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We demonstrate broadband, frequency-tunable, phase-locked terahertz (THz) genera-
tion and detection based on difference frequency mixing of temporally and spectrally
structured near-infrared (NIR) pulses. The pulses are prepared in a gas-filled hollow-
core photonic crystal fiber (HC-PCF), whose linear and nonlinear optical properties
can be adjusted by tuning the gas pressure. This permits optimization of both the spec-
tral broadening of the pulses due to self-phase modulation (SPM) and the generated
THz spectrum. The properties of the prepared pulses, measured at several different
argon gas pressures, agree well with the results of numerical modeling. Using these
pulses, we perform difference frequency generation in a standard time-resolved THz
scheme. As the argon pressure is gradually increased from 0 to 10 bar, the NIR pulses
spectrally broaden from 3.5 to 8.7 THz, while the measured THz bandwidth increases
correspondingly from 2.3 to 4.5 THz. At 10 bar, the THz spectrum extends to 6 THz,
limited only by the spectral bandwidth of our time-resolved detection scheme. Inter-
estingly, SPM in the HC-PCF produces asymmetric spectral broadening that may be
used to enhance the generation of selected THz frequencies. This scheme, based on a
HC-PCF pulse shaper, holds great promise for broadband time-domain spectroscopy
in the THz, enabling the use of compact and stable ultrafast laser sources with rela-
tively narrow linewidths (<4 THz). © 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5043270

I. INTRODUCTION

Terahertz time-domain spectroscopy (THz-TDS) is a broadband optical characterization tech-
nique increasingly applied in many fields for non-invasive imaging and identification of molecules.1–8

In condensed matter research, this technique is also used to trace ultrafast dynamics of low-energy
excitations when combined with a pump pulse to excite non-equilibrium states inside materials such
as semiconductors, strongly correlated materials, superconductors, and topological insulators.8–18

Common THz-TDS systems, including most of the ones commercially available, are now able to
resolve with great sensitivity the spectral range covering 0.5–4 THz. One of the next frontiers in
THz photonics is therefore the development of efficient schemes for expanding this spectral window
beyond 4 THz, so as to allow access to both a wider range of molecular resonances for sensing appli-
cations and new microscopic interactions in condensed matter. Some experimental schemes have
already been reported for achieving ultra-broadband THz spectroscopy. They are based on nonlinear
optical generation and detection in laser-induced gas plasmas (THz wave air photonics),19–22 GaP or
several-micron-thick ZnTe crystals23–25 and birefringent LiGaS2 (LGS),26,27 GaSe,27–31 and organic
crystals such as DAST.32,33 Although these configurations rely on different types of nonlinear media,
they all share an essential common component: an ultrafast near-infrared (NIR) laser capable of
delivering broadband femtosecond pulses. Such an optical source is crucial for accessing the high
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THz frequency range since THz radiation is generated by nonlinear difference frequency mixing of
NIR pulses, which means that the highest generated THz frequencies are determined by the spectral
bandwidth of the NIR pulses. Furthermore, efficient time-resolved THz detection requires ultrashort
NIR pulses with a duration shorter than the oscillation cycle of the highest THz frequency compo-
nents to achieve broadband detection. These two conditions impose stringent requirements on the
NIR ultrafast source. As a result, expensive and bulky optical systems are often necessary for broad-
band THz-TDS. We propose an alternative setup for generating broadband THz radiation, one that
can be used with a compact and stable MHz laser system delivering pulses of sub-microjoule energy
and a few hundreds of femtoseconds in duration. We use a commercial Yb:KGW ultrafast amplifier
in combination with a gas-filled kagomé-type hollow-core photonic crystal fiber (kagomé-PCF) to
achieve efficient broadband THz generation and detection.34 Gas-filled hollow-core photonic crystal
fiber (HC-PCF) is one of the most efficient and versatile nonlinear platforms for spectral and temporal
structuring of NIR pulses.35–39 It provides weak anomalous dispersion that can be counter-balanced
by the normal dispersion of the gas filling the fiber, allowing propagation of ultrashort pulses with
minimal temporal distortion. In contrast to solid-core fibers or highly nonlinear materials, the linear
and nonlinear properties of the system can be adjusted simply by changing the species and the pres-
sure of the gas filling the HC-PCF. Here, we take advantage of this unique feature to broaden the
spectrum covered by the THz-TDS system out to ∼6 THz, limited only by the choice of the nonlinear
crystal for time-resolved detection. More importantly, the general concept of using a HC-PCF pulse
shaper in combination with a relatively narrow spectral linewidth (<4 THz) laser could be extended
to other schemes based on different generation and detection crystals such as LGS or GaSe, which
would extend further the spectral coverage of THz-TDS.

