
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 20, 2022

Broadband and efficient dual-pump four-wave-mixing in AlGaAs-on-insulator nano-
waveguides

Da Ros, Francesco; Pu, Minhao; Ottaviano, Luisa; Hu, Hao; Semenova, Elizaveta; Galili, Michael; Yvind,
Kresten; Oxenløwe, Leif Katsuo

Published in:
2016 Conference on Lasers and Electro-optics

Link to article, DOI:
10.1364/CLEO_SI.2016.SM1E.3

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Da Ros, F., Pu, M., Ottaviano, L., Hu, H., Semenova, E., Galili, M., Yvind, K., & Oxenløwe, L. K. (2016).
Broadband and efficient dual-pump four-wave-mixing in AlGaAs-on-insulator nano-waveguides. In 2016
Conference on Lasers and Electro-optics [Paper SM1E.3] Optical Society of America (OSA).
https://doi.org/10.1364/CLEO_SI.2016.SM1E.3

https://doi.org/10.1364/CLEO_SI.2016.SM1E.3
https://orbit.dtu.dk/en/publications/1bc23d31-c5b7-4fb7-9b3a-4fc0f0917555
https://doi.org/10.1364/CLEO_SI.2016.SM1E.3


Broadband and Efficient Dual-Pump Four-Wave-
Mixing in AlGaAs-On-Insulator Nano-Waveguides

Francesco Da Ros, Minhao Pu, Luisa Ottaviano, Hao Hu, Elizaveta Semenova,
Michael Galili, Kresten Yvind and Leif K. Oxenløwe

Department of Photonics Engineering, Technical University of Denmark, Building 343, DK-2800 Lyngby, Denmark

fdro@fotonik.dtu.dk

Abstract: We characterize dual-pump four-wave-mixing in AlGaAs-on-insulator nano-
waveguides and demonstrate an output conversion efficiencyas high as -8.5 dB at 155-mW
pump power. The idler optical signal-to-noise ratio is above 25 dB over a 26-nm bandwidth.

OCIS codes: 190.4380 Nonlinear optics, four-wave mixing, 190.4390 Nonlinear optics, integrated optics, 230.4320
Nonlinear optical devices.

1. Introduction
Historically nonlinear optics for optical communication has mainly been demonstrated using highly nonlinear fibers
(HNLFs). Integrated platforms, however, allow using more compact devices as well as overcoming some of the chal-
lenges of HNLFs such as stimulated Brillouin scattering. Along such direction a significant effort has been dedicated to
investigate silicon with numerous promising results beingreported [1]. The benefit of strong Kerr nonlinearity in sili-
con is however hindered by the presence of two-photon absorption (TPA) and free-carrier absorption (FCA) at telecom
wavelengths and even though techniques to tackle such effects have been reported [1,2], other materials may provide
a more suitable solution. AlGaAs is one such material as it combines high intrinsic nonlinearities with the ability to
tailor the material bandgap and thus avoid TPA at 1550 nm enabling efficient four-wave mixing (FWM) [3–5].

Here, we extend the investigation of AlGaAs-on-insulator (AlGaAsOI) nano-waveguides of [5] by characterizing
the conversion efficiency (CE) for different waveguide lengths and pump powers using a dual-pump FWM scheme. A
constant output CE of−8.5±0.5 dB is demonstrated over a broad 26-nm bandwidth, i.e. most of the telecommuni-
cation C-band. Such high CE enables producing high-qualityidlers with optical signal-to-noise ratios (OSNRs) above
35 dB over 20 nm, proving the potential of the AlGaAsOI platform for high-performance nonlinear signal processing.

2. Experimental setup
The experimental setup is sketched in Fig.1. Two continuous-wave (CW) pumps at 1535 nm and 1565 nm are amplified
in erbium doped fiber amplifiers (EDFAs), narrow band filteredwith 0.8-nm wide optical bandpass filters (OBPFs)
and coupled into the AlGaAsOI nano-waveguide together witha CW signal. Their states-of-polarization were aligned
to the TE mode of the waveguide using polarization controllers (PCs) and the output optical spectrum was monitored
with an optical spectrum analyzer (OSA).

Fig. 1: Experimental setup for FWM characterization of the AlGaAs waveguides. Inset: SEM image of the waveguide.

The AlGaAsOI wafer was prepared by wafer growth, wafer bonding and substrate removal. The AlGaAsOI platform
provides a larger index contrast between the AlGaAs core (n∼ 3.3) and the insulator cladding (n∼ 1.5) enhancing the
field confinement in the waveguide and thus the nonlinear effects. The waveguides were defined by electron-beam
lithography and dry etching using hydrogen silsesquioxane(HSQ) as hard mask. The inset in Fig.1 shows an SEM
image of the fabricated waveguide just after the dry-etching process. The waveguide cross-section is 290×630 nm2

and several lengths have been considered ranging from 3 mm to9 mm in 2-mm steps. Inverse tapers [6] are used at
both facets to increase the coupling efficiency leading to a coupling loss of 2.1 dB/facet. The propagation loss and zero
dispersion wavelength are estimated to 1.5 dB/cm and 1500 nmfor the TE mode.



3. Results
Fig. 2(a) shows the output CE, defined as the ratio between idler andsignal power at the waveguide output, as a
function of the total power coupled into the waveguide and the waveguide length for a signal at 1549 nm. At the
waveguide input the two pumps were equalized in power and thesignal-to-pump power ratio was kept below -30 dB.
The power levels reported in the following refer to the totalpower coupled into the waveguide.
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Fig. 2: (a) Output CE as a function of the coupled power for different waveguide lengths for a signal at 1549 nm and (b) CE
bandwidth for various waveguide lengths and power levels.

The CE increases quadratically with the pump power showing no signs of saturation. The power was limited to
21.95 dBm (155 mW) due to power handling limitation of the inverse taper. The full CE bandwidths, i.e. sweeping
the signal wavelength between 1537 nm and 1563 nm, for different power levels and waveguide lengths are shown
in Fig. 2(b). For the whole wavelength range, the CE variations are below 1.5 dB and the CE follows the trends
highlighted in Fig.2(a). Fig.3(a) shows the optical spectra at the output of a 9-mm long waveguide for a total pump
power of 155 mW. An average CE of−8.5±0.5 dB could be achieved over the whole 26-nm band. The idlers optical
signal-to-noise ratio (OSNR) is above 25 dB over 26 nm and above 35 dB over 20 nm as shown in Fig.3(b). High
quality idlers are therefore produced over most of the telecommunication C-band. Additionally, we expect that the
OSNR could be further increased with higher input signal power and improved amplified spontaneous emission (ASE)
noise filtering after the amplification of the pumps.
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Fig. 3: Optical spectra at the 9-nm waveguide output (P = 155mW ) (a) and idler OSNR as a function of the signal waveguide (b).

4. Conclusions
A dual-pump FWM scheme based on AlGaAsOI waveguides is characterized. Output CE values as high as -8.5 dB
over 26 nm (pump power of 155 mW) generate high-quality idlers (OSNR>25 dB). Improvements in the power
handling are expected to enable even higher CE, and thus idler OSNR values, as no signs of saturation are detected.
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