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We proposed a broad-spectrum diffractive deep neural network 
(BS-D2NN) framework, which incorporates multi-wavelength 
channels of input lightfields and performs a parallel phase-only 
modulation utilizing a layered passive mask architecture. A 
complementary multi-channel base learner cluster is formed in a 
homogeneous ensemble framework based on the diffractive 
dispersion during lightwave modulation. In addition, both the 
optical Sum operation and the Hybrid (optical-electronic) Maxout 
operation are performed for motivating the BS-D2NN to learn and 
construct a mapping between input lightfields and truth labels 
under heterochromatic ambient lighting. The BS-D2NN can be 
trained using deep learning algorithms so as to perform a kind of  
wavelength-insensitive high-accuracy object classification.  

By transplanting the operating rules of the conventional 

electronic-based neural network, the optical-based neural 

network has been reported through different implementations 

[1-3] with several obvious advantages in transmission speed, 

power consumption, and parallelization capability. As one of 

the representatives in the field of deep learning with optics, 

the diffractive deep neural network (D2NN), which is a kind 

of materialized multilayer diffractive mask, has received more 

attention in recent years [4-8]. Utilizing a diffraction model 

with a backpropagation and gradient descent algorithm, the 

D2NN can be trained using dozens of training data in an 

electronic computer. Then the optimized network parameters 

can be introduced into a layered architecture formed by 3D-

printing, two-photon direct laser writing, or conventional wet 

etching [9,10]. The effectiveness in dealing with large-scale 

information processing tasks, such as image classification, 

pulse shaping, and saliency detection [11-13], has been 

verified by constructing a suitable optical neural network.  

As demonstrated, almost all D2NNs are already designed 

according to incident lightwave signals with a single 

wavelength due to an obvious prediction deterioration caused 

by the diffraction dispersion of the different wavelength 

components of incident beams in network forward 

propagation. Especially, the phase plate, as a vital component 

of the D2NN, presents a dramatical wavelength distinguishing, 

which can be further enhanced through remarkably expanding 

the wavelength difference or range of incident beams and then 

the number of network layers. Deriving the fundamental 

principle based on conventional achromatic lens, this Letter 

proposed a broad-spectrum diffractive deep neural network 

(BS-D2NN) framework, and then demonstrated a robust 

inference with a heterochromatic incidence in performing 

image classification task. Interestingly, we found that several 

discrete points of the incident lightfield in frequency domain 

will remarkably prompt the D2NN to construct a multiple-

base learner jointly optimized mechanism similar to Random 

Forest strategy, where each base learner independently 

processes the associated monochromatic lightfields of targets 

and then outputs their predictions. All opinions are then 

synthesized by the decision-making layer, and thus the final 

prediction of the whole system is given efficiently. As stated, 

the network mapping differences originated from the beam 

dispersion are enough to construct an ensemble learning 

configuration of the BS-D2NN, in which each base learner 

maintains a diversity prediction attributing to improve the 

system inference performance. Relying on the above 

mechanism, the BS-D2NN has numerically achieved a test 

accuracy of more than 90.08% over Fashion-MNIST dataset 

under a heterochromatic illumination.  

As a multi-channel signal ensemble processing 

architecture, the BS-D2NN needs to employ a parallelism 

combination paradigm such as the Bootstrap Aggregating 

strategy [14,15] analogous to conventional electronic 

machine learning to aggregate the inference results of the base 

learners. It should be noted that the multi-channel attributing 

to the BS-D2NN refers to multiple discrete lightwave 

frequencies, but the typical RGB color channels in 

conventional electronic network models having not any 

ensemble learning configuration because of no network 

wavelength or frequency difference recognition and 

manipulation function. Considering the limitations of all-

optical computing, an optical version of the Sum and the 

Hybrid Maxout Operations for realizing a hierarchical 

computation with a featured high-throughput and ultra-low 
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energy consumption is also presented. The Sum Operation 

layer is used to significantly extend the wavelength difference 

or range processed by the BS-D2NN, and consequently 

improve the accuracy of ~1.04% compared to that of the plain 

D2NN, which only works in an expert wavelength by default. 

On the other hand, the operation of employing the Hybrid 

Maxout Operation layer in performing network training and 

prediction can further improve the test accuracy of ~5.74% 

compared to that of the plain D2NN even though no effective 

improvement in robustness. Finally, this study shows a novel 

method of achieving base learner ensemble strategy based on 

an obvious chromatic aberration in lightfield propagation in a 

layered diffractive network. We believe that the proposed 

framework might fuel the further development of machine 

learning in multi-spectral information processing applications. 

 

Fig. 1. Training process and operation principle of the BS-D2NN. Taking 
advantage of the key manipulations including: error backpropagation, 
stochastic gradient descent, and activation function, the output 
lightfields are used to optimize the neuron weights of the BS-D2NN. 