II. EXPERIMENT AND NUMERICAL SIMULATIONS

The experimental configuration is sketched in Fig. 1. The optical source is a commercial Yb:KGW
amplifier delivering 185 fs pulses at a central wavelength of 1035 nm, an average power of 1 W, and
a repetition rate of 1.1 MHz. The emitted pulses are launched into an Ar-filled HC-PCF with 75%
coupling efficiency. The fiber, a 55 cm-long kagomé-PCF with a 34 µm-diameter core, is entirely
placed inside a gas cell within which the Ar pressure can easily be adjusted. This scheme allows
us to change the properties of the optical medium and tune the effects of self-phase modulation
(SPM) broadening and restructuring the NIR pulse spectrum. A pair of identical chirped mirrors
(CMs), providing a total dispersion of −2500 fs2, is placed after the HC-PCF to compensate for the
positive chirp resulting from SPM and to ensure that the pulses are nearly Fourier-transform-limited.
A standard THz-TDS configuration is then used to generate and detect the THz radiation.35 Briefly,
the NIR beam is split into two paths. In the first path, phase-locked THz radiation is generated by
difference frequency mixing inside a 220 µm thick 110-oriented GaP crystal. The second path is used
as an optical gate for time-resolved electro-optical detection. An identical GaP nonlinear crystal is
used for detection.

FIG. 1. Schematic of the experimental setup. NIR pulses are launched into a HC-PCF filled with Ar gas at an adjustable
pressure. A standard THz-TDS scheme is then used to generate and detect THz radiation.40 CM: chirped mirror; BS: beam
splitter; TS: translational stage; L: lens, GaP: 110-oriented 220 µm-thick gallium phosphide crystal; Ge: germanium wafer;
Si: silicon wafer; λ/4: quarter-wave plate; WP: Wollaston prism; PD: photodetector.
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A. Near-infrared pulse propagation in the HC-PCF pulse shaper

The NIR pulse properties are measured after the CMs using a USB spectrometer and a home-
made autocorrelator based on second harmonic generation in a 150-µm-thick beta-barium borate
(BBO) crystal. As the Ar pressure (PAr) is increased from 0 to 10 bar, the NIR spectrum gradually
broadens from a full-width at half-maximum (FWHM) of 3.5 to 8.7 THz [Fig. 2(a)]. The spectral
broadening manifests itself mainly in two sidelobes separated by ∆νSL = 3.1 THz at 7.5 bar and
4.7 THz at 10 bar. The corresponding autocorrelation traces are shown in Fig. 2(b) from which,
assuming that the structured NIR pulses have a sech2 temporal shape, the original pulse duration can
be recovered. The pulse duration is observed to decrease gradually, from 185 fs to 65 fs (FWHM), as
PAr is increased. The fact that the spectral bandwidth increases by a factor of 2.5 while the temporal
duration decreases by 2.8 indicates that the pulses are close to Fourier-transform-limited at all the
pressures used in the experiment.

Figure 2(c) shows the simulated spectra at the fiber output at different Ar pressures for a 185 fs
(FWHM) Gaussian pulse with 0.85 µJ energy. The simulations are based on a unidirectional field
equation41 and approximate the fiber dispersion by that of a narrow-bore capillary.42 Over the pressure
range used, the NIR pulses lie in the anomalous dispersion range within the fiber. For these spectral
bandwidths, however, the fiber dispersion is insufficient to compensate for the positive chirp resulting
from SPM, which therefore requires further compensation using negatively chirped mirrors after
the fiber. Figure 2(d) shows the simulated temporal profiles at the fiber output after introducing
2000 fs2 negative chirp (as in the experiment). As the argon pressure increases from 0 to 10 bar the
temporal FWHM decreases from 189 fs to 68 fs, which is in excellent agreement with the experiments.
The simulations show no contribution related to pulse-induced gas ionization over the range of
parameters used in the experiments.

