BROAD PHONETIC CLASS RECOGNITION IN A HIDDEN MARKOV
MODEL FRAMEWORK USING EXTENDED BAUM-WELCH TRANSFORMATIONS

Tara N. Sainath, Dimitri Kanevsky and Bhuvana Ramabhadran

IBM T. J. Watson Research Center
Yorktown, NY 10598, U.S.A.
tsainath@mit.edu, {kanevsky, bhuvana}@us.ibm.com

ABSTRACT

In many pattern recognition tasks, given some input data and a
model, a probabilistic likelihood score is often computed to mea-
sure how well the model describes the data. Extended Baum-Welch
(EBW) transformations are most commonly used as a discriminative
technique for estimating parameters of Gaussian mixtures, though
recently they have been used to derive a gradient steepness measure-
ment to evaluate the quality of the model to match the distribution of
the data. In this paper, we explore applying the EBW gradient steep-
ness metric in the context of Hidden Markov Models (HMMs) for
recognition of broad phonetic classes and present a detailed analysis
and results on the use of this gradient metric on the TIMIT corpus.
We find that our gradient metric is able to outperform the baseline
likelihood method, and offers improvements in noisy conditions.

Index Terms— Gradient Methods, Viterbi Decoding, Hidden
Markov Models, Speech Recognition

1. INTRODUCTION

The EBW transformations [1] are one of a variety of discriminative
training techniques ([2], [3]) that have been explored in the speech
recognition community to estimate model parameters of Gaussian
mixtures. Given an initial model and input data, [4], [5] derive an ex-
plicit formula to measure the gradient steepness required to estimate
a new model via the EBW transformations. This gradient steepness
measurement is an alternative to likelihood to describe how well the
initial model explains the data.

‘We have observed the advantages of this gradient steepness mea-
surement in a variety of tasks. In [6] we redefined the likelihood ratio
test, typically used for unsupervised segmentation, with this measure
of gradient steepness. We showed that our EBW unsupervised audio
segmentation method offered improvements over the Bayesian In-
formation Criterion and Cumulative Sum methods. In [7], we used
this gradient metric to develop an audio classification method which
was able to outperform both the likelihood and SVM techniques.

Hidden Markov Models (HMMs) [8] have been the most domi-
nant frame-based acoustic modeling technique for automatic speech
recognition tasks to date. When HMMs are used for acoustic mod-
eling, generally the Viterbi algorithm is used during decoding to
find most likely sequence of HMM states and corresponding words.
This is done by computing likelihood scores for each frame given all
HMM states, and then doing a dynamic programming Viterbi search
to find the most likely sequence of states. In this work, we look at
replacing the likelihood scores computed in Viterbi decoding with
the EBW gradient steepness measurement.

Specifically, we focus on recognition of broad phonetic classes
(BPCs). Our motivation for looking at BPC recognition is twofold.

First, the simple nature of the task allows us to investigate various
properties of the EBW transformations in the context of HMMs. Be-
cause HMMs are so widely used in speech recognition, success of
our gradient steepness measure in an HMM framework will intro-
duce a new decoding metric that can be explored for more compli-
cated medium and large vocabulary speech recognition tasks. Sec-
ondly, broad phonetic class recognition is important in a wide va-
riety of contexts. For example, [9] explores using BPCs to speed
up lexical access, while [10] investigates expert classifiers specific
to each broad phonetic class and performs phonetic classification by
combining scores from the different experts. We are interested in
exploring BPC recognition to aid in the placement of segments in a
segment-based speech recognition system in noisy conditions, one
idea which was initially demonstrated in [11].

In this paper, we continue to expand on previous work ([6], [7])
and demonstrate that the EBW gradient steepness measure appears
to be a general technique to explain the quality of a model used
to represent the data. First, we introduce a novel change to our
EBW gradient measurement and explain model fit to the data by
looking at a relative, rather than absolute, change in the gradient.
We find this novel EBW metric outperforms the standard likelihood
method in BPC recognition on the TIMIT corpus. Secondly, we in-
vestigate specific properties of EBW transformations. Specifically,
we introduce a novel idea to minimize parameter training required
to estimate new models via the transformations. Also, we explore
the advantages of EBW model re-estimation in noisy environments,
demonstrating the improved performance of our gradient steepness
metric over likelihood across a variety of signal-to-noise ratios.

