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Broadband Calculations of Band Diagrams in Periodic Structures
Using the Broadband Green’s Function with Low

Wavenumber Extraction (BBGFL)

Leung Tsang*

Abstract—We apply the method of the Broadband Green’s Functions with Low wavenumber extraction
(BBGFL) to calculate band diagrams in periodic structures. We consider 2D impenetrable objects
placed in a 2D periodic lattice. The low wavenumber extraction is applied to the 2D periodic Green’s
function for the lattice which is used to formulate the surface integral equation. The low wavenumber
extraction accelerates the convergence of the Floquet modes expansion. Using the BBGFL to the surface
integral equation and the Method of Moments gives a linear eigenvalue equation that gives the broadband
(multi-band) solutions simultaneously for a given point in the first Brillouin zone. The method only
requires the calculation of the periodic Green’s function at a single low wavenumber. Numerical results
are illustrated for the 2D hexagonal lattice to show the computational efficiency and accuracy of the
method. Because of the acceleration of convergence, an eigenvalue problem with dimensions 49 plane
wave Floquet modes are sufficient to give the multi-band solutions that are in excellent agreement with
results of the Korringa Kohn Rostoker (KKR) method. The multiband solutions for the band problem
and the complementary band problem are also discussed.

1. INTRODUCTION

The calculation of band diagrams is a fundamental subject and has numerous applications for periodic
structures in electron waves, microwaves, photonic crystals, metamaterials, volumetric EBG, acoustics
etc. A common method is the plane wave method [1–6]. The Korringa Kohn Rostoker method
(KKR) [7, 8] and the multiple scattering method MST [9, 10] were also applied. These two methods
used wave expansions to treat circular/spherical scatterers and have high accuracy. The use of Ewald
summation was also used to speed up the calculations of the periodic Green’s function [9]. Recently,
discrete methods such as the finite difference time domain method (FDTD) [11–13], and the finite
element method (FEM) [14–17] were also used. The MoM/BIRME method and the IE/BIRME method
were also used in calculations of band diagrams in planar and closed metallic electromagnetic bandgap
structures [18, 19]. The advantages of the plane wave method are simple implementation and that the
eigenvalue problem is linear with the broadband solutions, i.e., all the bands, calculated simultaneously.
The disadvantage of the method is the poor convergence of the plane wave Floquet mode expansion.
In the plane wave method, a spectral expansion of the potential function or permittivity is taken. This
spectral expansion has accuracy issues for large contrasts between the objects and the background
medium. The KKR method and the MST have high accuracy but is CPU intensive [5]. The method
also requires a nonlinear search for the band solution with one band at a time.

In this paper, the periodic Green’s function of the periodic lattice is used to formulate surface
integral equation. The periodic Green’s function has slow convergence. If the periodic Green’s function
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is used for the surface integral equation to calculate the eigenvalues, the equation is nonlinear and an
iterative search needs to be performed with one band at a time. Recently, the Broadband Green’s
Function with Low wavenumber extraction (BBGFL) [20–23] has been applied to wave propagation in
waveguide/cavity of arbitrary shape. By using a single low wavenumber extraction, the convergence
of the modal expansion of the Green’s function is accelerated. Also the singularity of the Green’s
function has been extracted. The method has been shown to be efficient for broadband simulations
of wave propagation in waveguides/cavity. It is noted that the modal expansion of Green’s function
in a waveguide is similar in form to the Floquet expansion of Green’s function in a periodic structure.
In this paper we adapt the BBGFL to calculate band diagrams in periodic structures. We use a low
wavenumber extraction to accelerate the convergence of the periodic Green’s function.The BBGFL
is used to formulate the surface integral equations. Next applying the Method of Moments gives a
linear eigenvalue equation that gives all the multi-band solutions simultaneously for a point in the first
Brillouin zone. We label this as “broadband simulations” as the multi-band solutions are calculated
simultaneously rather than searching the band solution one at a time. The multiband solutions of
the band problem and the multi-band solutions of the complementary band problem are calculated
simultaneously. Numerical results are illustrated to show the computational efficiency and accuracy
of the method. In Section 2, we formulate the scattering problem of PEC scatterers in a periodic
structure.The BBGFL is then applied to the periodic Green’s function. The method is then combined
with the Method of Moments. In Section 3, numerical results are illustrated for circular impenetrable
objects using size parameters that are representative [9]. The case of hexagonal lattice is illustrated.
Because of the acceleration of convergence, an eigenvalue problem with dimensions of 49 Floquet modes
are sufficient to give the multi-band solutions that are in good agreement with the results of the KKR
method. The multiband solutions of the complementary problem are also discussed.

