditions and with proper controls is clearly necessary.  In addition, t ​he expression 

of ACE2 varies across animal age, cell types, tissues and species ​(51, 52) ​, which may lead to 

discrepancies between SARS-CoV-2 susceptibility gleaned from experimental infections or laboratory 

experiments and predictions made from the ACE2-based binding score. 

Mammals with high predicted risk of SARS-CoV-2 infection ​.  Of the 19 catarrhine primates analyzed, 

18/19 scored ​very high ​ for binding of their ACE2 to SARS-CoV-2 S and one scored ​high​ (the Angola 

colobus); the 18 species scoring ​very high ​ had 25/25 identical binding residues to human ACE2, including 

rhesus macaques ( ​Macaca mulatta ​), which are known to be infected by SARS-CoV-2 and develop 

COVID-19-like clinical symptoms ​(3, 48) ​.  Our analysis predicts that all Old World primates are 

susceptible to infection by SARS-CoV-2 via their ACE2 receptors. Thus, many of the 21 primate species 

native to China could be a potential reservoir for SARS-CoV-2. The remaining primate species were 

scored as ​high​ or ​medium​, with only the Gray mouse lemur and the Philippine tarsier scoring as ​low​.  

We were surprised to find that all three species of Cervid deer and 12/14 cetacean species have ​high 

scores for binding of their ACE2s to SARS-CoV-2 S.  There are 18 species of Cervid deer found in China. 

Therefore, Cervid deer cannot be ruled out as an intermediate host for SARS-CoV-2.  While coronavirus 

sequences have been found in white tailed deer ​(53) ​ and gammacoronaviruses have been found in 

beluga whales ​(54, 55) ​ and bottlenose dolphins ​ ​(56) ​ and are associated with respiratory diseases, the 

cellular receptor used by these viruses is not known.  

Other artiodactyls ​. A relatively large fraction (21/30) of artiodactyl mammals were classified with 

medium​ score for ACE2 binding to SARS-CoV-2 S.  These include many species that are commonly found 

in Hubei Province and around the world, such as domesticated cattle, sheep and goats, as well as many 

species commonly found in zoos and wildlife parks (e.g., Masai giraffe, okapi, hippopotamus, water 

buffalo, scimitar horned oryx, and Dama gazelle).  Although cattle MDBK cells were shown in one study 

to be resistant to SARS-CoV-2 ​in vitro ​ ​(50) ​, we propose immediate surveillance of common artiodactyl 

species for SARS-CoV-2 and studies of cellular infectivity, given our predictions. If ruminant artiodactyls 

can serve as a reservoir for SARS-CoV-2, it would have significant epidemiological implications as well as 

implications for food production and wildlife management (see below).  It is noteworthy that camels and 

pigs, known for their ability to be infected by coronaviruses ​(35) ​, both score ​low ​in our analysis.  These 
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data are consistent with results (discussed above) indicating that pigs cannot be infected with 

SARS-CoV-2 both ​in vivo ​ ​(47) ​ and ​in vitro ​ ​(50) ​.  

Rodents ​.  Among the rodents, 7/46 species score ​high​ for ACE2 binding to SARS-CoV-2 S, with the 

remaining 11, 10 and 18 scoring ​medium​, ​low​ or ​very low​, respectively.  Brown rats ​(Rattus norvegicus​) 
and the house mouse ( ​Mus musculus ​), scored ​very low​, consistent with infectivity studies ​(1, 50) ​.  Given 

that wild rodent species likely come in contact with bats as well as with other predicted high risk species, 

we urge surveillance of ​high​ and ​medium​ binding likelihood rodents for the presence of SARS-CoV-2.  

Bats and other species of interest ​.  Chiroptera (bats) represent a clade of mammals that are of high 

interest in COVID-19 research because several bat species are known to harbor coronaviruses, including 

those most closely related to the betacoronavirus SARS-CoV-2 ​(1) ​.  We analyzed ACE2 from 37 bat 

species of which 8 and 29 scored ​low​ and ​very low​, respectively.  These results were unexpected 

because the three ​Rhinolophus ​ spp. including the Chinese rufous horseshoe bat are major suspects in 

the transmission of SARS-CoV-2, or a closely related  virus, to humans ​(1) ​. Globally, bats have been 

shown to harbour the highest diversity of betacoronaviruses in mammals tested ​(35) ​ ​and show little 

pathology carrying these viruses ​ ​(57) ​. ​ ​We found evidence for accelerated evolution at six RBD binding 

domain residues within the bat lineage, which is more than in any other lineage tested. Bats also had far 

more sites showing evidence of positive selection, including four binding domain residues, compared to 

other mammalian orders. This suggests that the diversity observed in bat ACE2 sequences may be driven 

by selective pressure from coronaviruses. Our results suggest that SARS-CoV-2 is not likely to use the 

ACE2 receptor in bats, which challenges a recent study showing that SARS-CoV-2 can infect HeLa cells 

expressing​ Rhinolophus sinicus ​ ACE2 ​(1) ​. If bats can be infected with SARS-CoV-2, the virus likely uses a 

different receptor.  For example, the MERS-CoV, a betacoronavirus, uses CD26/DPP4 ​(16) ​ while the 

porcine transmissible enteritis virus, an alphacoronavirus uses aminopeptidase N (ANPEP) ​(58) ​. As 

detailed above, further​ in vitro ​ and ​in vivo ​infectivity studies are required to fully understand the mode 

of transmission of susceptibility of bats to SARS-CoV-2. 

Carnivores ​.  Recent reports of a Malayan tiger and a domestic cat infected by SARS-CoV-2 suggest that 

the virus can be transmitted to other felids ​(9, 47) ​.  Our results are consistent with these studies; 9/9 

felids we analyzed scored ​medium​ for ACE2 binding of SARS-CoV-2 S. However, the masked palm civet 

( ​Paguma larvata ​), a member of the Viverridae family that is related to but distinct from Felidae, scored 

as ​very low​. These results are inconsistent with transfection studies using civet ACE2 receptors 

expressed in HeLa cells ​(1) ​, although these experiments have limitations as discussed above.  While 
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carnivores closely related to dogs (dingos, wolves and foxes) all scored ​low​, experimental data 

supporting infection in dogs were inconsistent ​(47, 50, 59) ​ so no conclusions can be drawn. 

Pangolins ​. Considerable controversy surrounds reports that pangolins can serve as an intermediate host 

for SARS-CoV-2.  Pangolins were proposed as a possible intermediate host ​(22) ​ and have been shown to 

harbor related coronaviruses. In our study, ACE2 of Chinese pangolin ( ​Manis pentadactyla​), Sunda 

pangolin ( ​Manis javanica ​), and white bellied pangolin ( ​Phataginus tricuspis ​) had ​low​ or ​very low​ binding 

score for SARS-CoV-2 S. Neither experimental infection nor ​in vitro​ infection with SARS-CoV-2 has been 

reported for pangolins.  As for ferrets and bats, if SARS-CoV-2 infects pangolins it may be using a 

receptor other than ACE2, based on our analysis. 

Other vertebrates ​.  Our analysis of 29 orders of fishes, 29 orders of birds, 3 orders of reptiles and 2 

orders of amphibians ​ ​predicts that the ACE2 proteins of species within these vertebrate classes are not 

likely to bind SARS-CoV-2 S. Thus, vertebrate classes other than mammals are not likely to be an 

intermediate host or reservoir for the virus, despite predictions reported in a recent study ​(45) ​, unless 

SARS-CoV-2 can use another receptor for infection.  With many different non-mammal vertebrates sold 

in the seafood and wildlife markets of Asia and elsewhere, it is still important to determine if 

SARS-CoV-2 can be found in non-mammalian vertebrates.  

Relevance to Threatened Species ​. Among the 103 species that scored ​very high ​, ​high ​ and ​medium​ for 

ACE2 SARS-CoV-2 S RBD binding, 41 (40%) are classified in one of three ‘Threatened’ categories 

( ​Vulnerable​, ​Endangered ​, and ​Critically Endangered ​) on the IUCN Red List of Threatened Species, five are 

classified as ​Near Threatened ​, and two species are classified as ​Extinct in the Wild​ (Dataset S1) ​(60) ​. This 

represents only a small fraction of the threatened species potentially susceptible to SARS-CoV-2. For 

example, all 20 catarrhine primate species in our analysis, representing three families (Cercopithecidae, 

Hylobatidae, and Hominidae) scored ​very high ​, suggesting that all 185 species of catarrhine primates, 

most of which are classified Threatened (62), are potentially susceptible to SARS-CoV-2. Similarly, all 

three species of deer, representatives of a family of ~92 species (Cervidae), scored as ​high​ risk, as did 

species representing Cetacea (baleen and toothed whales), and both groups contain a number of 

threatened species. ​Toothed whales have potential for viral outbreaks and have lost function of a gene 

key to the antiviral response in other mammalian lineages ​(61) ​. ​ ​If they are susceptible to SARS-CoV-2 , 

human-to-animal transmission could pose a risk through sewage outfall ​(62) ​ and contaminated refuse 

from cities, commercial vessels and cruise liners ​(63) ​. In contrast, some threatened species scored  ​low 

or ​very low​, such as the giant panda ( ​low​), potentially positive news for these at risk populations. 
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Our results have practical implications for populations of threatened species in the wild and those under 

human care (including those in zoos). Established guidelines for minimizing potential human to animal 

transmission should be implemented and strictly followed. Guidelines for field researchers working on 

great apes established by the IUCN have been in place since 2015 in response to previous human 

disease outbreaks ​(64) ​ and have received renewed attention because of SARS-CoV-2 ​(64–66) ​. For zoos, 

guidelines in response to SARS-CoV-2 have been distributed by several Taxon Advisory Groups of the 

North American Association of Zoos and Aquariums (AZA), the American Association of Zoo 

Veterinarians (AAZV), and the European Association of Zoo and Wildlife Veterinarians (EAZWV), and 

these organizations are actively monitoring and updating knowledge of species in human care 

considered to be potentially sensitive to infection ​(67, 68) ​. Although ​in silico​ studies suggest potential 

susceptibility of diverse species, verification of infection potential is warranted, using cell cultures, stem 

cells, organoids, and other methods that do not require direct animal infection studies. Zoos and other 

facilities that maintain living animal collections are in a position to provide such samples for generating 

crucial research resources by banking tissues, and cryobanking viable cell cultures in support of these 

efforts.  