In the following sections, we describe the EBW transformations.
Our implementation of our EBW gradient metric in an HMM frame-
work is described in Section 3. Section 4 presents the experiments
performed, followed by a discussion of these results in Section 5.
Finally, Section 6 concludes the paper and discusses future work.

2. EXTENDED BAUM-WELCH TRANSFORMATIONS

2.1. Motivation of using EBW Transformations

Given some input data, there are many different approaches used to
calculate how well a model represents this data. One common ap-
proach is to calculate the likelihood, that is p(data|model). Another
method is to calculate the gradient, as shown in Figure 1. Given an
initial model for our data and an objective function, we can estimate
a new model for our data by finding the best step along the gradient
of the objective function. We can think of the gradient slope as mea-
suring how much we have to adapt an initial model to fit the data. A
steep slope indicates the initial model does not fit the data well, while
a flat slope indicates the initial model is a good fit for the data. The



EBW transformations provide solutions to estimate this new model,
and also provide a measure of the gradient steepness to explain the
quality of the initial model to fit the data.
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Fig. 1. EBW Model Update Graph

2.2. Derivation of EBW Transformations

The EBW procedure involves continuous transformations that can be
described as follows. Assume that frame x; is drawn from Gaussian
mixture model (GMM) X*, with each component j € k parameter-
ized by the following mean and variance parameters /\f ={ uéﬂ Uf ,
and weight wf. Thus GMM A* includes all the parameters of the
individual components, in other words A\* = {A¥,... A%} and
weights w"® = {wf,...w%}. Let us define the probability of frame

x; given mixture component j as p(z;|\F) = 25 = N (uf, (oF)?)

.. ko N k_k k . .
and similarly z; = 377", wjz;. Let F(z;;) be some objective
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initial model parameters )\f, the EBW transformations provide for-
mulas to re-estimate parameters \¥ (D) = {1%(D), 0% (D)} as:
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Here D is a large constant chosen such that the objective function
increases with each iteration, that is F(2};) > F(zF). Using
EBW transformations (1) and (2) such that )\? — ;\;“ (D) (thus
LI j\k(D)) and zF — 2F, [4], [5] derives linearization formula
between F'(£F) and F'(zF) for large D as:

F(z) — F(zf) =T{/D + o(1/D) 3)

Here T measures the gradient required to adapt initial model A*
to data x;. [4], [5] also show that T is always non-negative and only
equals zero when A is a local maximum of F(z¥). This guarantees
that F(ziC ) increases per iteration and provides some theoretical jus-
tification for using gradient metrics 7' and (F(2) — F(2)) x D
as measures of quality of fitness of models to data.

A large value in 7" means the gradient to adapt the initial model
to the data is steep and F'(2F) is much larger than F'(z}). Thus the
data is much better explained by the updated model X"(D) com-
pared to the initial model A\*. However a small value in T indicates

that the gradient is relatively flat and F'(3F) is close to F'(z¥). There-
fore, the initial model \¥ is a good fit for the data. In the next section,
we derive our EBW gradient steepness metric for HMMs using the
objective function given in Equation 3.

3. EBW GRADIENT MEASURE IN HMMS

Given a set of acoustic observations O = {01, 02 . ..or} associated
with a speech waveform, the goal of the acoustic model is to find
which sequence of sub-word units W = {w1,...wx} that most
likely produced the given observation sequence. In other words,
we want to maximize W = argmaxy P(O|W). While we rep-
resented each sub-word unit as a GMM in [7], here we look at rep-
resenting each sub-word unit as a state from a HMM, and will sub-
sequently extend our EBW implementation in this context.

