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Abstract—In this article, we report on compact solid-state power
amplifier (SSPA) millimeter-wave monolithic integrated circuits
(MMICs) covering the 280–330-GHz frequency range. The tech-
nology used is a 35-nm gate-length InGaAs metamorphic high-
electron-mobility transistor (mHEMT) technology. Two power
amplifier MMICs are reported, based on a compact unit amplifier
cell, which is parallelized two times using two different Wilkinson
power combiners. The Wilkinson combiners are designed using
elevated coplanar waveguide and air-bridge thin-film transmission
lines in order to implement low-loss 70-Ω lines in the back-end-
of-line of this InGaAs mHEMT technology. The five-stage SSPA
MMICs achieve a measured small-signal gain around 20 dB over
the 280–335-GHz frequency band. State-of-the-art output power
performance is reported, achieving at least 13 dBm over the
286–310-GHz frequency band, with a peak output power of
13.7 dBm (23.4 mW) at 300 GHz. The PA MMICs are designed
for a reduced chip width while maximizing the total gate width of
512 µm in the output stage, using a compact topology based on
cascode and common-source devices, improving the output power
per required chip width significantly.

Index Terms—InGaAs mHEMT, solid-state power amplifier,
sub-mm-wave operation.

I. INTRODUCTION

I
N RECENT years, the interest in the submillimeter-wave

frequency regime around 300 GHz for communication, radar,

and imaging applications has been growing. As the power-gain

cutoff frequencies (fmax) of III-V HEMT and heterojunction

bipolar transistor (HBT) devices have increased beyond

1 THz, broadband integrated circuits have been demonstrated at

frequencies above 200 GHz. Both high-resolution radar/imaging
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and high-data-rate communication systems benefit from the

large absolute bandwidths, which are achievable at these

frequencies.

In order to develop high-dynamic-range transmit and receive

solutions at submillimeter-wave frequencies, transistor tech-

nologies featuring high cutoff frequencies, good noise figures,

and high levels of output power are required. In combination

with a multilayer back-end-of-line (BEOL), highly integrated

radio frequency (RF) front ends for frequencies above 200 GHz

are feasible.

The InGaAs metamorphic high-electron-mobility transistor

(mHEMT) technology used in this work has demonstrated state-

of-the-art low-noise amplifiers [1], [2] as well as chipsets for

broadband radar [3] and communication [4] applications with

low noise figures above 100 GHz. Furthermore, a multilayer

BEOL permits the realization of highly integrated front ends

including multiplier, mixing, and amplifier circuits on a single-

chip front end as demonstrated with the integrated 220–260-GHz

InGaAs mHEMT radar front end in [3].

The generation of high RF-power levels, however, has been

an issue of InGaAs mHEMT devices, as the bias voltage for safe

long term operation is typically in the range of 1.0–1.5 V, which

is limiting the power density on device level. In comparison, over

the frequency band of 200–350 GHz, the highest output power

levels have been reported by solid-state power amplifier (SSPA)

millimeter-wave monolithic integrated circuits (MMICs) real-

ized in InP HBT and InP HEMT technologies [5]–[10] biased

at 1.8–2.2 V. In [5], 17–24-dBm output power was reported

between 180–265 GHz and at a narrow frequency band around

300 GHz, up to 13.5 dBm has been demonstrated in [7], both us-

ing a 250 nm InP HBT technology. Broadband InGaAs mHEMT

based SSPA MMICs, on the other hand, have reported up to

6.8–8.6-dBm of output power over the 280–320-GHz frequency

band in [11].

In this article, we report on broadband SSPA MMICs with

more than 13-dBm output power over the 284–310-GHz fre-

quency band, using a 35-nm InAlAs/InGaAs mHEMT technol-

ogy. The motivation for the development of SSPAs in this HEMT

technology is the subsequent integration in broadband multi-

functional radar and communication systems and MMICs [4],

[12], [13]. State-of-the-art 300-GHz imaging [12] and commu-

nication [14], [15] systems implemented in this technology are

currently operating with output power levels around 5 dBm,

using the PA described in [32]. In order to increase the operating

distance of these systems, which is typically below 50 m, and
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Fig. 1. Layer stack of Fraunhofer IAF’s 35-nm InGaAs mHEMT technology
with three metal layers and air-bridge technology.

demonstrate real-world scenarios at distances well above 100 m,

the 300-GHz output power performance on MMIC level needs

to be improved above 20 mW, which is demonstrated in this

work.

When considering packaging and on-chip integration of PA

circuits, there are many reasons to strive for very compact dimen-

sions of the PA circuit. Due to high losses of on-chip transmission

lines at submillimeter wave frequencies, a compact PA design

is vital to reduce unnecessary losses in the power combining

network. Furthermore, in order to permit the integration of the

PA into multifunctional transmit MMICs as well as facilitate the

packaging into waveguide modules, e.g., avoiding cavity reso-

nances in the cavity above the MMIC, the width of the PA MMIC

should also be as small as possible. At 300 GHz, for example,

cavity modes can theoretically exist and be excited if the width

of the cavity is not below 500 µm [16]. Increasing the width of

the MMIC beyond this limit, will possibly increase the expense

for MMIC packaging, if additional measures for cavity-mode

suppression are needed. The PA cores of this work, therefore,

were designed for a reduced chip width while maximizing the

total number of gate fingers in the output stage, and hence, max-

imizing the achievable output power at the required chip width.