Animal models for COVID-19​.  A variety of animal models have been developed for studying SARS and 

MERS coronavirus infections ​(69) ​. Presently, there is a tremendous need for animal models for studying 

SARS-CoV-2 infection and pathogenesis, as the only species currently known to be infected and show 

similar symptoms of COVID-19 is rhesus macaque. Non-human primate models have proven to be highly 

valuable for other infectious diseases, but are expensive to maintain and numbers of experimental 

animals are limited.  Our results provide an extended list of potential species that might be useful as 

animal models for SARS-CoV-2 infection and pathogenesis, including Chinese hamster and Syrian/Golden 

hamster ​(49) ​, and large animals maintained for biomedical and agricultural research (e.g., domesticated 

sheep and cattle).  

Conclusions ​. We predict that species scored as ​very high​ and ​high​ for SARS-CoV-2 S binding to ACE2 will 

have a high probability of becoming infected by the virus. We also predict that many species having a 

medium​ score have some risk of infection, and species scored as ​very low​ and ​low​ are unlikely to be 

infected by SARS-CoV-2 via the ACE2 receptor. Importantly, our predictions are based solely on ​in silico 

analyses and must be confirmed by direct experimental data.  Until such time, other than for species in 

which SARS-CoV-2 infection has been demonstrated ​ ​to occur using ACE2, we urge caution not to 

over-interpret the predictions made in the present study. This is especially important with regards to 

species, endangered or otherwise, in human care. While species ranked ​high​ or ​medium​ may be 
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susceptible to infection based on the features of their ACE2 residues, pathological outcomes may be 

very different among species depending on other mechanisms that could affect virus replication and 

spread to target cells, tissues, and organs within the host. Furthermore,  we cannot exclude the 

possibility that infection in any species occurs via another cellular receptor, as has been shown for other 

betacoronaviruses.  Nonetheless, our predictions provide a useful starting point for selection of 

appropriate animal models for COVID-19 research and for identification of species that may be at risk for 

human-to-animal or animal-to-animal transmissions by SARS-CoV-2.  The approach we used for ACE2 

can be extended to other cellular proteins known to be involved in coronavirus infection and immunity 

to better understand infection, transmission, inflammatory responses and disease progression.  

 

 ​Materials and Methods 

Angiotensin I converting enzyme 2 (ACE2) coding and protein sequences ​. All human ACE2 orthologs for 

vertebrate species, and their respective coding sequences, were retrieved from NCBI Protein (March 20, 

2020) ​(70) ​. ACE2 coding DNA sequences were extracted from available or recently sequenced 

unpublished genome assemblies for 123 other mammalian species, with the help of genome alignments 

and the human or within-family ACE2 orthologs. The protein sequences were predicted using 

AUGUSTUS v3.3.2 ​(71) ​ or CESAR v2.0 ​(72) ​ and the translated protein sequences were checked against 

the human ACE2 orthologue. ACE2 gene predictions were inspected and manually curated if necessary. 

For four bat species ( ​Micronycteris hirsuta​, ​Mormoops blainvillei ​, ​Tadarida brasiliensis ​ and ​Pteronotus 

parnellii ​) the ACE2 coding region was split into two scaffolds which were merged, and for ​Eonycteris 

spelaea ​ a putative 1bp frameshift base error was corrected. Eighty ACE2 predictions were obtained from 

the Zoonomia project, 19 from the Hiller Lab, 12 from the Koepfli lab, 8 from the Lewin lab and 4 from 

the Zhou lab. The source, and accession numbers for the genomes or proteins retrieved from NCBI are 

listed in Dataset S1. The final set of ACE2 sequences comprises 410 vertebrate species. To assure 

alignment robustness, the full set of coding and protein sequences were aligned independently using 

Clustal Omega ​(73) ​, MUSCLE ​(74) ​ and COBALT ​(75) ​ all with default parameters. All resulting protein 

alignments were identical. Clustal Omega alignments were used in the subsequent analysis. Each amino 

acid replacement present in our dataset was classified as neutral, semi-conservative and 

non-conservative as in Clustal Omega. 

Identification of ACE2 residues involved in binding to SARS-CoV-2 S protein ​. We identified 22 ACE2 

protein residues that were previously reported to be critical for the effective binding of ACE2 RBD and 
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SARS-CoV-2 S ​(13, 21) ​. These residues include S19, Q24, T27, F28, D30, K31, H34, E35, E37, D38, Y41, 

Q42, L45, L79, M82, Y83, N330, K353, G354, D355, R357, and R393. All these residues were identified 

from the co-crystallization and structural determination of SARS-CoV-2 S and ACE2 RBD ​(13, 21) ​. The 

known human ACE2 RBD glycosylation sites N53, N90 and N322 were also included in the analyzed 

residue set ​(11) ​.  

ACE2 and SARS-CoV-2 binding ability prediction ​. Based on the known interactions of ACE2 and 

SARS-CoV-2 residues, we developed a set of rules for predicting the likelihood of the SARS-CoV-2 S 

binding to ACE2. Each species was classified in one of five categories: ​very high​, ​high ​, ​medium​, ​low​ or 

very low​ likelihood of binding SARS-CoV-2 S. Species in the ​very high ​ category have at least 23/25 critical 

residues identical to the human; have K353, K31, E35, M82, N53, N90 and N322; do not have N79; and 

have only conservative substitutions among the non-identical 2/25 residues. Species in the ​high​ group 

have at least 20/25 residues identical to the human; have K353; have only conservative substitutions at 

K31 and E35; do not have N79; and can only have one non-conservative substitution among the 5/25 

non-identical residues. Species scoring ​medium​ have at least 20/25 residues identical to the human; can 

only have conservative substitutions at K353, K31, and E35; and can have up to two non-conservative 

substitutions in the 5/25 non-identical residues. Species in the ​low​ category have​ ​at least 18/25 residues 

identical to the human; can only have conservative substitutions at K353; can have up to three 

non-conservative substitutions on the remaining 7/25 non-identical residues. Lastly, species in the ​very 

low​ group have less than 18/25 residues identical to the human or have at least four non-conservative 

substitutions in the non-identical residues.  

Protein structure analysis ​. We applied an orthogonal approach to assess the likelihood of binding of a 

sampling of species that were predicted to bind SARS-CoV-2 across the categories of ​high​, ​medium​, ​low 

or ​very low​ likelihood of binding. ACE2 amino acid sequences from 28 species were extracted from the 

multiway alignment and loaded into SWISS-MODEL ​(25) ​ in order to generate homology derived models. 

The output files were aligned to the crystal structure 6MOJ ​(13) ​ in order to assess the overall similarities 

to human ACE2. We used two recently solved crystal structures of the complex for ACE2 and SARS-CoV-2 

S RBD, 6MOJ ​(13) ​ and 6VW1 ​(21) ​ as ground truth for the human ACE2/SARS-CoV-2 S interaction. In the 

program CHIMERA ​(76) ​, we utilized the rotamer function to model each individual variant that species 

exhibit separately, and chose the rotamer with the least number of clashes, retaining the most initial 

hydrogen bonds and containing the highest probability of formation as calculated by CHIMERA from the 

Dunbrack 2010 backbone-dependent rotamer library ​(77) ​. The rotamer was then evaluated in the 

context of its structural environment and assigned a score based on likelihood of interface disruption. 
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Neutral (N) was assigned if the residue maintained a similar environment as the original residue, and 

was predicted to maintain or in some cases increase affinity. Weakened (W) was assigned if hydrophobic 

contacts were lost and contacts that appear disruptive are introduced that are not technically clashes. 

Unfavorable (U) was assigned if clashes are introduced and/or a hydrogen bond is broken. Additional 

structural visualizations were generated in Pymol ​(78) ​.  

Human variants analysis ​. All variants at the 25 residues critical for effective SARS-CoV-2-ACE2 binding 

(11, 21, 79) ​ were compiled from from dbSNP ​(31) ​, 1KGP ​(32) ​, Topmed ​(33) ​, UK10K ​(34) ​ and CHINAMAP 

(28) ​. Specific population frequencies were obtained from gnomAD v.2.1.1 ​(17) ​. 