FIG. 2. (a) Spectra of the NIR pulses measured after the HC-PCF and the CM pair for different Ar pressures. (b) Corresponding
autocorrelation traces. The FWHM durations measured at PAr = 0, 2.5, 5, 7.5, and 10 bar are 185, 150, 115, 85, and 65 fs,
respectively. [(c) and (d)] For the same conditions, the numerical simulations41 of the pulse spectra and duration show good
agreement with the experiments.
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FIG. 3. (a) Phase-locked THz transients measured with NIR pulses prepared in the HC-PCF at different Ar pressures, as
shown in Fig. 2. (b) Corresponding THz spectral amplitude calculated by Fourier transforming. In (a) and (b), the maximum
amplitude of the measurement at 0 bar is normalized to 1.

B. Phase-locked THz generation

The NIR pulses measured in Figs. 2(a) and 2(b) are injected in the THz-TDS scheme for phase-
locked THz generation and detection by electro-optic sampling. Figure 3(a) shows the resulting
time-resolved THz field. Simply by adjusting the gas pressure, the peak THz amplitude can be
increased by a factor of∼4. This increase is caused by temporal compression of the NIR pulses, leading
to higher peak powers and, consequently, to more efficient nonlinear frequency down-conversion.
The corresponding THz spectral amplitudes are shown in Fig. 3(b). Distinctly different behavior is
observed above and below a frequency of 1 THz: the amplitude of higher spectral components is
enhanced as PAr is increased, while no significant change is observed in the sub-1-THz portion of
the spectrum. As a result, the THz bandwidth can be increased from 2.3 THz to 4.5 THz (FWHM).
The sudden drop in the spectral amplitude at 6.2 THz is related to the restricted phase-matching
conditions in the two 220 µm-thick GaP crystals used for THz generation and detection, which
ultimately limit the attainable THz bandwidth. The results agree well with the calculated phase-
matching cut-off frequency at 6.6 THz.43

Interestingly, SPM in kagomé-PCF produces an unevenly distributed spectrum in the NIR pulses,
which will have a direct impact on the generated THz spectrum. At PAr > 5 bar the NIR spectrum
departs from a Gaussian-like distribution, displaying two side-lobes separated by ∆νSL. Since the
THz radiation is produced by difference frequency mixing between NIR pulse components, these
side-lobes are expected to enhance THz generation around ∆νSL, resulting in distinct peaks in the
spectra. However, in the experiment, the electro-optic detection process prevents us from clearly
distinguishing this peak since the detection efficiency is not homogeneous over the whole spectral
bandwidth.44,45 Due to the time-resolved configuration, the amplitude of the lowest and highest THz
frequencies is under-estimated: Low frequencies have a larger spot size on the detection crystal and
do not overlap as well with the focused gating pulse, while high THz frequencies suffer from a phase
mismatch with the gating pulse inside the detection crystal. The peak in the measured THz spectra is
therefore mostly determined by the time-resolved detection response rather than the spectral shape
of the generated THz radiation.

III. CONCLUSION

A pressure-tunable pulse shaper based on gas-filled kagomé-PCF can be used to prepare NIR
pulses for efficient broadband THz-TDS. As the Ar pressure is increased in the PCF, spectral broaden-
ing and temporal compression of the NIR pulses allow the bandwidth of the measured THz spectrum
to be broadened by a factor of 2, the highest frequency component at ∼6 THz being limited only by
phase-matching conditions in the experiment. This scheme could also be used for accessing higher
THz frequencies if the argon pressure is increased beyond 10 bar and different nonlinear generation
and detection crystals are used, such as GaSe, LGS, DAST, or AgGaS2. In brief, a single fiber-based
module, combined with an ultrafast source with relatively narrow linewidth (<4 THz), can be used
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for broadband THz-TDS, paving the way to the design of more compact and cost-effective THz-TDS
setups capable of reaching high THz frequencies without the need for complex optical sources based
on ultrashort Ti-sapphire amplifiers, synchronized fiber lasers, or optical parametric chirped-pulse
amplifiers. Since HC-PCFs are robust and able to guide extremely high peak powers, they may also
enable the use of high power and high repetition rate lasers for THz-TDS.46,47
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