In the following section, we first give a brief overview on the

35-nm mHEMT technology used in this work. In Sections III to

V, the design of two PA MMICs is described, based on a com-

pact unit amplifier cell, which is parallelized using Wilkinson

power combiners. The on-wafer measured performance of the

PA circuits is shown in Section VI and a detailed discussion and

comparison to the state of the art is given in Section VII.

II. 35-NM MHEMT TECHNOLOGY

The technology used in this work is Fraunhofer IAF’s

In0.52Al0.48As/In0.8Ga0.2As mHEMT technology with 35-nm

gate length. The metamorphic HEMT structure is grown by

molecular beam epitaxy on 100-mm semi-insulating GaAs

wafers. To adapt the lattice constant, a metamorphic buffer with a

linear InxAl0.48Ga0.52−xAs (x = 0 → 0.52) transition is grown.

The active devices are defined by a two step electron beam

lithography and are encapsulated in benzocyclobutene (BCB1

in Fig. 1). A detailed description of the front-end-of-line process

is given in [17].

The mHEMT devices feature an increased gate-drain re-

cess, which allows a drain-source voltage for power amplifier

applications around 1.5 V. The off-state breakdown voltage

(BVoff−state) of this technology variant is above 4 V. This

35-nm mHEMT technology features an fT above 500 GHz

and an fmax exceeding 1 THz. The maximum transconductance

Fig. 2. TFMSL interconnections which are typically used in Fraunhofer IAF’s
three-layer BEOL process including the top metal layer in air-bridge technology.

Fig. 3. Elevated CPW (left) and thin-film air-bridge (right) transmission lines,
which permit the implementation of low-loss high-impedance transmission
lines.

is 2500 mS/mm and the maximum drain current density is

1300 mA/mm.

The cross section and available layers of the front side process,

which is used in this work is shown in Fig. 1. The BEOL process

includes 50-Ω/� NiCr thin film resistors and an 80-nm-thick

chemical vapor deposition (CVD) deposited SiN layer used for

on-wafer metal–insulator–metal (MIM) capacitors. Three metal

layers (MET1-MET3) are available for the design of compact

matching networks with thin-film microstrip line (TFMSL) in-

terconnects on the wafer front side. The electron beam evap-

orated Au-based first and second metal layers are defined in

a lift-off process. MET3 is a 2.7-µm-thick plated Au layer in

air-bridge technology. The transmission lines, which are realized

with this three-layer metal stack and are used for the wiring in

this work, are discussed in the following section.

III. THIN-FILM TRANSMISSION LINES

The relevance of a compact PA design regarding the feasibility

of packaging into waveguide modules, on-chip integration as

well as efficient power combining was introduced in Section I.

In order to realize a compact PA core, independent of back-

side processing and the substrate height of the GaAs substrate,

compact multifinger cascode and common-source (CS) cells

have been developed, using TFMSL interconnections for the

matching networks.

TFMSL wiring permits a compact matching network imple-

mentation and the accurate in-phase matching of parallelized

multifinger devices in close proximity, realizing broadband PA

MMICs with reduced chip width. These advantages of using

thin benzocyclobutene (BCB) layers for TFMSL wiring has

been described and investigated for GaAs pHEMT [18] and InP

HEMT [19], [20] technologies as well as this InGaAs mHEMT

technology [11], [21], [22] in detail previously.

Figs. 2 and 3 show the cross section of four different thin-film

transmission lines, which are used for wiring in the matching and

power combining networks in this work. These interconnections

differ strongly in their respective range of feasible characteristic
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Fig. 4. Simulated feasible impedance range of the four transmission lines
depicted in Figs. 2 and 3. The line width, which is required for the minimum
impedance, the maximum impedance as well as a 50-Ω line impedance, is also
shown in µm.

Fig. 5. Loss of the thin-film transmission lines depicted in Figs. 2 and 3 for a
length of λ/4. The loss is normalized to a quarter wavelength at the respective
frequencies. The line impedance of each transmission line is 50 Ω.

impedances as well as insertion loss, as depicted in Figs. 4 and

5, respectively, and are discussed in the following.

The TFMSL interconnections depicted in Fig. 2 (MET2

TFMSL and MET2MET3 TFMSL), which are implemented in

the matching networks of the reported PA circuits, have been

widely used for the design of compact MMICs in this InGaAs

mHEMT technology for a wide variety of applications [22]–

[24]. MET1 is implemented as substrate shielding dc and RF

ground and the TFMSL signal line is routed in MET2, using the

1.4-µm-thick BCB layer (BCB2) between MET1 and MET2 as

dielectric substrate. MET3 can additionally be used to increase

the conductor thickness of the signal line in order to reduce the

losses and increase the current carrying capability, as depicted

in Fig. 2 on the right (MET2MET3 TFMSL).

