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Abstract. The study of LH2 protein of purple bacteria by broadband 2D electronic 
spectroscopy is presented. The dark 1Bu

- carotenoid state is directly observed in 2D 
spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.  

1 Introduction  
Chlorophylls and carotenoids are the main light absorbing pigments in light-harvesting proteins. 
Carotenoids have two different functions. They harvest the light energy and transfer it to 
chlorophylls. They also accept excess excitation energy from chlorophylls and dissipate it, thereby 
preventing formation of singlet oxygen which can damage the protein. 

In the LH2 complexes of Rps. acidophila the light energy, absorbed by lowest allowed S2 excited 
state of carotenoid (Car), either relaxes to dark Car S1 state or is transferred to Qx state of 
bacteriochlorophyll (BChl). The overall efficiency of energy transfer from Car S2 state to BChl Qx 
state is between 40-60% [1–4]. Theoretical study however predicted only 20% efficiency of Car-to-
BChl transfer due to small spectral overlap [5]. Thus, the energy transfer between the two molecules 
is substantially contributes to the overall light-harvesting process. However despite active studies, no 
clear understanding of the underlying processes and mechanisms is present. The experimental 
obstacle is the strong overlap of the Car/BChl signals both spectrally and temporally. In several 
works on isolated carotenoids and light-harvesting proteins a signature of additional Car dark state 
(1Bu

- or Sx state) was found, which increases the controversy of the interpretation of spectroscopic 
data [4, 6–8].  

In the current study the 2D electronic spectroscopy was applied to the LH2 complexes of Rps. 
acidophila. The 2D spectroscopy gives more information than traditional transient absorption, 
providing spectral resolution along both excitation and emission energy scales.  Broadband pulses in 
the spectral region of 500-630 nm were used in order to excite simultaneously both Car S2 state and 
BChl Qx state. The resulted 2D spectra revealed in addition to signals from Car S2 state and BChl Qx 
state, a contribution from previously unobserved intermediate state. The origin of this state and its 
function in LH2 protein is discussed. 
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excitation pulses. A new diagonal peak (denoted as 1Bu
-) is observed at 560 nm wavelength. The 

decay sampled at the 1Bu
- peak (Figure 1C green dots) shows very similar oscillations to the 

oscillations observed at the S2 peak (Figure 1C blue dots). These decays can be fitted with a sum of 
exponentials and three frequency modes: 1000 cm-1, 1250 cm-1 and 1600 cm-1 (see red line in Figure 
1C), known to be a signature vibrational frequencies of carotenoids  [11].  Since the S2 state is not 
excited in Figure 1B, the 1Bu

- peak is due to an additional carotenoid state, which has features very 
similar to the features of the dark 1Bu

- (or Sx) state, predicted theoretically [12] and extensively 
discussed in the literature (for review see [13]). As follows from the 2D spectrum in Figure 1B, Car 
1Bu

- state strongly interacts with the BChl Qx state. The Car 1Bu
-/BChl Qx cross peak indicates 

substantial 1Bu
-→Qx energy transfer. At the same time no Car S1 ESA is observed after excitation of 

the 1Bu
- state, indicating no 1Bu

-→Qx energy transfer. The summarised electronic level scheme and 
observed energy pathways are shown in Figure 1D. Appearance of the dark 1Bu

- is ascribed to the 
borrowing of the dipole moment strength from the BChl Qx state. Presence of 1Bu

-→Qx energy 
transfer can explain the disagreement between experiment and theory in the energy transfer 
efficiency since the Car 1Bu

- state was not accounted for in the theoretical studies [1–5].  

4 Conclusions  

In this work we report 2D spectra with clear presence of the Car 1Bu
- dark state. This state has been 

controversially discussed both in experimental and theoretical studies for the last decade, however no 
direct observation (as a ground state bleach) of that state in the spectrum has been reported before. 
Due to the very low dipole moment the Car 1Bu

- state is invisible in the stationary spectra and can 
only be observed under selective excitation conditions. The substantial contribution of the 1Bu

- state 
to the interaction between carotenoid and bacteriochlorophyll molecules is demonstrated. Taking 
into account the Car 1Bu

- state is essential for understanding of the energy dynamics in light-
harvesting proteins. 
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