3.1. HMMs

Given observation sequence O, HMMs can be used in decoding
tasks to find the most optimal state sequence through time Q =
{q1,q2 - .. qr} that produced the given observations. An HMM is
defined over a set of states S = {s1, s2 ... s~} and observations O,
and is represented by the following three parameters [8]:

o State Transition Probability Distribution:
aij = P(q = sjlqi—1 = si)

e Observation Symbol Probability Distribution:
bi(or) = P(ot|qr = s:)

o Initial State Distribution:
mi = P(qu = si)

Let us assume that the output distribution for each state s is
drawn from a mixture of L gaussians where zfj is the likelihood of
observation o; given component j from GMM k and wf the a priori
weight of component j. Then we can define the log-likelihood of o,
from model A* as follows:

L
b (o) = P(ot|q: = si) = Zw;“zf] 4)
j=1

Given the set of states S and corresponding models A =
{A1, 2%, A"}, one possible optimization criterion to find the best
state sequence is to choose at each time instance, the state ¢; which
is individually most likely. In other words,

q:(j) = arg lrgnggv[l’(qf = 5;]0, A)] 5)

We could replace this likelihood function with the EBW gradient
steepness measurement in Equation 3, as was done in [7], and score
each frame individually. However, when we model sub-word units
via states of an HMMs, Equation 5 does not take into account neigh-
boring state dependencies [8] and therefore is not the best criterion
to find the optimal state sequence. Instead, the Viterbi algorithm is
generally used to find the most optimal state sequence. To find this
sequence, first define d;() as the best score along a single path up to
time ¢ which ends in state s; at time ¢ as:

6t(2) = max P(Q1QQ...qt = S,,OlogOt|A) (6)

By induction, the probability of the best path up to time ¢ which
ends in state s; at time ¢ 4 1 is defined as:

de41(j) = max[de (i) + log(ai;)] +log(bj(oe+1)) (1)



Therefore, we see that the best state at each time instance is not
simply the individual most likely state as given by Equation 5. In-
stead, it depends on the scores assigned to previous states as well
as transition probabilities a;; between states, capturing the inherent
HMM structure. In the next section, we discuss how to find the best
state sequence using the EBW gradient metric.

3.2. EBW-F

Instead of scoring each observation frame using standard likelihood,
we can score it using the EBW gradient steepness measurement
given in Equation 3. Let us define objective function F(zF) to be
the log-likelihood of observation o; given state model \* as:

L
F(z) = log Z w;‘zfj (®)
j=1

and similarly c,’fj as:
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Using Equation 3 and the objective function for F'(zf) given by
Equation 8, we can compute the state output score at frame o as:

be(o) = (F(26) = F(2£)) x D (10)

Here D is a constant chosen in the EBW model re-estimation
formulas, given by Equations 1 and 2. If D is very large then training
is very slow (but stable) but if D is too small model re-estimation
may not increase the objective function on each iteration.

Using the EBW score assigned to each state from Equation 10,
the best path is again found through Viterbi algorithm given in Equa-
tion 7. However, the better a model fits the data, the smaller the
EBW score, so we define 0;(7) as the set of best (smallest) EBW
scores along a single path up to time ¢ which ends in state s;.

0(1)= min  EBW(qiqz2...qt = Si, 0102...O¢|A)
q1-92,--+ qt—1
an
Therefore, by induction, 6:+1(7) is defined as:
Gr+1(7) = min[6,(2) — log(ai;)] + bj(0r+1) (12)

Note to reflect this minimum change, we also compute the neg-
ative log-likelihood of a;;. The objective function in Equation 10
is the same as that used in [7], though now applied to HMMs. In
the next section, we discuss a novel change to this objective function
which is more appropriate for an HMM framework.

3.3. EBW-F Normalization

As shown in Equation 10, we score how well model A\* fits x;
by looking at the difference in likelihood given the updated model
F(2F) compared to the likelihood given the initial model F(zf).
Using this absolute measure allows us to compare model scores for
a given input frame, as was done in [7]. However, we have observed
that the magnitude of these scores loses meaning if we compare them
across different frames. In other words, a lower absolute EBW score
for one frame and one model does not mean a better model than
a higher EBW score for another frame and another model. How-
ever, having an EBW measure that we can compare across frames is

particularly important in HMMSs, as scores for a state sequence are
computed by summing up scores assigned to individual frames.
Therefore, we compute the EBW score as the relative difference
in likelihood given the updated model F (2F) compared to the initial
model likelihood F(zF). To compute this relative EBW score, we
normalize Equation 10 by the original likelihood F'(z}) as:

(F(2f) — F(2f)) x D
F(zf)

Using this relative EBW score provides a metric which can

be compared across frames, which is important in the context of

HMMs. In the next section, we introduce a novel idea to minimize
parameter training required to estimate an optimal D.

bi(or) = (13)

3.4. EBW Adaptive D

D controls the rate at which updated models given in Equations 1
and 2 are trained. In [7], we explored using a global D, as well as
specific D for each state, both of which required a lot of hand-tuning
and training. To minimize the work needed to heuristically tune D,
various approaches have been explored to set D [2].

Conceptually, the better our original models, the less we want to
train our updated models and the larger we want D. And similarly,
the better our original models, the larger the log-likelihood will be.
Thus, in this work we investigate adapting the rate of model training
at each frame based on the likelihood. Specifically, we look at the
following linear relationship between D and log-likelihood:
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Fig. 2. Linear Transformation of Likelihood used to determine D

Here LL,q, and LL,,;n are the upper and lower limits of the
log likelihood determined from training data, and Dy,qz and Dimin
are the upper and lower limits that we allow D to take. Between the
likelihood limits, D is set linearly proportional to the likelihood. In-
tuitively, we can think of the log-likelihood as a confidence measure
to determine how quickly we need to estimate the updated model.

4. EXPERIMENTS

We perform BPC recognition experiments using the TIMIT corpus.
The 61 TIMIT labels are first mapped into 7 broad phonetic classes
(BPC) as shown in Table 4, ignoring the glottal stop ‘q’.

Our experiments use 13 dimensional, perceptual linear predic-
tion (PLP) features obtained from a Linear Discriminant Analysis
(LDA) projection that are mean and variance normalized on a per ut-
terance basis. In addition, each BPC is modeled as a three-state, left-
to-right context-independent HMM with no skip states. The output



Broad Phonetic Class TIMIT Labels
Vowels/Semivowels aa ae ah ao aw ax axh axr ay eh er ey
ihixiy owoyuhuwellrwy
Nasals/Flaps em en eng m n ng nx dx
Strong Fricatives s z sh zh ch jh
Weak Fricatives v f dh th hh hv
Stops bdgptk
Closures bel pel del tel gel kel epi pau
Silence h#

Table 1. Broad Phonetic Classes and corresponding TIMIT Labels

distribution in each state is modeled by a mixture of 32 component
diagonal covariance Gaussians. All models were trained on the stan-
dard NIST training set (3969 utterances) in clean speech conditions.
To analyze phonetic recognition performance in noise, we simulate
noisy speech by adding pink noise from the Noisex-92 database [12]
at signal-to-noise ratios (SNRs) in the range of 0dB to 30dB in 5dB
increments. We train the EBW-F methods to find the adaptive D
ranges using the dev set (400 utterances). We report recognition re-
sults on both the dev set and the full test set (944 utterances).

5. RESULTS

In this section, we discuss three different experiments performed on
the TIMIT corpus. First, we analyze the BPC recognition perfor-
mance of the EBW-F and EBW-F Norm and likelihood methods.
Secondly, we explore the behavior of the EBW-Adaptive D metric
and EBW model re-estimation in noisy environments.

5.1. EBW-F Normalization

Table 5.1 shows the phonetic recognition error rates for the likeli-
hood, EBW-F and EBW-F Norm metrics on both test sets, with the
best performing method highlighted in bold.

Method Dev | Test
Likelihood 184 | 19.5
EBW-F 18.7 | 19.9
EBW-F Norm | 17.7 | 18.9

Table 2. BPC Phonetic Error Rates on TIMIT

The EBW-F Norm method outperforms the likelihood on both
the dev and test sets, but the EBW-F method performs worse than
the likelihood. To explain these results, let us first look at the rela-
tionship between EBW-F and likelihood scores, evaluated on a per-
frame basis, in Figure 3. Note that likelihood score shown is actually
the negative log-likelihood, so the better a model explains an obser-
vation, the smaller the negative log-likelihood and EBW scores are.