Realizing high impedance as well as low-loss transmission

lines is, however, an issue for the TFMSL interconnections

depicted in Fig. 2. Due to the low thickness of the BCB2

layer, the required width of a 50-Ω transmission line is only

3.5 µm for the MET2 TFMSL and 2.7 µm including the MET3

layer, respectively (see Fig. 4). The insertion loss of a quarter

wavelength transmission line is, as a result of the narrow line

width, in the range of 0.6 to 0.8 dB around 300 GHz (see Fig. 5),

which significantly reduces the efficiency of power combining

networks in this wiring environment. Furthermore, the feasible

impedance range of the MET3-reinforced TFMSL is limited by

the 2.5-µm minimum-width design rule for MET3, which limits

the maximum feasible line impedance to 53 Ω (see Fig. 4).

In order to decrease the insertion loss and realize transmission

lines with higher characteristic line impedances, which is nec-

essary for the required impedance transformation in most 50-Ω

power combining concepts, the two transmission lines shown in

Fig. 3 are investigated to increase the combining efficiency of

the power combiners in Section V. By partially removing the

MET1 ground plane underneath the MET2 layer, as depicted on

the left in Fig. 3, an elevated coplanar waveguide (CPW) with

increased distance between RF ground and TFMSL signal line

is realized, permitting the implementation of interconnections

with line impedances well above 70 Ω .

Similar elevated CPW transmission lines have been studied

for GaAs and silicon substrates in [25]–[27], providing higher

wave impedances and lower attenuation compared with con-

ventional CPWs. The simulated insertion loss of this elevated

CPW is reduced to 0.3 dB for a line length of λ/4 and 50-Ω

line impedance. The ground-to-ground MET1 spacing is 14 µm

in this example. In order to permit the implementation of bends

while preventing odd-mode propagation and improve the shield-

ing of the GaAs substrate, the two ground planes are connected

using 1-µm wide stripes in a distance of 10 µm. Both the 14-µm

ground-to-ground spacing as well as the spacing of the stripes

are chosen based on values, which are typically used in 300-GHz

CPW circuits in this technology [17]. Using these dimensions,

the implementation of both low-loss interconnections as well as

comparatively compact transmission-line elements like bends,

for example, is feasible.

The same advantages of increased impedance range and low

insertion loss apply for the air-bridge TFMSL interconnection

shown in Fig. 3 on the right. By using the additional 1.6-µm

“air substrate,” the substrate height of this air-bridge TFMSL is

increased and, hence, high impedance transmission lines with

low insertion loss are feasible. The number of posts, which

are required to hold up the air bridge, is strongly dependent

on the routing of the transmission line. The simulated data

depicted in Fig. 5 is, therefore, considering an ideal transmis-

sion line without any posts. Air-bridge transmission lines have

been previously reported in two-metal-layer BEOL technologies

[27]–[30], typically requiring an opening in the MET1 ground

plane for the posts of the air-bridge interconnection. Since the

posts of the air-bridge TFMSL depicted in Fig. 3 are set on top

of the BCB2 layer, the impact of the posts is strongly diminished

and not considered in this section. The simulated insertion loss of

this 50-Ω air-bridge TFMSL is 0.3 dB at 300 GHz, very similar

to the elevated CPW.

Since the required area for signal routing is significantly

increased for the elevated CPW and air-bridge TFMSL com-

pared to the MET2 and MET2MET3 TFMSL, they are only

implemented in the Wilkinson power combiners of the power

amplifier MMICs discussed in Section V. Due to their better

folding possibilities [22], the TFMSL interconnections are used

for the design of the compact unit amplifier cell described in the

following section.

IV. 300-GHZ UNIT AMPLIFIER DESIGN

In this section, the design of a compact 300-GHz unit amplifier

cell (UA) is described. Section IV-A is focused on the design

considerations of the compact unit amplifier topology, which
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Fig. 6. Chip photograph of the fabricated unit amplifier MMIC. The required
chip area of the 5-stage PA core with 8-finger cascode and CS PA cells is 0.17 ×
0.88 mm2. The amplifier uses a CS output stage with two 8×16µm-finger-width
devices in parallel. The gate width of the three cascode stages is 8 × 10 µm.

Fig. 7. Block diagram of the unit amplifier MMIC depicted in Fig. 6. The
detailed schematic of the five-stage unit amplifier is shown in Fig. 8.

is parallelized in the following sections. The UA modeling is

described in Section IV-B.

A. Unit Amplifier Design Considerations

Figs. 6 and 7 show the chip photograph and block diagram

of the compact UA MMIC, respectively. The simplified circuit

schematic of the five-stage amplifier cell is depicted in Fig. 8.