Phylogenetic reconstruction of the vertebrate ​ACE2​ species tree​. The multiple sequence alignment of 

410 ACE2 orthologous protein sequences from mammals, birds, fishes, reptiles and amphibians was 

used to generate a gene tree using the maximum likelihood method of reconstruction, as implemented 

in IQTREE ​(80) ​. The best fit model of sequence evolution was determined using ModelFinder ​(81) ​ and 

used to generate the species phylogeny. A total of 1000 bootstrap replicates were used to determine 

node support using UFBoot ​(82) ​. 

Identifying sites undergoing positive selection ​. Signatures of site-specific positive selection in the ​ACE2 

receptor were explored using CODEML, part of the Phylogenetic Analysis using Maximum Likelihood 

(PAML, ​(83) ​) suite of software. Given CODEML’s computational complexity, a smaller subset of 

mammalian taxa (N=64, Dataset S1), which included species from all prediction categories mentioned 

above, was used for selection analyses. To calculate likelihood-derived dN/dS rates (⍵), CODEML utilises 

both a species tree and a codon alignment. The species tree for all 64 taxa was calculated using IQTREE 

(80) ​ and the inferred best-fit model of sequence evolution (JTT+F+R4). This gene topology was generally 

in agreement with the 410 taxa tree, however bats were now sister taxa to Perissodactyla. Therefore all 

selection analyses were run using both the inferred gene tree, and a modified tree with the position of 

bats manually modified to reflect the 410 taxa topology. All species trees used were unrooted. A codon 

alignment of the 64 mammals was generated using pal2nal ​(84) ​ with protein alignments generated with 

Clustal Omega ​(73) ​ and their respective CDS sequences. 

Site-models M7 (null model) and M8 (alternative model) were used to identify ​ACE2​ sites undergoing 

positive selection in mammals. Both M7 and M8 estimate ⍵ using a beta distribution and 10 rate 

categories per site with ⍵<=1 (neutral or purifying selection), but with an additional 11​th ​ category 

allowing ⍵ >1 (positive selection) in M8. A likelihood ratio test (LRT) calculated as 2*(lnL ​alt​ – lnL ​null ​), 

comparing the fit of both null and alternative model likelihoods was carried out, with a p-value 

17 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

https://paperpile.com/c/3coM2m/oIl2
https://paperpile.com/c/3coM2m/1xvc+wdAo+yQnC
https://paperpile.com/c/3coM2m/xody
https://paperpile.com/c/3coM2m/kJnW
https://paperpile.com/c/3coM2m/nV0c
https://paperpile.com/c/3coM2m/1XEE
https://paperpile.com/c/3coM2m/pRVR
https://paperpile.com/c/3coM2m/Po2T
https://paperpile.com/c/3coM2m/LRHu
https://paperpile.com/c/3coM2m/j831
https://paperpile.com/c/3coM2m/99eE
https://paperpile.com/c/3coM2m/0hth
https://paperpile.com/c/3coM2m/LRHu
https://paperpile.com/c/3coM2m/7tSl
https://paperpile.com/c/3coM2m/3TDU3
https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

calculated assuming a chi-squared distribution. Sites showing evidence of positive selection were 

identified by a significant (>0.95) Bayes Empirical Bayes (BEB) score, and validated by visual inspection of 

the protein alignment. To explore order-specific instances of positive selection, separate multiple 

sequence alignments and gene trees for Chiroptera (N=37), Cetartiodactyla (N=45), Carnivora (N=44), 

Rodentia (N=46) and Primates (N=39) were also generated and explored using M7 vs. M8 in CODEML.  

In addition to site-models, branch-site model A1 (null model) and model A (alternative model) were also 

implemented targeting various mammalian orders, specifically Chiroptera, Cetartiodactyla, Rodentia and 

Primates, to identify lineage-specific positive selection in the ​ACE2​ receptor sequence. Branch-site 

Model A1 constrains both the target foreground branch (Carnivora, Chiroptera, Cetartiodactyla, 

Rodentia and Primates) and background branches to ⍵<=1, while the alternative Model A allows positive 

selection to occur in the foreground branch. Null and alternative models were compared using LRTs as 

above, with significant BEB sites identified. 

We also looked for positively selected sites in the viral spike protein, using SARS-CoV-2 (MN908947.3), 

Bat coronavirus RaTg13 (MN996532.1), Bat SARS-like coronavirus isolate Rs4231 (KY417146.1), 

SARS-related coronavirus strain BtKY72 (KY352407.1), SARS coronavirus Urbani (AY278741.1), SARS 

coronavirus PC4-227 (AY613950.1), Coronavirus BtRs-BetaCoV/YN2018B (MK211376.1) and the more 

divergent Bat Hp-betacoronavirus/Zhejiang2013 (NC_025217.1) viral strains. Protein and codon 

alignments were generated as above, with the viral species tree inferred using full genome alignments 

of all strains generated with Clustal Omega ​(73) ​. Site-test models were applied using CODEML, and 

significant BEB sites identified. 

Analysis for departure from neutral evolutionary rate in ACE2 with PHAST ​. Neutral models were trained 

on the specified species sets (Dataset S4) using the REV nucleotide substitution model implemented in 

phyloFit using an expectation maximization algorithm for parameter optimization. The neutral model fit 

was based on third codon positions to approximate the neutral evolution rate specific to the ​ACE2 ​gene, 

using a 410-species phylogenetic tree generated by IQTREE as described above and rooted on fishes. The 

program phyloP was then used to identify codons undergoing accelerated or conserved evolution 

relative to the neutral model using --features to specify codons, --method LRT --mode CONACC, and 

--subtree for lineage-specific tests, with p-values thus assigned per codon based on a likelihood ratio 

test. P-values were corrected for multiple testing using the Benjamini-Hochberg method ​(36) ​ and sites 

with a corrected p-value less than 0.05 were considered significant. PhyloFit and phyloP are both part of 

the PHAST package v1.4 ​(85, 86) ​.  

18 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

https://paperpile.com/c/3coM2m/3TDU3
https://paperpile.com/c/3coM2m/EucM
https://paperpile.com/c/3coM2m/AbMf+sBJT
https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Acknowledgements 

We thank Lawrence Stern for helpful discussions on homology modeling. We thank Pavel Dobrynin, Paul 

Frandsen, Taylor Hains, Sergei Kliver, and Alice Mouton for extracting and contributing ACE2 sequences 

from unpublished genomes. We thank Shirley Xue Li and Kate Megquier for help in data compilation. We 

thank Pierre Comizzoli, Budhan Pukazhenthi, and Nucharin Songasasen for valuable comments that 

improved the manuscript. This work was supported by the Robert and Rosabel Osborne Endowment 

(HAL). KLT is the recipient of a Distinguished Professor award from the Swedish Research Council. ECT is 

funded by an Irish Research Council Laureate Award. KCK is supported by a UCSF Discovery Fellowship 

and the Gladstone Institutes. GMH is funded by an Ad Astra Fellowship at University College Dublin. EKK, 

DPG and RS were supported by NIH R01HG008742. The research conducted in this study was 

coordinated as part of the Genome 10K Consortium, which includes the Bat1K, Zoonomia, the 

Vertebrate Genomes Project, and the Earth BioGenome Project.  

 

References 

1. P. Zhou, ​et al. ​, A pneumonia outbreak associated with a new coronavirus of probable bat origin. 
Nature​ ​579​, 270–273 (2020). 

2. G. Lu, Q. Wang, G. F. Gao, Bat-to-human: spike features determining “host jump” of coronaviruses 
SARS-CoV, MERS-CoV, and beyond. ​Trends Microbiol. ​ ​23​, 468–478 (2015). 

3. C. Shan, ​et al. ​, Infection with Novel Coronavirus (SARS-CoV-2) Causes Pneumonia in the Rhesus 
Macaques https:/doi.org/ ​10.21203/rs.2.25200/v1​. 

4. H. Laude, K. Van Reeth, M. Pensaert, Porcine respiratory coronavirus: molecular features and 
virus-host interactions. ​Vet. Res. ​ ​24​, 125–150 (1993). 

5. L. J. Saif, Bovine respiratory coronavirus. ​Vet. Clin. North Am. Food Anim. Pract. ​ ​26​, 349–364 (2010). 

6. W. Chen, ​et al. ​, SARS-associated Coronavirus Transmitted from Human to Pig. ​Emerg. Infect. Dis. ​ ​11​, 
446 (2005). 

7. L. Vijgen, ​et al. ​, Complete genomic sequence of human coronavirus OC43: molecular clock analysis 
suggests a relatively recent zoonotic coronavirus transmission event. ​J. Virol. ​ ​79​, 1595–1604 (2005). 

8. T. T.-Y. Lam, ​et al. ​, Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. ​Nature 
(2020) https:/doi.org/ ​10.1038/s41586-020-2169-0​. 

9. United States Department of Agriculture Animal and Plant Health Inspection Service, USDA APHIS | 
USDA Statement on the Confirmation of COVID-19 in a Tiger in New York (April 13, 2020). 