2. FORMULATION

Consider a 2D periodic lattice (Figure 1) in xy plane with z perpendicular to the plane. We use the
following notations. A lattice translation is invariant for

R̄pq = pā1 + qā2 (1)

where ā1 and ā2 are the primitive translation vectors, and p, q are integers, −∞ < p, q < ∞.
We label the cell by index (p, q).
The reciprocal lattice vectors are

K̄pq = pb̄1 + qb̄2 (2)

where −∞ < p, q < ∞.

b̄1 = 2π
ā2 × ẑ

Ω0
(3a)

b̄2 = 2π
ẑ × ā1

Ω0
(3b)

and Ω0 = |ā1 × ā2| is the size of the unit cell.
Let k̄i be a wave vector in the first Brillouin zone, where

k̄i = β1b̄1 + β2b̄2 (4)

where 0 ≤ β1, β2 ≤ 1
2 .

Then the Floquet (Bloch) mode vector is

k̄ipq = k̄i + K̄pq (5)

Then in the spectral domain, the periodic Green’s function for a given k̄i and k = ω
√

µε is

gp

(

k, k̄i;x, y, x′, y′
)

=
1

Ω0

∑

p,q

1
∣

∣k̄ipq

∣

∣

2 − k2
exp

(

ik̄ipq ·
(

ρ̄ − ρ̄′
))

(6)
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Figure 1. 2D periodic lattice: (a) Band problem consists of PEC for scatterers and permittivity ε
for background; (b) complementary band problem consists of permittivity ε for scatterers and PEC for
background.

The factor exp(ik̄ipq · (ρ̄ − ρ̄′)) is the Floquet (Bloch) mode. We next use a combined Greek index
α = (p, q). Then

gp

(

k, k̄i;x, y, x′, y′
)

=
1

Ω0

∑

α

1
∣

∣k̄iα

∣

∣

2 − k2
exp

(

ik̄iα ·
(

ρ̄ − ρ̄′
))

(7)

Note that the above expansion is similar to the waveguide mode expansion [23]. In the problem
considered in this paper, the band problem consists of the scatterer being perfect electric conductor
and the background has permittivity ε (Figure 1(a)). The complementary band problem has the roles
reversed so that the scatterer has permittivity ε and the background is PEC (Figure 1(b)). We consider
waves that obey the Dirichlet boundary conditions on the surface of the cylinder.

The cylinder in cell (0, 0) is labelled as the 0-th cylinder and the cylindrical surface is labelled as
S00 with n̂ the outward normal to S00. The region inside the (0, 0) cylinder is labelled as A00.

For the band problem, the integral equation is
∫

S00

dl′gP

(

k, k̄i; ρ̄ − ρ̄′
) [

n̂′ · ∇′ψ
(

x′, y′
)]

= 0, for (x, y) in A00 (8)

where ψ is the wave function which is the z component of the electric field for the TM waves of the case
of electromagnetics. For the complementary band problem, the integral equation is

∫

S00

dl′gP

(

k, k̄i; ρ̄ − ρ̄′
) [

n̂′ · ∇′ψ
(

x′, y′
)]

= ψ(x, y), for (x, y) in A00 (9)

Equation (8) is the starting point of the KKR method (Appendix A). Let t be the coordinate on the
boundary so that (x, y) = (x(y), y(t)) be a point on the boundary. Then the surface integral equation
is obtained by letting (x, y) approach S00 from A00. This is performed for both (8) and (9). Then

∫

S00

dl′gP

(

k, k̄i;x, y, x′, y′
)

Js

(

t′
)

= 0 (10)

where (x(t), y(t)) and (x′, y′) = (x(t′), y(t′)) are both on the surface of the circular cylinder. In (10),
the surface current is Js (t′) = n̂′ · ∇′ψ (x′, y′). Note that we get the same surface integral equation
for the band problem and the complementary problem. Thus solving (10) will give solutions for the
multi-bands of the band problem and the complementary multi-bands.

We solve surface integral equation to find the multiple values of k for the given k̄i. The multivalues
correspond to the different bands for the same k̄i. The difficulties of the approach are

(i) the expansion Σp,q has slow convergence,

(ii) the search for k is a nonlinear search that requires calculations of gP

(

k, k̄i;x, y, x′, y′
)

at many k’s,
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(iii) the search for k is one solution at a time, in order to obtain multiple k in multiband solutions.