The amplifier topology of the UA was developed based on the

four-stage amplifier MMIC reported in [11], including opti-

mized matching networks, as well as an additional CS output

stage with two parallel 8 × 16 µm CS devices. The 8-finger

cascode devices in the input stages are implemented to provide

high gain, while the CS transistors in the output stage permit

the maximization of the total gate width in the output stage,

increasing the achievable output power at the given chip size.

The design considerations of the UA topology shown in Fig. 6

are discussed in the following in detail.

Compared to CS transistors, devices in cascode configuration

can provide larger levels of small-signal gain and are often

used in mHEMT PA circuits [24], [32]. However, the classical

cascode, where the gate of the CG transistor is shorted for RF

frequencies, does not provide significantly larger output power

levels than a CS transistor while maintaining a large-signal

condition for save long-term operation. Since only the CG device

contributes to the output voltage swing, an RF-shorted gate

potential at the CG device can lead to large voltage swings in

saturation, causing soft compression, and device degradation.

In order to safely increase the output-power level of a PA cell

in cascode configuration, the drain-source voltage of both the

CS and the CG device have to be stacked and swing in phase,

which is known as stacked-FET and series-connected devices in

literature [9], [37].

At a given dc-bias point, the cascode can provide high small-

signal gain, but under large-signal operation, both the CS and

the CG transistor must contribute to the output voltage swing

in order to prevent soft compression. In order to identify the

appropriate geometry of the cascode cells of the UA, two design

parameters are considered: the size of the shunt MIM capacitors

CSHUNT at the CG transistor and the length LMSL of the TFMSL

interconnection between the CS and the CG device.

Fig. 9 shows the simulated MSG/MAG and stability factor of

a 2 × 10-µm cascode for different values of LMSL and CSHUNT.

For shunt-capacitor values larger than 200 fF, the cascode is

only conditionally stable around 300 GHz and the MSG is

independent of the length LMSL, at least in the considered range

of up to 40 µm. In this case, the MSG of the cascode at 300 GHz

is 15 dB, compared to the 7-dB MSG of a CS transistor. For

CSHUNT < 200 fF, the cascode is unconditionally stable over

a certain frequency band around 300 GHz, depending on the

values of LMSL and CSHUNT.

The simulated OP3dB 3-dB gain compression power for a 2

× 10-µm cascode at 300 GHz is depicted in Fig. 10. The length

of the microstrip line LMSL was swept from 10–40 µm, and the

range of CSHUNT is 30–200 fF. For large values of CSHUNT

and a short interconnection between the CS and CG device

(LMSL = 10 µm), the achieved output power performance of

4.63 dBm was found to be not significantly improved compared

to a 2 × 10-µm CS single device, which delivers a maximum

OP3dB of 4.5 dBm at 300 GHz. However, by optimizing the

values of CSHUNT and LMSL within the considered range, the

output power can be increased by 1.8 dB (OP3dB = 6.44 dBm) in

simulation. This increased output power performance complies

with the prospects and limitations of stacked HEMT devices

described in [38].

Based on these considerations, the PA topology and 8-finger-

cascode geometry of this work is chosen. It is important to note

that Fig. 10 only shows the exemplary cascode performance

under large-signal operation at 300 GHz. In order to meet

the given output power and linearity objectives not only in

a narrow frequency range, the dependency of the large-signal

performance on the cascode geometry has to be considered over

the full frequency band of interest.

As a result of the analysis previously, multifinger cascode

devices are only used in the input stages, providing high gain

over the targeted 280–350-GHz frequency band. The capaci-

tance of CSHUNT is chosen to be 100 fF and the length of

the interconnection between the CS and CG device (LMSL) is

20 µm. This way, the cascode is unconditionally stable with

around 12-dB MAG over the 280–350-GHz frequency band

(see Fig. 9), representing a good tradeoff between high gain

and output-power performance. Smaller CSHUNT values would

reduce the gain significantly, limiting the gain benefit of the cas-

code. With a longer transmission line LMSL the cascode is only

conditionally stable at 350 GHz and a constant output-power

performance cannot be achieved over the full frequency band of

interest in simulation.

The objective of the UA design was the development of a very

compact PA core and consequently, to achieve high output power

per required chip width. To achieve this, the compact 8-finger

cascode cell depicted in Fig. 11 was developed. The minimum

required width of a cascode, however, is limited by the size of the

shunt capacitors at the CG devices. In comparison, two parallel
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Fig. 8. Simplified schematic of the five-stage UA cell. A more detailed schematic of the 8-finger cascode and CS devices is depicted in Figs. 11 and 12, respectively,
including the gate biasing as well as stabilization elements.

Fig. 9. Simulated MSG/MAG and stability factor of a 2-finger cascode with
10-µm finger width: (a) for different CSHUNT values at LMSL = 20 µm, and
(b) for different LMSL values at CSHUNT = 100 fF.

Fig. 10. Simulated OP3dB 3-dB gain compression output power of a 2-finger
cascode with 10-µm finger width for different values of CSHUNT and LMSL at
300 GHz.