19 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

http://paperpile.com/b/3coM2m/gbTx
http://paperpile.com/b/3coM2m/gbTx
http://paperpile.com/b/3coM2m/gbTx
http://paperpile.com/b/3coM2m/gbTx
http://paperpile.com/b/3coM2m/gbTx
http://paperpile.com/b/3coM2m/gbTx
http://paperpile.com/b/3coM2m/gbTx
http://paperpile.com/b/3coM2m/HwaK
http://paperpile.com/b/3coM2m/HwaK
http://paperpile.com/b/3coM2m/HwaK
http://paperpile.com/b/3coM2m/HwaK
http://paperpile.com/b/3coM2m/HwaK
http://paperpile.com/b/3coM2m/HwaK
http://paperpile.com/b/3coM2m/Lrvh
http://paperpile.com/b/3coM2m/Lrvh
http://paperpile.com/b/3coM2m/Lrvh
http://paperpile.com/b/3coM2m/Lrvh
http://dx.doi.org/10.21203/rs.2.25200/v1
http://paperpile.com/b/3coM2m/Lrvh
http://paperpile.com/b/3coM2m/mJsp
http://paperpile.com/b/3coM2m/mJsp
http://paperpile.com/b/3coM2m/mJsp
http://paperpile.com/b/3coM2m/mJsp
http://paperpile.com/b/3coM2m/mJsp
http://paperpile.com/b/3coM2m/mJsp
http://paperpile.com/b/3coM2m/1REe
http://paperpile.com/b/3coM2m/1REe
http://paperpile.com/b/3coM2m/1REe
http://paperpile.com/b/3coM2m/1REe
http://paperpile.com/b/3coM2m/1REe
http://paperpile.com/b/3coM2m/wTqe
http://paperpile.com/b/3coM2m/wTqe
http://paperpile.com/b/3coM2m/wTqe
http://paperpile.com/b/3coM2m/wTqe
http://paperpile.com/b/3coM2m/wTqe
http://paperpile.com/b/3coM2m/wTqe
http://paperpile.com/b/3coM2m/wTqe
http://paperpile.com/b/3coM2m/wTqe
http://paperpile.com/b/3coM2m/4xlq
http://paperpile.com/b/3coM2m/4xlq
http://paperpile.com/b/3coM2m/4xlq
http://paperpile.com/b/3coM2m/4xlq
http://paperpile.com/b/3coM2m/4xlq
http://paperpile.com/b/3coM2m/4xlq
http://paperpile.com/b/3coM2m/4xlq
http://paperpile.com/b/3coM2m/4xlq
http://paperpile.com/b/3coM2m/VAFm
http://paperpile.com/b/3coM2m/VAFm
http://paperpile.com/b/3coM2m/VAFm
http://paperpile.com/b/3coM2m/VAFm
http://paperpile.com/b/3coM2m/VAFm
http://paperpile.com/b/3coM2m/VAFm
http://dx.doi.org/10.1038/s41586-020-2169-0
http://paperpile.com/b/3coM2m/VAFm
http://paperpile.com/b/3coM2m/4DZy
http://paperpile.com/b/3coM2m/4DZy
https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10. Z. Qian, ​et al. ​, Innate Immune Response of Human Alveolar Type II Cells Infected with Severe Acute 
Respiratory Syndrome–Coronavirus. ​Am. J. Respir. Cell Mol. Biol. ​ ​48​, 742–748 (2013). 

11. J. Sun, ​et al. ​, COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. ​Trends Mol. 
Med. ​ (2020) https:/doi.org/ ​10.1016/j.molmed.2020.02.008​. 

12. W. Li, ​et al. ​, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. 
Nature​ ​426​, 450–454 (2003). 

13. J. Lan, ​et al. ​, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 
receptor. ​Nature​ (2020) https:/doi.org/ ​10.1038/s41586-020-2180-5​. 

14. V. B. Patel, J.-C. Zhong, M. B. Grant, G. Y. Oudit, Role of the ACE2/Angiotensin 1-7 Axis of the 
Renin-Angiotensin System in Heart Failure. ​Circ. Res. ​ ​118​, 1313–1326 (2016). 

15. Y. Feng, ​et al. ​, Angiotensin-converting enzyme 2 overexpression in the subfornical organ prevents 
the angiotensin II--mediated pressor and drinking responses and is associated with angiotensin II 
type 1 receptor downregulation. ​Circ. Res. ​ ​102​, 729–736 (2008). 

16. V. S. Raj, ​et al. ​, Dipeptidyl peptidase 4 is a functional receptor for the emerging human 
coronavirus-EMC. ​Nature​ ​495​, 251–254 (2013). 

17. K. J. Karczewski, ​et al. ​, The mutational constraint spectrum quantified from variation in 141,456 
humans. ​bioRxiv​, 531210 (2020). 

18. E. W. Stawiski, ​et al. ​, Human ACE2 receptor polymorphisms predict SARS-CoV-2 susceptibility. 
bioRxiv​, 2020.04.07.024752 (2020). 

19. F. Li, Receptor recognition and cross-species infections of SARS coronavirus. ​Antiviral Res. ​ ​100​, 
246–254 (2013). 

20. F. Li, W. Li, M. Farzan, S. C. Harrison, Structure of SARS coronavirus spike receptor-binding domain 
complexed with receptor. ​Science​ ​309​, 1864–1868 (2005). 

21. J. Shang, ​et al. ​, Structural basis of receptor recognition by SARS-CoV-2. ​Nature​ (2020) 
https:/doi.org/ ​10.1038/s41586-020-2179-y​. 

22. T. Zhang, Q. Wu, Z. Zhang, Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 
Outbreak. ​Curr. Biol. ​ ​30​, 1346–1351.e2 (2020). 

23. Z. Liu, ​et al. ​, Composition and divergence of coronavirus spike proteins and host ACE2 receptors 
predict potential intermediate hosts of SARS-CoV-2. ​J. Med. Virol. ​ (2020) 
https:/doi.org/ ​10.1002/jmv.25726​. 

24. E. F. Pettersen, ​et al. ​, UCSF Chimera—a visualization system for exploratory research and analysis. ​J. 
Comput. Chem. ​ ​25​, 1605–1612 (2004). 

25. A. Waterhouse, ​et al. ​, SWISS-MODEL: homology modelling of protein structures and complexes. 
Nucleic Acids Res. ​ ​46​, W296–W303 (2018). 

26. E. Procko, The sequence of human ACE2 is suboptimal for binding the S spike protein of SARS 

20 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

http://paperpile.com/b/3coM2m/JrNz
http://paperpile.com/b/3coM2m/JrNz
http://paperpile.com/b/3coM2m/JrNz
http://paperpile.com/b/3coM2m/JrNz
http://paperpile.com/b/3coM2m/JrNz
http://paperpile.com/b/3coM2m/JrNz
http://paperpile.com/b/3coM2m/JrNz
http://paperpile.com/b/3coM2m/JrNz
http://paperpile.com/b/3coM2m/yQnC
http://paperpile.com/b/3coM2m/yQnC
http://paperpile.com/b/3coM2m/yQnC
http://paperpile.com/b/3coM2m/yQnC
http://paperpile.com/b/3coM2m/yQnC
http://paperpile.com/b/3coM2m/yQnC
http://dx.doi.org/10.1016/j.molmed.2020.02.008
http://paperpile.com/b/3coM2m/yQnC
http://paperpile.com/b/3coM2m/Upkq
http://paperpile.com/b/3coM2m/Upkq
http://paperpile.com/b/3coM2m/Upkq
http://paperpile.com/b/3coM2m/Upkq
http://paperpile.com/b/3coM2m/Upkq
http://paperpile.com/b/3coM2m/Upkq
http://paperpile.com/b/3coM2m/Upkq
http://paperpile.com/b/3coM2m/0s97
http://paperpile.com/b/3coM2m/0s97
http://paperpile.com/b/3coM2m/0s97
http://paperpile.com/b/3coM2m/0s97
http://paperpile.com/b/3coM2m/0s97
http://paperpile.com/b/3coM2m/0s97
http://dx.doi.org/10.1038/s41586-020-2180-5
http://paperpile.com/b/3coM2m/0s97
http://paperpile.com/b/3coM2m/5pam
http://paperpile.com/b/3coM2m/5pam
http://paperpile.com/b/3coM2m/5pam
http://paperpile.com/b/3coM2m/5pam
http://paperpile.com/b/3coM2m/5pam
http://paperpile.com/b/3coM2m/5pam
http://paperpile.com/b/3coM2m/pN5p
http://paperpile.com/b/3coM2m/pN5p
http://paperpile.com/b/3coM2m/pN5p
http://paperpile.com/b/3coM2m/pN5p
http://paperpile.com/b/3coM2m/pN5p
http://paperpile.com/b/3coM2m/pN5p
http://paperpile.com/b/3coM2m/pN5p
http://paperpile.com/b/3coM2m/pN5p
http://paperpile.com/b/3coM2m/pN5p
http://paperpile.com/b/3coM2m/Tdur
http://paperpile.com/b/3coM2m/Tdur
http://paperpile.com/b/3coM2m/Tdur
http://paperpile.com/b/3coM2m/Tdur
http://paperpile.com/b/3coM2m/Tdur
http://paperpile.com/b/3coM2m/Tdur
http://paperpile.com/b/3coM2m/Tdur
http://paperpile.com/b/3coM2m/Tdur
http://paperpile.com/b/3coM2m/Po2T
http://paperpile.com/b/3coM2m/Po2T
http://paperpile.com/b/3coM2m/Po2T
http://paperpile.com/b/3coM2m/Po2T
http://paperpile.com/b/3coM2m/Po2T
http://paperpile.com/b/3coM2m/Po2T
http://paperpile.com/b/3coM2m/vDa3
http://paperpile.com/b/3coM2m/vDa3
http://paperpile.com/b/3coM2m/vDa3
http://paperpile.com/b/3coM2m/vDa3
http://paperpile.com/b/3coM2m/vDa3
http://paperpile.com/b/3coM2m/P9sd
http://paperpile.com/b/3coM2m/P9sd
http://paperpile.com/b/3coM2m/P9sd
http://paperpile.com/b/3coM2m/P9sd
http://paperpile.com/b/3coM2m/P9sd
http://paperpile.com/b/3coM2m/P9sd
http://paperpile.com/b/3coM2m/yQZ0
http://paperpile.com/b/3coM2m/yQZ0
http://paperpile.com/b/3coM2m/yQZ0
http://paperpile.com/b/3coM2m/yQZ0
http://paperpile.com/b/3coM2m/yQZ0
http://paperpile.com/b/3coM2m/yQZ0
http://paperpile.com/b/3coM2m/wdAo
http://paperpile.com/b/3coM2m/wdAo
http://paperpile.com/b/3coM2m/wdAo
http://paperpile.com/b/3coM2m/wdAo
http://paperpile.com/b/3coM2m/wdAo
http://paperpile.com/b/3coM2m/wdAo
http://dx.doi.org/10.1038/s41586-020-2179-y
http://paperpile.com/b/3coM2m/wdAo
http://paperpile.com/b/3coM2m/sU7B
http://paperpile.com/b/3coM2m/sU7B
http://paperpile.com/b/3coM2m/sU7B
http://paperpile.com/b/3coM2m/sU7B
http://paperpile.com/b/3coM2m/sU7B
http://paperpile.com/b/3coM2m/sU7B
http://paperpile.com/b/3coM2m/ORNT
http://paperpile.com/b/3coM2m/ORNT
http://paperpile.com/b/3coM2m/ORNT
http://paperpile.com/b/3coM2m/ORNT
http://paperpile.com/b/3coM2m/ORNT
http://paperpile.com/b/3coM2m/ORNT
http://paperpile.com/b/3coM2m/ORNT
http://dx.doi.org/10.1002/jmv.25726
http://paperpile.com/b/3coM2m/ORNT
http://paperpile.com/b/3coM2m/u2Bb2
http://paperpile.com/b/3coM2m/u2Bb2
http://paperpile.com/b/3coM2m/u2Bb2
http://paperpile.com/b/3coM2m/u2Bb2
http://paperpile.com/b/3coM2m/u2Bb2
http://paperpile.com/b/3coM2m/u2Bb2
http://paperpile.com/b/3coM2m/u2Bb2
http://paperpile.com/b/3coM2m/u2Bb2
http://paperpile.com/b/3coM2m/zvCz
http://paperpile.com/b/3coM2m/zvCz
http://paperpile.com/b/3coM2m/zvCz
http://paperpile.com/b/3coM2m/zvCz
http://paperpile.com/b/3coM2m/zvCz
http://paperpile.com/b/3coM2m/zvCz
http://paperpile.com/b/3coM2m/zvCz
http://paperpile.com/b/3coM2m/HcJ6
https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