First, we see there is a strong positive correlation between the
EBW-F and likelihood scores. However, the variance of EBW scores
for a particular likelihood score is quite large. This is mainly because
the EBW-F score is an absolute measure and cannot really be com-
pared across frames. Because Viterbi decoding determines the best
path based on scores of all individual frames in that path, if the EBW
score for one frame is large it dominates and throws off the entire
score for the path. This is one reason the EBW-F metric performs
worse than likelihood when used in an HMM context. This moti-
vated our reason for looking at the EBW-F score in terms of relative
change, and thus introducing the EBW-F Norm metric.
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Fig. 3. EBW-F vs. Likelihood scores
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Fig. 4. EBW-F Norm vs. Likelihood scores

To understand why the EBW-F Norm metric outperforms likeli-
hood, let us look at the relationship between the EBW-F Norm and
likelihood scores as shown in Figure 4. Again, we see there is posi-
tive correlation between scores from the two metrics. However, the
variance of EBW-F Norm scores for a given likelihood score is much
less compared to the EBW-F metric, showing that using the relative
measure allows for a more direct comparison across frames. Also,
notice that as the likelihood increases and models become worse, the
EBW scores move even faster there is a slight curve to the graph. As
shown by Equation 13, EBW-F Norm captures the relative difference
between the likelihood of a data given the initial model and the like-
lihood with a model estimated from the current data sequence being
scored, while the likelihood just calculates the former. Thus, when
models are poor to explain the data, we see that we must move the
initial models quite a bit to explain the current input, and therefore
the EBW scores are quite large compared to likelihood.

To better understand the advantages of this curve in Figure 4, we
looked at transforming the EBW-F Norm scores to produce a more
linear relationship with the likelihood scores. The Box-Cox transfor-
mations [13] are a commonly method used to make the relationship
between two variables more linear. The transformations are defined



as follows:

(EBWA-D) i \ £ 0

EBW; ) =
™ ) {ln(EBW) ifA=0

Here A is the transformation parameter which controls the de-
gree to which we transform the EBW scores. Figure 5 shows the cor-
relation between likelihood and Box-Cox transformed EBW scores
for different values of A.
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Fig. 5. EBW Box-Cox Transformed (x-axis) vs. Likelihood (y-axis)
scores for different values of A

‘We see that as we decrease A\, we move the correlation of EBW
and likelihood from convex down to convex up. A = 0.4 produces
the most linear relationship between EBW-F Norm and likelihood,
with a much smaller variance compared to Figure 3. Table 5.1 shows
the PER for the EBW Box-Cox transformed scores as we vary .

A | PER
0.2 | 20.5
04 | 19.6
0.6 | 19.1
1.0 | 189

Table 3. BPC Phonetic Error Rates on the TIMIT Test Set using
EBW Box-Cox Transformed scores for variable A

Notice that as we decrease A and make the relationship of EBW
and likelihood more linear, the PER decreases. This shows that the
true benefit of EBW over the likelihood occurs when models are
poor, and the EBW scores are much higher relative to likelihood,
producing the curve in Figure 4. Because we sum up scores from
local frames to determine the best path, the large EBW scores for
poor models allows us to disregard these paths more confidently.

5.2. EBW Adaptive D

As discussed in Section 3.4, to minimize the work needed to heuris-
tically tune D, we explore using an adaptive D which is linearly
proportional to the log-likelihood. Figure 6 shows the performance
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Fig. 6. Phonetic Error Rate vs. D

of the EBW-F Norm Global D and Adaptive D classifiers on the
development set as we globally vary D.

First, notice that the performance of the Global D method is
quite sensitive to the choice of D, and has huge changes in perfor-
mance as we vary the rate at which we re-estimate updated models.
If we make D smaller and train the updated model quicker, we are
able to still get an appropriate estimate for the updated model while
allowing the objective function to increase. However, if we take D
too small then we train our models too quickly, we do not increase
the value of the objective function on each iteration and therefore the
performance of the Global D metric decreases.