Fig. 11. Chip photograph and equivalent circuit of the 8-finger cascode PA
cell with feeding structures.

Fig. 12. Chip photograph and equivalent circuit of the 8-finger CS PA cell
with feeding structures.

8-finger CS transistors (see Fig. 12) require approximately the

same chip width as an 8-finger cascode cell as can be seen in

the chip photograph of the UA in Fig. 6. For this reason, a CS

output stage permits doubling the number of gate fingers in the

output stage, compared to a cascode device. Since the cascode

cannot provide the same level of output power as a CS device

with twice the number of gate fingers, while providing enough

gain, the UA topology depicted in Fig. 7 is used.

B. Compact PA Cell Modeling and Simulation

Figs. 11 and 12 show the close-up view of the 8-finger cascode

and CS devices, respectively, as well as the detailed equivalent

circuits. The 8-finger transistors of the UA are modeled by

parallelizing four 2-finger transistors without feeding structures

in close proximity. The feeding structures of the 2-finger devices

are included in the EM-simulated multifinger transistor shell and
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Fig. 13. Chip photographs of the prematched 8-finger cascode cell depicted
in Fig. 11. Measured and simulated S-parameters are shown in Fig. 14.

Fig. 14. Measured and simulated S-parameters of the prematched 8-finger
cascode cell depicted in Fig. 13.

are optimized as a part of the matching networks. This permits an

accurate in-phase feeding of the parallelized 2-finger devices and

broadband matching at reduced chip width. Due to their most

simple and symmetric device layout, 2-finger HEMT devices

typically provide the largest bandwidths and transistor models

with the best accuracy, compared to multifinger devices. This

advantage of 2-finger devices was discussed in detail for this

InGaAs mHEMT technology in [11]. The 2-finger transistor

models, which are used to model the multifinger devices, are

based on a multiport modeling approach with an electrical

equivalent circuit model of the extrinsic transistor shell, which

is based on the actual structure and layout of the transistor [33].

The chip photograph of a prematched 8-finger (4 × 2-finger)

cascode cell is shown in Fig. 13. Measured S-parameters of the

50-Ω input/output matched 8-finger cascode cell are depicted

in Fig. 14, showing good agreement between measurement and

simulation. The measured small-signal gain of the compact 8-

finger cascode device is in the range of 5–6 dB around 300 GHz.

The UA’s TFMSL matching networks are fully EM simulated

using keysight ADS momentum and CST microwave studio.

Simplified models of the matching networks were first developed

using momentum EM/circuit co-simulation in ADS, which al-

lows for a time-efficient optimization of the design. The final

implementation of the compact networks was simulated and

optimized using CST, due to the increased accuracy provided by

the three-dimensional EM solver. The load targets of the cascode

stages were defined in large-signal load-pull simulations. For the

16-µm finger-width CS devices in the last two stages of the UA,

gain-power tradeoff load impedances were defined considering

Fig. 15. Simulated stability indeces of the UA (a) without any circuit elements
for stabilization and (b) including the stabilization elements depicted in Fig 11
and Fig. 12. The simulated frequency range is 1 MHz to 800 GHz. (a) w/o
stabilization. (b) w/ stabilization.

large-signal load-pull simulations as well as in situ load-pull

measurement data at 300 GHz [36].

In order to ensure stability and suppress possible odd-mode

oscillations, stabilization elements have been implemented at

the input of the first cascode stage as well as the output of

all cascode and CS multifinger devices described previously.

The implementation of air bridges between the drain fingers

of multifinger CS transistors was investigated and described

in detail in [22]. The same approach is used in the CS device

depicted in Fig. 12, where the drain fingers are connected via

two lines of parallel air bridges.

The layout of the 2-finger CG structure, which is implemented

in the 8-finger cascode cell depicted in Fig. 11, was optimized

to reduce the required chip area. As a result of this layout

optimization, the implementation of air bridges between the

drain fingers of the parallelized CG devices is not possible

within the design rules of the process. Therefore, 5-Ω shunt

resistors are connected to the parallel drain feeders of the cascode

cells, as shown in Fig. 11. The low-frequency and odd-mode

stabilization elements depicted at the cascode input in Fig. 11

are only implemented in the first cascode stage at the input of the

UA, in order to improve the robustness of the design for future

system integration.

The stability was simulated during the design process, using

the S-probe stability analysis method described in [34] and [35].

Using this technique for circuit analysis, the stability index

(product of reflection coefficients) is calculated and evaluated

in simulation at each input and output of the active 2-finger

devices. By checking the stability indices of the parallel devices

against the oscillation criterion, odd-mode stability is ensured.