To perform the broad-spectrum training, i.e., the multi-

frequency channel jointly optimizing and aggregating of the 

base learners with a distinct monochromatic illumination, the 

operation principle of the BS-D2NN is illustrated in Fig. 1. As 

shown in the figure, inU  represents the lightfield incident 

upon the input aperture with a short sleeve pattern selected as 

a typical target, and then iU is a mixing of multiple 

monochromatic lightfields outfrom the thi  layer. The incident 

wavelengths are defined as a set of { | 1,2,..., }t R t T   , 

where T denotes the number of the all participating frequency 

points. In detail, iU  impinges on the ( 1)thi   network layer 

after going through free space diffraction, where the median 

i in the wavelengths set above is selected as an indicator, and 

then the layer spacing 25 i . The Rayleigh-Sommerfeld 

diffraction operator iH  is utilized to describe the lightfield 

propagation with a diffraction distance iz  along z-axial 

direction, and the wave vector 2π /t tk n  , and the pixel 

distance ir . Both iH  and iU can be written as 
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where [.]F  and 1[.]F   represent the Fourier transformation 

and inverse Fourier transformation, respectively, and ˆ
iU  is 

the diffractive lightfields formed. 

After the incident lightfields propagating through the thi  

layer of the BS-D2NN, all light frequency channels will be 

simultaneously modulated with distinct phase modulation 

coefficients iw , which satisfies the relations of 
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where ( )tn   denotes the refractive index of the structural 

material of the BS-D2NN, and airn  the refractive index of air, 

and iv  the relative height map of the thi  network layer. 

Then the multi-frequency field 1iU  , as a combination of all 

monochromatic lightfields and having different amplitude and 

phase distributions due to different phase modulation 

coefficients for associated illumination wavelength of sub-

lightfields, is constructed. So, the lightfields reaching the 

activation layer, will be processed by the Sum Operation or 

the Hybrid Maxout Operation demonstrated by the lower 

subplot in Fig. 1, after continuous multilayer phase 

modulation. The diffractive network outputs from the 

activation layers are given by  
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where SumO  and MaxoutO  denote the output lightfields of the 

BS-D2NN with the Sum Operation and the Hybrid Maxout 

Operation, respectively. 
1

ic   represents the output of the thi  

frequency channel of the ( 1)th   layer. During the training 

stage corresponding to an electronic computer, both SumO and 

MaxoutO  from the activation layer are the indicators for 

performing target recognition. The light intensity of a specific 

ten areas presenting the probability of ten categories is 

converted into one-hot sequences, and then enters the loss 

function together with the ground truth label for calculating 

the prediction error during performing back propagation and 

stochastic gradient descent. After multi-batches of training, 

the network learns an approximate mapping relationship from 



input lightfields to labels, so as to implement a high-accuracy 

broad-spectrum prediction by configuring the optimized 

diffractive layers.  

 

Fig. 2. Performance comparison based on the prediction accuracy for 
associated network models. (a) Aggregating strategy effect for 
ensemble learners. (b) Classification task prediction comparison of both 
the plain D2NN and the BS-D2NN on Fashion-MNIST test dataset.  

As shown, the common Maxout Operation can be easily 

implemented in traditional electronic computers or analog 

circuits with almost negligible computational consumption; it 

is actually a universal approximator for increasing the 

expressivity of the conventional electronic networks. As 

proved by [16,17], any continuous function can be 

approximated arbitrarily well by a Maxout network. On the 

other hand, the Maxout Operation is especially suitable for the 

multi-frequency channel aggregating of the diffractive 

network, which greatly improves the ensemble model's fitting 

capability. More attractively, the Hybrid Maxout Operation 

can be realized all-optically by utilizing optical nonlinearity 

of photorefractive crystal, which can be used to perform 

parallel optical thresholding comparing and the maximum 

operations [18,19]. 

To sum up, the heterochromatic lightfield with the same 

complex amplitude distribution transmission in a diffractive 

optical network will bring about different transformations for 

each monochrome lightfield owing to the dispersion effect of 

diffractive phase modulation. In other words, all single-

frequency incident sub-lightfields can be treated with a 

distinct featured mapping even though propagating through 

the same fixed diffractive network, which is similar to the 

base learner in an ensemble learning strategy. Furthermore, 

all modulated sub-lightfields will be received by the 

CMOS/CCD imaging sensors at the same time. Only one 

monochromatic lightfield can be recorded if other frequency 

channels trained in diffractive network are unrecognized by 

the sensors above, which means a conventional D2NN 

prediction process. For a broad-spectrum detector, all output 

sub-lightfields will be superimposed in the photosensitive 

plane, which is equivalent to implement an optical Sum 

activation after layered diffractive modulation. This multi-

frequency aggregating method will further improve the 

prediction accuracy of the diffractive network so as to adapt 

to every trained single-frequency incident sub-lightfields. On 

the other hand, a Hybrid Maxout Operation based on the 

electronic computers or analog arithmetic circuits and then 

used in network training and prediction stage will scarify the 

robustness of the diffractive network to single-frequency 

lightfields and then computing speed to obtain a higher blind 

test accuracy. 