If we use the likelihood scores as a confidence measure to lin-
early adapt D, the Adaptive D metric has similar performance to the
global D, without having to heuristically tune D.

5.3. Model Re-estimation

In Section 5.1, we showed that the EBW-F Norm metric outper-
formed the likelihood method due to the model re-estimation inher-
ent in EBW. In this section, given models trained in clean conditions,
we analyze the rate of model re-estimation to adapt these models to
noisy environments. Recall that D controls the rate at which we train
updated models. We would expect that as models become a worse fit
for the data, we must make D smaller and re-estimate models faster.
Figure 7 shows the PER for the EBW-F Norm metric on the dev set
for different SNRs as we vary D. Please note that we are using the
Adaptive-D metric discussed in Section 5.2, and here D indicates
the average range over which we adapt D.

As the SNR decreases and the clean speech models become
poorer estimates of the noisy data, we must increase D and train
models quicker for better performance, as indicated by the circles
in Figure 7. This shows the importance of the rate of model re-
estimation, particularly when models are not a good fit for the data.

Table 5.3 shows the PER rate on the dev and test sets for the
EBW and likelihood methods across a variety of SNRs when mod-
els are trained in clean conditions. We see that as we increase the
SNR, the model re-estimation inherent in EBW allows for signifi-
cant improvement over the likelihood metric. Thus, we see that the
EBW-F Norm metric also provides a simple yet effective noise ro-
bust technique over the likelihood measure.
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Fig. 7. Phonetic Error Rate vs. D for different SNRs. Circles indi-
cate D at each SNR which gives lowest PER

Set Method clean | 30dB | 20dB | 10dB | 0dB
Likelihood 18.4 28.2 45.0 652 | 75.6
dev | EBW-F Norm | 17.7 27.1 43.6 60.8 | 724
% Err. Red. 3.8 3.9 3.1 7.7 4.2
Likelihood 19.5 29.7 46.7 66.2 | 75.9
test | EBW-F Norm | 18.9 28.6 45.0 | 61.5 | 71.7
% Err. Red. 3.1 3.7 3.6 7.1 5.5

Table 4. BPC Phonetic Error Rates on Noisy TIMIT

6. CONCLUSIONS AND FUTURE WORK

In this paper, we expanded on previous work ([6], [7]), showing that
the EBW transformations appears to be a general technique to ex-
plain the quality of a model used to represent the data. Specifically,
we explored doing BPC recognition using a relative EBW measure-
ment, which we found was able outperform the standard likelihood
metric. Secondly, we introduced a novel idea to minimize parame-
ter training required to estimate updated EBW models. Finally, we
explored the benefits of EBW model re-estimation in noisy envi-
ronments, demonstrating the improved performance over likelihood
across a variety of SNRs.

In the future, we would like to expand this work in a number of
directions. Recently, we have applied EBW decoding to a Large Vo-
cabulary Continuous Speech Recognition (LVCSR) task, namely for
transcription of English Broadcast News in the distillation portion
of the GALE evaluation. Some of the issues related to the choice
of D and normalization on a per state basis, are being explored in
this context. Our work on the TIMIT corpus provides a good under-
standing of the behavior of the EBW transformations and serves as
a precursor to understand the issues in the LVCSR task better.

In addition, we are also interested in using BPC recognition as
a preprocessing step for a variety of tasks. For example, it is well
known that phones within a BPC convey similar spectral and tempo-
ral characteristics, while phones in different BPCs have quite differ-
ent characteristics [10]. However, the basic properties of the same
BPC across two different languages also differ. We would like to
explore if this is a quick and easy way to do language detection.

In addition, we are interested in exploring BPC detection to aid
in the placement of segments in a segment-based speech recogni-

tion system. In [11], we observed that while the our segment-based
speech recognition systems performs well in clean speech, the sys-
tem has difficulty placing landmarks (representing phonetic transi-
tions) in the presence of noise and often produces poor recognition
hypotheses. Transitions between broad phonetic classes represent
places of largest acoustic change within an utterance and also rep-
resents at minimum where landmarks should be placed. Thus, we
would like to explore if BPC recognition can aid in hypothesizing
landmarks, particularly in noisy environments.
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