Fig. 15 shows the polar plots of the simulated 1-MHz to

800-GHz stability indices of the UA with and without the

abovementioned odd-mode stabilization elements. Depicted are

12 stability indices, simulated at the input/output of one of the

outer 2-finger devices of each stage. In order to ensure stability

not only within the frequency band of interest, the critical point

(1,0) must not be encircled at any given frequency [35]. This

criterion is satisfied for the stabilized UA core, as depicted in

Fig. 15(b). Without the implementation of air bridges, the CS

stages show potential in-band instabilities around 284 GHz [see

Fig. 15(a)]. Since the in-band stability of the cascode cells is
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Fig. 16. Schematic of the 3-dB Wilkinson power divider/combiner for an
arbitrary system impedance Z0 (left) as well as for an system impedance of
50 Ω (right).

Fig. 17. Layouts of two Wilkinson power combiners, realized with (a) elevated
CPW (Wilkinson1) and (b) air-bridge TFMSL (Wilkinson2).

ensured by the choice of CSHUNT and LMSL as described previ-

ously, the criterion for stability is only violated for frequencies

around 480 GHz, if no measures for stabilization are taken. The

implemented odd-mode stabilization, however, ensures stability

up to frequencies above 650 GHz, which is the frequency range

where the cascodes can potentially oscillate (stability factor k is

below one in Fig. 9).

V. 300-GHZ HIGH-POWER AMPLIFIER MMICS

The parallelization of the UA cell described previously is real-

ized using Wilkinson power combiners [31], which are providing

the necessary isolation in order to prevent odd-mode oscillation

and load tuning between the parallelized UA cells. This kind

of power combiner realized with TFMSL interconnections has

been widely used in InP HBT SSPA MMICs at frequencies

around 240 GHz as well as 300 GHz [5]–[7], providing high

levels of output power at the respective frequencies.

The schematic of a 3-dB Wilkinson power divider/combiner

is depicted in Fig. 16. In the case of a 50-Ω system impedance, a

characteristic impedance of approximately 70 Ω is required for

the λ/4 lines of the Wilkinson combiner. Realizing this 70-Ω line

impedance, while simultaneously achieving a low insertion loss,

is an issue for the TFMSL interconnections, which are typically

implemented in matching networks in this works BEOL, as

discussed in Section III and shown in Figs. 4 and 5. Therefore, the

elevated CPW and air-bridge TFMSL, which were introduced

in Section III and permit the low-loss implementation of 70-Ω

transmission lines, were used for the design of two Wilkinson

power combiners, depicted in Fig. 17.

Fig. 18. Simulated S-parameters of the Wilkinson combiner Wikinson1.

Fig. 19. Simulated S-parameters of the Wilkinson combiner Wikinson2.

The simulated S-parameters of the two Wilkinson combin-

ers Wilkinson1 and Wilkinson2 are shown in Figs. 18 and

19, respectively. Wilkinson2, which is implemented using the

air-bridge TFMSL, is achieving an insertion loss around 3.6 dB

at 300 GHz, compared to the simulated 3.8-dB insertion loss

of Wilkinson1. The insertion loss of the 70-Ω λ/4 transmission

lines is in simulation around 0.3 dB. The main additional sources

of the overall insertion loss of 0.6 to 0.8 dB are the 100-Ω

isolation resistor as well as the 50-Ω line extensions at port 1

and port 2. Due to the finite size of the parallel isolation resistor,

even for even-mode excitation, additional losses are introduced.

The 50-Ω transmission line extensions are required to realize the

138-µm spacing between Port 1 and Port 2, which is the distance

of the output ports of two parallel UA cores.

The input and output return loss of both combiners is better

than 13 dB over the frequency band of interest above 260 GHz,

while achieving at least 15–dB isolation between Port 1 and

Port 2. The most critical part of the on-chip Wilkinson combiner

design is the implementation of the 100-Ω isolation resistor,

which is limiting the insertion loss as well as the simultaneous

realization of a better input/output return loss and isolation.

Ideally, the impact of the dimensions of this resistor and its

connection to the λ/4 lines need to be as small as possible.

By optimizing this crucial element of the Wilkinson combiners
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Fig. 20. Block diagram of the fabricated power amplifier MMICs PA1 and
PA2, which are depicted in Fig. 21. The amplifiers use the UA topology of
Fig. 7 and the Wilkinson power combiners of Fig. 17.

Fig. 21. Chip photographs of the fabricated PA MMICs PA1 and PA2. The
required chip area of the 5-stage PA core is 0.35 × 1.1 mm2. These amplifiers
use the Wikinson power combiners shown in Fig. 17 to parallelize the UA cell
depicted in Fig. 6. (a) Chip photograph of PA1. (b) Chip photograph of PA2.

depicted in Fig. 17, an improvement of the simulated return loss

and isolation in Figs. 18 and 19 should be feasible.

Two high-power amplifier MMICs PA1 and PA2 have been

developed and fabricated, based on the UA cell discussed in Sec-

tion IV and the two Wilkinson power combiners Wilkinson1 and

Wilkinson2. PA1 is using Wilkinson1 to parallelize the UA core,

and PA2 was implemented using Wilkinson2. A corresponding

block diagram of the five-stage amplifiers is depicted in Fig. 20,

and 21 shows the chip photographs of both amplifier MMICs.