coronavirus 2. ​bioRxiv​, 2020.03.16.994236 (2020). 

27. M. Hussain, ​et al. ​, Structural Variations in Human ACE2 may Influence its Binding with SARS-CoV-2 
Spike Protein. ​J. Med. Virol. ​ (2020) https:/doi.org/ ​10.1002/jmv.25832​. 

28. Y. Cao, ​et al. ​, Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) 
receptor ACE2 in different populations. ​Cell Discov​ ​6​, 11 (2020). 

29. A. Renieri, ​et al. ​, ACE2 variants underlie interindividual variability and susceptibility to COVID-19 in 
Italian population. ​medRxiv​ (2020) https:/doi.org/ ​10.1101/2020.04.03.20047977​. 

30. H. Othman, ​et al. ​, Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: similarity with 
SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. ​bioRxiv​, 2020.03.04.976027 
(2020). 

31. S. T. Sherry, dbSNP: the NCBI database of genetic variation. ​Nucleic Acids Research​ ​29​, 308–311 
(2001). 

32. B. F. Voight, ​et al. ​, A global reference for human genetic variation. ​Nature​ ​526​, 68–74 (2015). 

33. NHLBI, Trans-Omics for Precision Medicine WGS-About TOPMed (April 14, 2020). 

34. UK10K Consortium, ​et al. ​, The UK10K project identifies rare variants in health and disease. ​Nature 
526​, 82–90 (2015). 

35. S. J. Anthony, ​et al. ​, Global patterns in coronavirus diversity. ​Virus Evol ​ ​3​, vex012 (2017). 

36. K. S. Pollard, M. J. Hubisz, K. R. Rosenbloom, A. Siepel, Detection of nonneutral substitution rates on 
mammalian phylogenies. ​Genome Res. ​ ​20​, 110–121 (2010). 

37. G. Y. Oudit, M. A. Crackower, P. H. Backx, J. M. Penninger, The role of ACE2 in cardiovascular 
physiology. ​Trends Cardiovasc. Med. ​ ​13​, 93–101 (2003). 

38. K. G. Andersen, A. Rambaut, W. I. Lipkin, E. C. Holmes, R. F. Garry, The proximal origin of 
SARS-CoV-2. ​Nat. Med. ​ ​26​, 450–452 (2020). 

39. D. Jebb, ​et al. ​, Six new reference-quality bat genomes illuminate the molecular basis and evolution 
of bat adaptations. ​bioRxiv​, 836874 (2019). 

40. K.-P. Koepfli, B. Paten, G. 10k C. of Scientists, S. J. O’Brien, The Genome 10K Project: a way forward. 
Annu. Rev. Anim. Biosci. ​ ​3​, 57–111 (2015). 

41. E. S. Brielle, D. Schneidman-Duhovny, M. Linial, The SARS-CoV-2 exerts a distinctive strategy for 
interacting with the ACE2 human receptor. ​bioRxiv​, 2020.03.10.986398 (2020). 

42. M. Letko, A. Marzi, V. Munster, Functional assessment of cell entry and receptor usage for 
SARS-CoV-2 and other lineage B betacoronaviruses. ​Nat Microbiol ​ ​5​, 562–569 (2020). 

43. J. Luan, Y. Lu, X. Jin, L. Zhang, Spike protein recognition of mammalian ACE2 predicts the host range 
and an optimized ACE2 for SARS-CoV-2 infection. ​Biochem. Biophys. Res. Commun. ​ (2020) 
https:/doi.org/ ​10.1016/j.bbrc.2020.03.047​. 