In detail, the performance comparison of the BS-D2NN 

and the plain D2NN is demonstrated in Fig. 2. All diffractive 

networks are trained with 55,000 images (5000 validation 

images) from the Fashion-MNIST dataset, and are 

numerically tested using 10,000 images from the Fashion-

MNIST test dataset. To evaluate the improvement of the 

network prediction performance for frequency channel 

aggregating strategies, the blind test accuracy of the base 

learner clusters and ensemble learners (i.e. the BS-D2NN with 

distinct aggregating strategies) are shown in subplot (a), 

where C denotes the number of the frequency channel in a 

training process. For example, the case of C=3 represents that 

the diffractive network receives simultaneously the incident 

wavelength of 1.5 μm and 1.8 μm and 2.2 μm in training and 

testing stage. The case of C=5 represents that of incident 

wavelength of 1.3 μm, 1.5 μm, 1.8 μm, 2.0 μm, and 2.2 μm, 

simultaneously. Furthermore, each frequency channel can be 

considered as inducing the network to generate a new base 

learner. Then the case of C=3 means there are three base 

learners in a diffractive system, which is represented by 

Cluster 1. In the same way, Cluster 2 represents five base 

learners in a BS-D2NN.  

When the BS-D2NN employs the Sum aggregating 

strategy so as to easily perform optical operation for broad-

spectrum system, most base learners show an excellent 

estimate capability in object recognition. The ensemble 

learner (C=3) achieves a 2.17% test accuracy improvement 

compared with the average value of the base learner 

prediction accuracy. As a strong nonlinear operation, the 

manipulation of utilizing the Maxout layer brings a greater 

fitting capability and a wider hypothesis space to network, 

which has been verified numerically to achieve a significant 

improvement for a BS-D2NN in subplot (a). Compared with 

the Sum layer, the Hybrid Maxout Operation prompts each 

base learner to become an under-fitting classifier (e.g., the 

average test accuracy of Cluster 1 being only 21.66%), which 

can learn more blurred and more global featured mapping for 



target lightfields. In addition, we present more model 

comparisons in subplot (b). In terms of conventional single-

frequency D2NN, a 82.03% numerical blind test accuracy 

under 2.2 μm incident lightfields can be obtained. The 

prediction performance on the classification task is also 

improved when the Sum Operation is employed in the last 

layer of the BS-D2NN, which works in a broad-spectrum 

mode and aggregates more frequency channel information for 

estimating the target category. Concretely, the blind testing 

accuracy of the BS-D2NN with a Sum Operation for C=3 or 

C=5 is improved to 85.38% or 84.73%. By comparison, the 

operation of employing a Maxout activation function in the 

last layer will further improve the network fitting capability 

in multi-frequency channels, and a 88.92% or 88.96% blind 

testing accuracy for two kinds of multi-channel BS-D2NN can 

be acquired, respectively. The accuracy is increased to 

90.08%, when a fully connected layer is used after the Maxout 

layer (i.e., the BS-D2NN-FC). Apparently, the under-fitting 

base learners can better obtain the overall feature of incident 

lightfields in different frequency channels, which 

considerably improves the entire network system with the 

aggregating of the Hybrid Maxout Operation. 

 

Fig. 3. Wavelength insensitive characteristics of an all-optical BS-D2NN 
with a Sum activation function. 

Besides, it is empirically verified that the BS-D2NN with 

a Sum layer demonstrates an obvious wavelength insensitive 

characteristics compared with the plain D2NN. We have 

selected 28 uniform discrete frequency points in a wavelength 

range from near-infrared to mid-infrared (1.1 μm-2.5 μm) as 

incident wavelength of the system. The trained model with the 

same network architecture and optimized parameters shown 

in Fig. 2(b) can implement a targeted deterministic task. A 

statistical inference performance is shown in three subplots of 

Fig. 3. Typically, the prediction accuracy will be gradually 

decreased in off-center wavelength components due to the 

modulation coefficient varying of the phase mask to the 

incident lightfields. The inference capability of the plain 

D2NN will reach its peak at the central wavelength of 2.2 μm. 

As the wavelength shifting, the accuracy drops sharply and 

thus tends to a stabilized value of 22.53%, which is higher 

than that of random prediction. In terms of the BS-D2NN with 

a Sum layer, both the peak accuracy and the number of 

relative peak points are taken into account, especially for the 

BS-D2NN (C=5), which has achieved five discrete frequency 

points with > 74% blind testing accuracy and 42.36% average 

accuracy in the broad-spectrum mode compared with 31.54% 

average accuracy of the conventional single frequency D2NN. 

In summary, we have introduced a broad-spectrum 

diffractive network (BS-D2NN), which has combined the 

fundamental principle of ensemble learning and conventional 

achromatic diffractive lens. The multi-frequency channels of 

the incident lightfields promote diffractive network formed by 

a homogeneous ensemble framework due to the dispersion 

effect during diffractive phase modulation process. 

Furthermore, two aggregating strategies are presented and 

employed in diffractive network to improve the prediction 

performance of the entire ensemble optical system, which also 

presents a wavelength insensitive property to highlight the 

development towards a kind of multi-spectral intelligent 

optical device. 
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