Both PA cores require a total chip area of approximately 0.35

× 1.1 mm2, including all matching networks and the first stage

of shunt capacitors in the bias insertion network and excluding

RF/dc-pads. The total gate width in the output stage, which is

implemented with this topology on only 0.35-mm required chip

width, is 512 µm.

Fig. 22. Measured and simulated S-parameters of the 5-stage unit amplifier
MMIC. The cascode stages are biased at 2.4 V supply voltage (VDS ≈ 1.2 V)
and Id = 400 mA/mm. The CS output stages are biased at VDS = 1.3 V and Id =

400 mA/mm. The dotted line shows the ideal simulated S21, without considering
the limited isolation of the measurement system. The dashed lines represent the
simulation results considering the poor isolation between input and output.

VI. MEASUREMENT RESULTS

The on wafer 200–330-GHz S-parameter measurements were

done using an Agilent N5224A PNA system and VDI WR-3.4

extension modules. The entire setup was calibrated to the probe

tip of the RF-probes by performing a thru-reflect-line calibration,

using an impedance standard substrate (ISS).

The measured S-parameters of the UA are depicted in Fig. 22.

The unit amplifier was designed for the 280–350-GHz frequency

range, showing a measured small-signal gain ripple of around

5 dB. This gain ripple is mainly caused by the poor isolation

of the on-wafer measurement setup. Since the UA’s measured

S12 is only around −40 dB, the depicted periodic gain variation

at gain levels above 20 dB can be observed. By including a

simple model for the RF-probe overcoupling, a similar behavior

is observed for the simulated S-parameters in Fig. 22. The

measured S-parameters of PA1 and PA2 are depicted in Fig. 23.

Both amplifiers achieve a measured small-signal gain around

20 dB for the frequency range above 290 GHz.

We also carried out on-wafer scalar power measurements,

using in-house built frequency multiplier and amplifier modules

to synthesize the input signal around 300 GHz. The output power

of the PA MMICs was measured using an VDI Erickson PM5

power meter. The whole setup was calibrated to the probe tip of

the RF probes, using an ISS.

Fig. 24 shows the measured transducer gain and output power

versus frequency for CW operation of the UA. The frequency

was swept from 280–328 GHz with 2-GHz step size at −5-dBm

available source power. The CS devices in the output stages

were biased with 1.3-V drain-source voltage at 400 mA/mm.

The drain-supply voltage of the cascode stages is around 2.4 V

(VDS ≈ 1.2 V) at 400 mA/mm.

The UA’s measured output power is in the range of 8 dBm to

9.7 dBm over the 285–328-GHz frequency range, measured at

about 6-dB gain compression. The large-signal gain at this input

power level is around 14–15 dB. The UA MMIC includes an 100-

µm-long MET2 TFMSL port extension between the RF-pads
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Fig. 23. Measured and simulated S-parameters of the 5-stage MMICs PA1
and PA2. The cascode stages are biased at 2.4 V supply voltage (VDS ≈ 1.2 V)
and Id = 400 mA/mm. The CS output stages are biased at VDS = 1.3 V and Id
= 400 mA/mm. (a) S-parameters of PA1. (b) S-Parameters of PA2.

Fig. 24. CW measured transducer gain and output power of the UA MMIC
between 280 and 328 GHz with 2-GHz step size at −5-dBm input power.

and the input/output of the UA core, as depicted in Fig. 6. This

port extension is introducing additional losses of approximately

0.8–1.0 dB at the output, which can be omitted by moving the

RF-pad closer to the output of the UA cell.

The measured transducer gain and output power of PA1 and

PA2 are shown in Figs. 25 and 26, respectively, measured at a

constant input power versus frequency. Depicted are the results

at −5-dBm as well as at −2-dBm input power. The CS devices

Fig. 25. CW measured transducer gain and output power of the PA1 MMIC
between 280 and 328 GHz with 2-GHz step size at −5-dBm and –2-dBm input
power.

Fig. 26. CW measured transducer gain and output power of the PA2 MMIC
between 280 and 328 GHz with 2-GHz step size at −5-dBm and –2-dBm input
power.

in the output stages of PA1 and PA2 were biased with 1.3 V

drain-source voltage and the cascode cells with 2.4 V (VDS ≈

1.2 V).

The measured maximum output power level of PA1 is

12.9 dBm, measured at 300 GHz. PA2 achieves up to 13.7 dBm

measured output power around 300 GHz, and at least 13 dBm

(20 mW) over the 286– 310-GHz frequency range. The better

output-power performance of PA2 is believed to be mainly due

to the lower insertion loss of the air-bridge Wilkinson power

combiner (see Figs. 18 and 19), as well as lower losses between

the output of the Wilkinson combiner and the RF-pad. The

RF-pad of PA1 is connected using a MET2MET3 TFMSL inter-

connection, while PA2 is connected via an air-bridge TFMSL.