21 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

http://paperpile.com/b/3coM2m/HcJ6
http://paperpile.com/b/3coM2m/HcJ6
http://paperpile.com/b/3coM2m/HcJ6
http://paperpile.com/b/3coM2m/NCVJ
http://paperpile.com/b/3coM2m/NCVJ
http://paperpile.com/b/3coM2m/NCVJ
http://paperpile.com/b/3coM2m/NCVJ
http://paperpile.com/b/3coM2m/NCVJ
http://paperpile.com/b/3coM2m/NCVJ
http://dx.doi.org/10.1002/jmv.25832
http://paperpile.com/b/3coM2m/NCVJ
http://paperpile.com/b/3coM2m/pRVR
http://paperpile.com/b/3coM2m/pRVR
http://paperpile.com/b/3coM2m/pRVR
http://paperpile.com/b/3coM2m/pRVR
http://paperpile.com/b/3coM2m/pRVR
http://paperpile.com/b/3coM2m/pRVR
http://paperpile.com/b/3coM2m/pRVR
http://paperpile.com/b/3coM2m/pRVR
http://paperpile.com/b/3coM2m/tELW
http://paperpile.com/b/3coM2m/tELW
http://paperpile.com/b/3coM2m/tELW
http://paperpile.com/b/3coM2m/tELW
http://paperpile.com/b/3coM2m/tELW
http://paperpile.com/b/3coM2m/tELW
http://dx.doi.org/10.1101/2020.04.03.20047977
http://paperpile.com/b/3coM2m/tELW
http://paperpile.com/b/3coM2m/LDe7
http://paperpile.com/b/3coM2m/LDe7
http://paperpile.com/b/3coM2m/LDe7
http://paperpile.com/b/3coM2m/LDe7
http://paperpile.com/b/3coM2m/LDe7
http://paperpile.com/b/3coM2m/LDe7
http://paperpile.com/b/3coM2m/LDe7
http://paperpile.com/b/3coM2m/xody
http://paperpile.com/b/3coM2m/xody
http://paperpile.com/b/3coM2m/xody
http://paperpile.com/b/3coM2m/xody
http://paperpile.com/b/3coM2m/xody
http://paperpile.com/b/3coM2m/xody
http://paperpile.com/b/3coM2m/kJnW
http://paperpile.com/b/3coM2m/kJnW
http://paperpile.com/b/3coM2m/kJnW
http://paperpile.com/b/3coM2m/kJnW
http://paperpile.com/b/3coM2m/kJnW
http://paperpile.com/b/3coM2m/kJnW
http://paperpile.com/b/3coM2m/kJnW
http://paperpile.com/b/3coM2m/nV0c
http://paperpile.com/b/3coM2m/1XEE
http://paperpile.com/b/3coM2m/1XEE
http://paperpile.com/b/3coM2m/1XEE
http://paperpile.com/b/3coM2m/1XEE
http://paperpile.com/b/3coM2m/1XEE
http://paperpile.com/b/3coM2m/1XEE
http://paperpile.com/b/3coM2m/1XEE
http://paperpile.com/b/3coM2m/nrFp
http://paperpile.com/b/3coM2m/nrFp
http://paperpile.com/b/3coM2m/nrFp
http://paperpile.com/b/3coM2m/nrFp
http://paperpile.com/b/3coM2m/nrFp
http://paperpile.com/b/3coM2m/nrFp
http://paperpile.com/b/3coM2m/nrFp
http://paperpile.com/b/3coM2m/EucM
http://paperpile.com/b/3coM2m/EucM
http://paperpile.com/b/3coM2m/EucM
http://paperpile.com/b/3coM2m/EucM
http://paperpile.com/b/3coM2m/EucM
http://paperpile.com/b/3coM2m/EucM
http://paperpile.com/b/3coM2m/vI4S
http://paperpile.com/b/3coM2m/vI4S
http://paperpile.com/b/3coM2m/vI4S
http://paperpile.com/b/3coM2m/vI4S
http://paperpile.com/b/3coM2m/vI4S
http://paperpile.com/b/3coM2m/vI4S
http://paperpile.com/b/3coM2m/dK0t
http://paperpile.com/b/3coM2m/dK0t
http://paperpile.com/b/3coM2m/dK0t
http://paperpile.com/b/3coM2m/dK0t
http://paperpile.com/b/3coM2m/dK0t
http://paperpile.com/b/3coM2m/dK0t
http://paperpile.com/b/3coM2m/7c3u
http://paperpile.com/b/3coM2m/7c3u
http://paperpile.com/b/3coM2m/7c3u
http://paperpile.com/b/3coM2m/7c3u
http://paperpile.com/b/3coM2m/7c3u
http://paperpile.com/b/3coM2m/7c3u
http://paperpile.com/b/3coM2m/XAmO
http://paperpile.com/b/3coM2m/XAmO
http://paperpile.com/b/3coM2m/XAmO
http://paperpile.com/b/3coM2m/XAmO
http://paperpile.com/b/3coM2m/XAmO
http://paperpile.com/b/3coM2m/FW7C
http://paperpile.com/b/3coM2m/FW7C
http://paperpile.com/b/3coM2m/FW7C
http://paperpile.com/b/3coM2m/FW7C
http://paperpile.com/b/3coM2m/dpyj
http://paperpile.com/b/3coM2m/dpyj
http://paperpile.com/b/3coM2m/dpyj
http://paperpile.com/b/3coM2m/dpyj
http://paperpile.com/b/3coM2m/dpyj
http://paperpile.com/b/3coM2m/dpyj
http://paperpile.com/b/3coM2m/WY0z
http://paperpile.com/b/3coM2m/WY0z
http://paperpile.com/b/3coM2m/WY0z
http://paperpile.com/b/3coM2m/WY0z
http://paperpile.com/b/3coM2m/WY0z
http://dx.doi.org/10.1016/j.bbrc.2020.03.047
http://paperpile.com/b/3coM2m/WY0z
https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

44. A. D. Melin, M. C. Janiak, F. Marrone, P. S. Arora, J. P. Higham, Comparative ACE2 variation and 
primate COVID-19 risk. ​bioRxiv​, 2020.04.09.034967 (2020). 

45. Y. Qiu, ​et al. ​, Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the 
receptor of SARS-CoV-2. ​Microbes Infect. ​ (2020) https:/doi.org/ ​10.1016/j.micinf.2020.03.003​. 

46. Y. Wan, J. Shang, R. Graham, R. S. Baric, F. Li, Receptor Recognition by the Novel Coronavirus from 
Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. ​J. Virol. ​ ​94 
(2020). 

47. J. Shi, ​et al. ​, Susceptibility of ferrets, cats, dogs, and other domesticated animals to 
SARS-coronavirus 2. ​Science​ (2020) https:/doi.org/ ​10.1126/science.abb7015​. 

48. V. J. Munster, ​et al. ​, Respiratory disease and virus shedding in rhesus macaques inoculated with 
SARS-CoV-2. ​bioRxiv​, 2020.03.21.001628 (2020). 

49. J. F.-W. Chan, ​et al. ​, Simulation of the clinical and pathological manifestations of Coronavirus 
Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis 
and transmissibility. ​Clin. Infect. Dis. ​ (2020). 

50. M. Hoffmann, ​et al. ​, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a 
Clinically Proven Protease Inhibitor. ​Cell ​ (2020) https:/doi.org/ ​10.1016/j.cell.2020.02.052​. 

51. X. Xie, J. Chen, X. Wang, F. Zhang, Y. Liu, Age- and gender-related difference of ACE2 expression in 
rat lung. ​Life Sci. ​ ​78​, 2166–2171 (2006). 

52. K. Sun, L. Gu, L. Ma, Y. Duan, Atlas of ACE2 gene expression in mammals reveals novel insights in 
transmisson of SARS-Cov-2. ​Genomics​, 536 (2020). 

53. K. P. Alekseev, ​et al. ​, Bovine-like coronaviruses isolated from four species of captive wild ruminants 
are homologous to bovine coronaviruses, based on complete genomic sequences. ​J. Virol. ​ ​82​, 
12422–12431 (2008). 

54. K. A. Mihindukulasuriya, G. Wu, J. St. Leger, R. W. Nordhausen, D. Wang, Identification of a Novel 
Coronavirus from a Beluga Whale by Using a Panviral Microarray. ​J. Virol. ​ ​82​, 5084–5088 (2008). 

55. H. Schütze, “Coronaviruses in Aquatic Organisms” in ​Aquaculture Virology ​, (Academic Press, 2016), 
pp. 327–335. 

56. P. C. Y. Woo, ​et al. ​, Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species 
of Marine Mammal Coronavirus in Gammacoronavirus. ​J. Virol. ​ ​88​, 1318–1331 (2014). 

57. A. Banerjee, ​et al. ​, Novel Insights Into Immune Systems of Bats. ​Front. Immunol. ​ ​11​, 26 (2020). 

58. B. Delmas, ​et al. ​, Aminopeptidase N is a major receptor for the enteropathogenic coronavirus 
TGEV. ​Nature​ ​357​, 417–420 (1992). 

59. S. Temmam, A. Barbarino, D. Maso, S. Behillil, V. Enouf, Absence of SARS-CoV-2 infection in cats and 
dogs in close contact with a cluster of COVID-19 patients in a veterinary campus. ​bioRxiv​ (2020). 