Additionally, since the two Wilkinson combiners do not show

a perfect 50-Ω load to the parallelized UA cells, the load at

device level in the output stage will differ on a small scale

between the UA, PA1, and PA2. Judging from the observed

large-signal gain and output-power roll-off above 310 GHz of

PA1 and PA2 compared to the unit amplifier cell, the Wilkinson

power combiners need to be slightly optimized in order to further

increase the large-signal bandwidth.

Fig. 27 shows the measured transducer gain versus output

power for CW operation of PA2. The frequency was swept from
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TABLE I
COMPARISON OF SSPA MMICS (‡) AND MODULES (#) AROUND 300 GHZ

Vdc: Applied drain-source voltage (VDS) and collector-emitter voltage (VCE) of single HEMT and HBT devices, respectively.

*: PA core: required chip area including matching networks and the first stage of shunt capacitors in the bias insertion network, without RF/dc-pads.

**: only packaged results are published, 1.5 dB losses between waveguide flange and MMIC are estimated and included.

Fig. 27. Measured transducer gain versus measured output power of PA2
between 284 and 328 GHz with 4-GHz step size.

Fig. 28. CW measured transducer gain and output power at 1-dB gain com-
pression of the PA2 MMIC versus frequency. The cascodes were biased at 2.2 V
supply voltage (VDS = 1.1 V) and Id = 400 mA/mm. The CS output stages
were biased at VDS = 1.3 V and Id = 400 mA/mm.

284–328 GHz with 2-GHz step size. Alongside high output

power levels above 20 mW, the power amplifier also shows a

good linearity and compression behavior. The measured OP1dB

1-dB gain compression power of PA2 is above 10 dBm over the

284– 316-GHz frequency band, achieving a maximum OP1dB

of 12 dBm at 20-dB gain around 300 GHz, as shown in Fig. 28.

VII. COMPARISON TO STATE OF THE ART

Table I shows a summary of the presented SSPA MMIC PA2 in

comparison to existing results of state-of-the-art SSPA MMICs

in InGaAs mHEMT technology, a selection of InP HBT MMICs

as well as an InP HEMT based module around 300 GHz. The

Fig. 29. Measured output power of SSPA MMICs and modules around
300 GHz. A detailed comparison of the depicted power amplifiers is shown
in Table I.

state of the art in terms of measured output-power performance

including a selection of prior art is additionally plotted in Fig. 29

for the 270–350-GHz frequency range.

The reported MMICs achieve state-of-the-art output-power

performance for SSPA MMICs around 300 GHz. Compared

to InP HBT and HEMT SSPAs, where Kim et al. [7] have

demonstrated up to 22.4 mW at a single frequency of 301 GHz,

at least 20 mW of output power were measured for a large

bandwidth of 25 GHz around 300 GHz. Furthermore, more than

10-mW output power performance is achieved over the 280–

324-GHz frequency band, while operating the mHEMT devices

at significantly lower voltages, in comparison to InP-based SSPA

MMICs.

The focus of the presented PA MMICs was the design of a very

compact PA core, to achieve high output power at a narrow chip

width. The output power per required chip width of 67 mW/mm

is improved by a factor of four compared to previously published

cascode topologies in this mHEMT technology [24]. Since the

output stage with two 8-finger CS devices in parallel does

not require a larger chip width than the 8-finger cascode gain

stages, the output power per required chip width is significantly

increased compared to the results presented in [11], achieving

approximately 5-dB more output power by doubling the required

chip width of the PA core.
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VIII. CONCLUSION

This article describes the design and implementation of broad-

band PA MMICs realized in a 35-nm InGaAs mHEMT technol-

ogy. More than 20 mW of measured output power are demon-

strated for the first time over a 25-GHz large-signal bandwidth

around 300-GHz, setting the state of the art for broadband SSPA

MMICs at this frequency range.

Two Wilkinson power combiners in elevated CPW and air-

bridge TFMSL environment are investigated, which permit

the efficient parallelization of a compact unit amplifier cell,

implemented in the BEOL of this mHEMT technology using

thin-film wiring. Compared to previously published 300-GHz

SSPA MMICs in III-V technologies, the measured output power

level per required PA core width of 67 mW/mm is notably

improved by at least 27 %. This improvement is mainly due to

the very compact implementation of the UA cell, using highly

parallelized two-finger devices in close proximity, which allows

for a broadband matching while maximizing the total gate width

on the smallest chip size possible. With this approach, a total gate

width of 516 µm is implemented on a small chip width of only

0.35 mm, allowing on-chip and module integration.

The investigated topology, based on multifinger cascode and

CS cells, achieves excellent linearity and a measured OP1dB

1-dB gain compression power above 10 mW, which is vital for

the usage in THz communication systems and represents a sig-

nificant improvement to previously reported cascode topologies

in this mHEMT technology [24], [32], [40].

Hence, the optimization of the power combining networks

and further parallelization of the presented PA-cell permits the

development of broadband 20–50-mW SSPA MMICs based on

InGaAs mHEMT devices, which are required for high-resolution

radar/imaging and high-data-rate communication applications at

THz frequencies around and above 300 GHz.
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