22 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

http://paperpile.com/b/3coM2m/av8r
http://paperpile.com/b/3coM2m/av8r
http://paperpile.com/b/3coM2m/av8r
http://paperpile.com/b/3coM2m/av8r
http://paperpile.com/b/3coM2m/4kLF
http://paperpile.com/b/3coM2m/4kLF
http://paperpile.com/b/3coM2m/4kLF
http://paperpile.com/b/3coM2m/4kLF
http://paperpile.com/b/3coM2m/4kLF
http://paperpile.com/b/3coM2m/4kLF
http://dx.doi.org/10.1016/j.micinf.2020.03.003
http://paperpile.com/b/3coM2m/4kLF
http://paperpile.com/b/3coM2m/RN5R
http://paperpile.com/b/3coM2m/RN5R
http://paperpile.com/b/3coM2m/RN5R
http://paperpile.com/b/3coM2m/RN5R
http://paperpile.com/b/3coM2m/RN5R
http://paperpile.com/b/3coM2m/RN5R
http://paperpile.com/b/3coM2m/RN5R
http://paperpile.com/b/3coM2m/az0B
http://paperpile.com/b/3coM2m/az0B
http://paperpile.com/b/3coM2m/az0B
http://paperpile.com/b/3coM2m/az0B
http://paperpile.com/b/3coM2m/az0B
http://paperpile.com/b/3coM2m/az0B
http://dx.doi.org/10.1126/science.abb7015
http://paperpile.com/b/3coM2m/az0B
http://paperpile.com/b/3coM2m/Fy0x
http://paperpile.com/b/3coM2m/Fy0x
http://paperpile.com/b/3coM2m/Fy0x
http://paperpile.com/b/3coM2m/Fy0x
http://paperpile.com/b/3coM2m/Fy0x
http://paperpile.com/b/3coM2m/Fy0x
http://paperpile.com/b/3coM2m/NUty
http://paperpile.com/b/3coM2m/NUty
http://paperpile.com/b/3coM2m/NUty
http://paperpile.com/b/3coM2m/NUty
http://paperpile.com/b/3coM2m/NUty
http://paperpile.com/b/3coM2m/NUty
http://paperpile.com/b/3coM2m/NUty
http://paperpile.com/b/3coM2m/Emj6
http://paperpile.com/b/3coM2m/Emj6
http://paperpile.com/b/3coM2m/Emj6
http://paperpile.com/b/3coM2m/Emj6
http://paperpile.com/b/3coM2m/Emj6
http://paperpile.com/b/3coM2m/Emj6
http://dx.doi.org/10.1016/j.cell.2020.02.052
http://paperpile.com/b/3coM2m/Emj6
http://paperpile.com/b/3coM2m/Z6ZG
http://paperpile.com/b/3coM2m/Z6ZG
http://paperpile.com/b/3coM2m/Z6ZG
http://paperpile.com/b/3coM2m/Z6ZG
http://paperpile.com/b/3coM2m/Z6ZG
http://paperpile.com/b/3coM2m/Z6ZG
http://paperpile.com/b/3coM2m/nvo2
http://paperpile.com/b/3coM2m/nvo2
http://paperpile.com/b/3coM2m/nvo2
http://paperpile.com/b/3coM2m/nvo2
http://paperpile.com/b/3coM2m/QZZz
http://paperpile.com/b/3coM2m/QZZz
http://paperpile.com/b/3coM2m/QZZz
http://paperpile.com/b/3coM2m/QZZz
http://paperpile.com/b/3coM2m/QZZz
http://paperpile.com/b/3coM2m/QZZz
http://paperpile.com/b/3coM2m/QZZz
http://paperpile.com/b/3coM2m/QZZz
http://paperpile.com/b/3coM2m/QZZz
http://paperpile.com/b/3coM2m/L9qC
http://paperpile.com/b/3coM2m/L9qC
http://paperpile.com/b/3coM2m/L9qC
http://paperpile.com/b/3coM2m/L9qC
http://paperpile.com/b/3coM2m/L9qC
http://paperpile.com/b/3coM2m/L9qC
http://paperpile.com/b/3coM2m/mOfl
http://paperpile.com/b/3coM2m/mOfl
http://paperpile.com/b/3coM2m/mOfl
http://paperpile.com/b/3coM2m/mOfl
http://paperpile.com/b/3coM2m/XPWX
http://paperpile.com/b/3coM2m/XPWX
http://paperpile.com/b/3coM2m/XPWX
http://paperpile.com/b/3coM2m/XPWX
http://paperpile.com/b/3coM2m/XPWX
http://paperpile.com/b/3coM2m/XPWX
http://paperpile.com/b/3coM2m/XPWX
http://paperpile.com/b/3coM2m/XPWX
http://paperpile.com/b/3coM2m/mqXW
http://paperpile.com/b/3coM2m/mqXW
http://paperpile.com/b/3coM2m/mqXW
http://paperpile.com/b/3coM2m/mqXW
http://paperpile.com/b/3coM2m/mqXW
http://paperpile.com/b/3coM2m/mqXW
http://paperpile.com/b/3coM2m/mqXW
http://paperpile.com/b/3coM2m/pD4d
http://paperpile.com/b/3coM2m/pD4d
http://paperpile.com/b/3coM2m/pD4d
http://paperpile.com/b/3coM2m/pD4d
http://paperpile.com/b/3coM2m/pD4d
http://paperpile.com/b/3coM2m/pD4d
http://paperpile.com/b/3coM2m/pD4d
http://paperpile.com/b/3coM2m/pD4d
http://paperpile.com/b/3coM2m/ejl0
http://paperpile.com/b/3coM2m/ejl0
http://paperpile.com/b/3coM2m/ejl0
http://paperpile.com/b/3coM2m/ejl0
https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

60. IUCN, The IUCN Red List of Threatened Species. Version 2019-2. ​http://www.iucnredlist.org​ (2019). 

61. B. A. Braun, A. Marcovitz, J. G. Camp, R. Jia, G. Bejerano, Mx1 and Mx2 key antiviral proteins are 
surprisingly lost in toothed whales. ​Proc. Natl. Acad. Sci. U. S. A. ​ ​112​, 8036–8040 (2015). 

62. A. Bosch, F. Xavier Abad, R. M. Pintó, “Human Pathogenic Viruses in the Marine Environment” in 
Oceans and Health: Pathogens in the Marine Environment ​, (Springer, Boston, MA, 2005), pp. 
109–131. 

63. C. Copeland, Cruise Ship Pollution: Background, Laws and Regulations, and Key Issues. 
Congressional Research Service, The Library of Congress ​ ​RL32450​ (2005). 

64. K. V. K. Gilardi, ​et al. ​, Best practice guidelines for health monitoring and disease control in great ape 
populations (2015). 

65. A. Estrada, ​et al. ​, Impending extinction crisis of the world’s primates: Why primates matter. ​Sci Adv 
3​, e1600946 (2017). 

66. T. R. Gillespie, F. H. Leendertz, COVID-19: protect great apes during human pandemics. ​Nature​ ​579​, 
497 (2020). 

67. J. Johnson, A. Moresco, S. Han, SARS-COV-2 Considerations and Precautions. ​AZA Small Carnivore 
Taxon Advisory Group ​ (2020). 

68. A. Lecu, M. Bertelsen, C. Walzer, EAZWV Infectious Diseases Working Group, Science-based facts & 
knowledge about wild animals, zoos, and SARS-CoV-2 Virus. ​European Association of Zoo and 
Wildlife Veterinarians - Transmissible Diseases Handbook​ (2020). 

69. T. C. Sutton, K. Subbarao, Development of animal models against emerging coronaviruses: From 
SARS to MERS coronavirus. ​Virology ​ ​479-480​, 247–258 (2015). 

70. NCBI Resource Coordinators, Database resources of the National Center for Biotechnology 
Information. ​Nucleic Acids Res. ​ ​44​, D7 (2016). 

71. B. M. Mario Stanke, AUGUSTUS: a web server for gene prediction in eukaryotes that allows 
user-defined constraints. ​Nucleic Acids Res. ​ ​33​, W465 (2005). 

72. V. Sharma, P. Schwede, M. Hiller, CESAR 2.0 substantially improves speed and accuracy of 
comparative gene annotation. ​Bioinformatics ​ ​33​, 3985–3987 (2017). 

73. F. Sievers, D. G. Higgins, Clustal Omega, Accurate Alignment of Very Large Numbers of Sequences. 
Methods Mol. Biol. ​ ​1079​ (2014). 

74. R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput. ​Nucleic 
Acids Res. ​ ​32​, 1792–1797 (2004). 

75. J. S. Papadopoulos, R. Agarwala, COBALT: constraint-based alignment tool for multiple protein 
sequences. ​Bioinformatics​ ​23​, 1073–1079 (2007). 

76. E. F. Pettersen, ​et al. ​, UCSF Chimera--a visualization system for exploratory research and analysis. ​J. 

23 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

http://paperpile.com/b/3coM2m/uU4n
http://paperpile.com/b/3coM2m/uU4n
http://paperpile.com/b/3coM2m/uU4n
http://paperpile.com/b/3coM2m/3DwH
http://paperpile.com/b/3coM2m/3DwH
http://paperpile.com/b/3coM2m/3DwH
http://paperpile.com/b/3coM2m/3DwH
http://paperpile.com/b/3coM2m/3DwH
http://paperpile.com/b/3coM2m/3DwH
http://paperpile.com/b/3coM2m/24G6
http://paperpile.com/b/3coM2m/24G6
http://paperpile.com/b/3coM2m/24G6
http://paperpile.com/b/3coM2m/24G6
http://paperpile.com/b/3coM2m/gb8F
http://paperpile.com/b/3coM2m/gb8F
http://paperpile.com/b/3coM2m/gb8F
http://paperpile.com/b/3coM2m/gb8F
http://paperpile.com/b/3coM2m/gb8F
http://paperpile.com/b/3coM2m/rocx
http://paperpile.com/b/3coM2m/rocx
http://paperpile.com/b/3coM2m/rocx
http://paperpile.com/b/3coM2m/rocx
http://paperpile.com/b/3coM2m/Onah
http://paperpile.com/b/3coM2m/Onah
http://paperpile.com/b/3coM2m/Onah
http://paperpile.com/b/3coM2m/Onah
http://paperpile.com/b/3coM2m/Onah
http://paperpile.com/b/3coM2m/Onah
http://paperpile.com/b/3coM2m/Onah
http://paperpile.com/b/3coM2m/rTnt
http://paperpile.com/b/3coM2m/rTnt
http://paperpile.com/b/3coM2m/rTnt
http://paperpile.com/b/3coM2m/rTnt
http://paperpile.com/b/3coM2m/rTnt
http://paperpile.com/b/3coM2m/rTnt
http://paperpile.com/b/3coM2m/caL7
http://paperpile.com/b/3coM2m/caL7
http://paperpile.com/b/3coM2m/caL7
http://paperpile.com/b/3coM2m/caL7
http://paperpile.com/b/3coM2m/ZTx2
http://paperpile.com/b/3coM2m/ZTx2
http://paperpile.com/b/3coM2m/ZTx2
http://paperpile.com/b/3coM2m/ZTx2
http://paperpile.com/b/3coM2m/ZTx2
http://paperpile.com/b/3coM2m/QLZE
http://paperpile.com/b/3coM2m/QLZE
http://paperpile.com/b/3coM2m/QLZE
http://paperpile.com/b/3coM2m/QLZE
http://paperpile.com/b/3coM2m/QLZE
http://paperpile.com/b/3coM2m/QLZE
http://paperpile.com/b/3coM2m/SnQap
http://paperpile.com/b/3coM2m/SnQap
http://paperpile.com/b/3coM2m/SnQap
http://paperpile.com/b/3coM2m/SnQap
http://paperpile.com/b/3coM2m/SnQap
http://paperpile.com/b/3coM2m/SnQap
http://paperpile.com/b/3coM2m/kkpYE
http://paperpile.com/b/3coM2m/kkpYE
http://paperpile.com/b/3coM2m/kkpYE
http://paperpile.com/b/3coM2m/kkpYE
http://paperpile.com/b/3coM2m/kkpYE
http://paperpile.com/b/3coM2m/kkpYE
http://paperpile.com/b/3coM2m/m1fw1
http://paperpile.com/b/3coM2m/m1fw1
http://paperpile.com/b/3coM2m/m1fw1
http://paperpile.com/b/3coM2m/m1fw1
http://paperpile.com/b/3coM2m/m1fw1
http://paperpile.com/b/3coM2m/m1fw1
http://paperpile.com/b/3coM2m/3TDU3
http://paperpile.com/b/3coM2m/3TDU3
http://paperpile.com/b/3coM2m/3TDU3
http://paperpile.com/b/3coM2m/3TDU3
http://paperpile.com/b/3coM2m/3TDU3
http://paperpile.com/b/3coM2m/GjAe
http://paperpile.com/b/3coM2m/GjAe
http://paperpile.com/b/3coM2m/GjAe
http://paperpile.com/b/3coM2m/GjAe
http://paperpile.com/b/3coM2m/GjAe
http://paperpile.com/b/3coM2m/GjAe
http://paperpile.com/b/3coM2m/61kw
http://paperpile.com/b/3coM2m/61kw
http://paperpile.com/b/3coM2m/61kw
http://paperpile.com/b/3coM2m/61kw
http://paperpile.com/b/3coM2m/61kw
http://paperpile.com/b/3coM2m/61kw
http://paperpile.com/b/3coM2m/BcAI
http://paperpile.com/b/3coM2m/BcAI
http://paperpile.com/b/3coM2m/BcAI
http://paperpile.com/b/3coM2m/BcAI
https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Comput. Chem. ​ ​25​, 1605–1612 (2004). 

77. M. V. Shapovalov, R. L. Dunbrack Jr, A smoothed backbone-dependent rotamer library for proteins 
derived from adaptive kernel density estimates and regressions. ​Structure​ ​19​, 844–858 (2011). 

78. PyMOL, The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC. ​https://pymol.org/2/ 
(2020). 

79. J. Lan, ​et al. ​, Crystal structure of the 2019-nCoV spike receptor-binding domain bound with the 
ACE2 receptor https:/doi.org/ ​10.1101/2020.02.19.956235​. 

80. B. Q. Minh, ​et al. ​, IQ-TREE 2: New models and efficient methods for phylogenetic inference in the 
genomic era. ​Mol. Biol. Evol. ​ (2020) https:/doi.org/ ​10.1093/molbev/msaa015​. 

81. S. Kalyaanamoorthy, B. Q. Minh, T. K. F. Wong, A. von Haeseler, L. S. Jermiin, ModelFinder: fast 
model selection for accurate phylogenetic estimates. ​Nat. Methods​ ​14​, 587–589 (2017). 

82. D. T. Hoang, O. Chernomor, A. von Haeseler, B. Q. Minh, L. S. Vinh, UFBoot2: Improving the 
Ultrafast Bootstrap Approximation. ​Mol. Biol. Evol. ​ ​35​, 518–522 (2018). 

83. Z. Yang, PAML 4: phylogenetic analysis by maximum likelihood. ​Mol. Biol. Evol. ​ ​24​, 1586–1591 
(2007). 

84. M. Suyama, D. Torrents, P. Bork, PAL2NAL: robust conversion of protein sequence alignments into 
the corresponding codon alignments. ​Nucleic Acids Res. ​ ​34​, W609–12 (2006). 

85. M. J. Hubisz, K. S. Pollard, A. Siepel, PHAST and RPHAST: phylogenetic analysis with space/time 
models. ​Brief. Bioinform. ​ ​12​, 41–51 (2011). 

86. R. Ramani, K. Krumholz, Y.-F. Huang, A. Siepel, PhastWeb: a web interface for evolutionary 
conservation scoring of multiple sequence alignments using phastCons and phyloP. ​Bioinformatics 
35​, 2320–2322 (2019). 

 

 

 

  

24 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

http://paperpile.com/b/3coM2m/BcAI
http://paperpile.com/b/3coM2m/BcAI
http://paperpile.com/b/3coM2m/BcAI
http://paperpile.com/b/3coM2m/BcAI
http://paperpile.com/b/3coM2m/Pr6d
http://paperpile.com/b/3coM2m/Pr6d
http://paperpile.com/b/3coM2m/Pr6d
http://paperpile.com/b/3coM2m/Pr6d
http://paperpile.com/b/3coM2m/Pr6d
http://paperpile.com/b/3coM2m/Pr6d
http://paperpile.com/b/3coM2m/oIl2
http://paperpile.com/b/3coM2m/oIl2
http://paperpile.com/b/3coM2m/oIl2
http://paperpile.com/b/3coM2m/oIl2
http://paperpile.com/b/3coM2m/1xvc
http://paperpile.com/b/3coM2m/1xvc
http://paperpile.com/b/3coM2m/1xvc
http://paperpile.com/b/3coM2m/1xvc
http://dx.doi.org/10.1101/2020.02.19.956235
http://paperpile.com/b/3coM2m/1xvc
http://paperpile.com/b/3coM2m/LRHu
http://paperpile.com/b/3coM2m/LRHu
http://paperpile.com/b/3coM2m/LRHu
http://paperpile.com/b/3coM2m/LRHu
http://paperpile.com/b/3coM2m/LRHu
http://paperpile.com/b/3coM2m/LRHu
http://dx.doi.org/10.1093/molbev/msaa015
http://paperpile.com/b/3coM2m/LRHu
http://paperpile.com/b/3coM2m/j831
http://paperpile.com/b/3coM2m/j831
http://paperpile.com/b/3coM2m/j831
http://paperpile.com/b/3coM2m/j831
http://paperpile.com/b/3coM2m/j831
http://paperpile.com/b/3coM2m/j831
http://paperpile.com/b/3coM2m/99eE
http://paperpile.com/b/3coM2m/99eE
http://paperpile.com/b/3coM2m/99eE
http://paperpile.com/b/3coM2m/99eE
http://paperpile.com/b/3coM2m/99eE
http://paperpile.com/b/3coM2m/99eE
http://paperpile.com/b/3coM2m/0hth
http://paperpile.com/b/3coM2m/0hth
http://paperpile.com/b/3coM2m/0hth
http://paperpile.com/b/3coM2m/0hth
http://paperpile.com/b/3coM2m/0hth
http://paperpile.com/b/3coM2m/0hth
http://paperpile.com/b/3coM2m/7tSl
http://paperpile.com/b/3coM2m/7tSl
http://paperpile.com/b/3coM2m/7tSl
http://paperpile.com/b/3coM2m/7tSl
http://paperpile.com/b/3coM2m/7tSl
http://paperpile.com/b/3coM2m/7tSl
http://paperpile.com/b/3coM2m/AbMf
http://paperpile.com/b/3coM2m/AbMf
http://paperpile.com/b/3coM2m/AbMf
http://paperpile.com/b/3coM2m/AbMf
http://paperpile.com/b/3coM2m/AbMf
http://paperpile.com/b/3coM2m/AbMf
http://paperpile.com/b/3coM2m/sBJT
http://paperpile.com/b/3coM2m/sBJT
http://paperpile.com/b/3coM2m/sBJT
http://paperpile.com/b/3coM2m/sBJT
http://paperpile.com/b/3coM2m/sBJT
http://paperpile.com/b/3coM2m/sBJT
https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figures and Tables 

 

25 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

26 
 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 18, 2020. . https://doi.org/10.1101/2020.04.16.045302doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045302
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1. ​ ​Cross-species conservation of ACE2 and predictions of SARS-CoV-2 susceptibility. ​ Species are 

sorted by binding score of ACE2 for SARS-CoV-2 S. The ‘ID’ column depicts the number of amino acids 

identical to human binding residues. Bold amino acid positions (also labeled with *) represent residues 

at binding hotspots and constrained in the scoring scheme. Each amino acid substitution is colored 

according to its classification as non-conservative (orange), semi-conservative (yellow) or neutral (blue), 

as  compared to the human residue. Bold species names depict species with threatened IUCN risk status. 

The 410 vertebrate species dataset is available in Dataset S1. 
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Figure 2. ​ Congruence between binding score and structural homology analysis. Species classified by 

sequence identity to human ACE2 as ​very high​ (red) or ​high​ binding score (orange) have significantly 

fewer amino acid substitutions rated as potentially altering the binding interface between ACE2 and 

SARS-CoV-2  through protein structural analysis, as compared to ​low​ (green) or ​very low​ (blue) species. 

The more severe ​unfavorable​ variants are counted on y-axis and less severe ​weaken ​ variants on the 

x-axis. Black numerical labels indicate species count.   
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Figure 3. ​ Residues under positive selection detected with CODEML and acceleration with phyloP in 

mammals. ( ​A​) ACE2 is represented in wheat cartoon with residues involved in the binding interface 

shown in yellow spheres. Dark blue and red spheres indicate residues in ACE2 that are accelerated and 

under positive selection. Red spheres represent residues that overlap with positions in the binding 

interface and are labeled with (*). The spike RBD is shown in light teal cartoon. Green spheres indicate 

residues on the SARS-CoV-2 spike protein under positive selection and are labeled with (**). ( ​B​) 90 

degree rotation of the ACE2 protein. 
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