In the following we describe the BBGFL that are to circumvent the above three problems.
We choose a low wavenumber kL. Then we apply BBGFL, in a manner similar to waveguide/cavity

problem [20–23]. The periodic Green’s function is expressed as the sum of the Green’s function at that
single low wavenumber kL and the Floquet mode expansion with that low wavenumber counterpart
subtracted. Then

gP

(

k, k̄i; ρ̄, ρ̄′
)

= gP

(

kL, k̄i; ρ̄, ρ̄′
)

+
k2 − k2

L

Ω0

∑

α

1
(

∣

∣k̄iα

∣

∣

2 − k2
)(

∣

∣k̄iα

∣

∣

2 − k2
L

) exp
(

ik̄iα ·
(

ρ̄ − ρ̄′
))

(11)

The above is known as BBGFL (Broadband Green’s Functions with Low wavenumber extraction) as it
has simple frequency dependence in (k2 − k2

L)/(|k̄iα|2 − k2). It has two parts, the low wavenumber
extraction gP (kL, k̄i; ρ̄, ρ̄′) and the Floquet modal expansion. The low wavenumber part has no
wavenumber dependence. The mode expansion has convergence of |k̄iα|4 and converges even at the
point ρ̄ = ρ̄′.

The procedure requires the calculation of gP (k, k̄i; ρ̄, ρ̄′) only at a single k = kL. We then further
decompose the calculated gP (kL, k̄i; ρ̄, ρ̄′) into free space Green’s function and response

gP

(

kL, k̄i; ρ̄, ρ̄′
)

= g0

(

kL; ρ̄, ρ̄′
)

+ gR

(

kL, k̄i; ρ̄, ρ̄′
)

(12)

where

g0

(

kL; ρ̄, ρ̄′
)

=
i

4
H

(1)
0

(

kL

∣

∣ρ̄ − ρ̄′
∣

∣

)

(13)

and the response gR(kL, k̄i; ρ̄, ρ̄′) can be calculated since we already calculated gP (kL, k̄i; ρ̄, ρ̄′).
Next we substitute gP (k, k̄i; ρ̄, ρ̄′) into the surface integral equation. The impedance matrix element

has two parts, one part Z
(L)
mn due to the low wavenumber extraction and the other Z

(F )
mn due to the Floquet

mode expansion. The singularity at ρ̄ = ρ̄′ has been extracted and resides in g0(kL; ρ̄, ρ̄′). We use MoM
with pulse basis functions and point matching. The scatterer boundary is divided into N patches. The
impedance matrix elements are

Zmn = Z(L)
mn + Z(F )

mn (14)

where 1 ≤ m, n ≤ N , ρ̄n is the center of the n-th patch, n = 1, 2, . . . , N . The point matching is at ρ̄m,
m = 1, 2, . . . , N .

We discretize into arc length ∆t.
The low wavenumber part is

Z(L)
mn =

[

g0 (kL; ρ̄m, ρ̄n) + gR

(

kL, k̄i; ρ̄m, ρ̄n

)]

∆t, for n �= m (15a)

Z(L)
mn =

i∆t

4

[

1 + i
2

π

[

ln

(

γkL∆t

4

)

− 1

]]

+ gR

(

kL, k̄i; ρ̄m, ρ̄m

)

∆t, for n = m (15b)

where γ = 1.78107 is the Euler’s constant. The modal expansion part is

Z(F )
mn =

k2 − k2
L

Ω0

∑

α

1
(

∣

∣k̄iα

∣

∣

2 − k2
) (

∣

∣k̄iα

∣

∣

2 − k2
L

) exp
(

ik̄iα · (ρ̄m − ρ̄n)
)

∆t (16)

The matrix equation for the surface integral equation becomes
∑

n

Z(L)
mnJn +

∑

n

Z(F )
mn Jn = 0 (17)

where J(t) = Jn on the nth patch. The matrix equation above can be converted to a linear eigenvalue
equation that all the eigenvalues can be solved simultaneously due to the broadband nature of the
Green’s function. Let N be the number of points in MoM discretization.

There are two discretizations α = (p, q) is the Floquet mode index, while m and n are the indices
for MoM point matching and patch discretization.

For the p, q index, we truncate by −Nmax < p, q < Nmax. Thus M = (2Nmax + 1)2. Since the mode
expansion is fast convergent with the low wavenumber extraction, M is much less than that without
the extraction.



Progress In Electromagnetics Research, Vol. 153, 2015 61

To reexpress Z
(F )
mn , we let

Rmα =
1√
Ω0

exp
(

ik̄iα · ρ̄m

)

(

∣

∣k̄iα

∣

∣

2 − k2
L

) (18)

The Greek index is α = 1, 2, . . . ,M while the Roman index is m = 1, 2, . . . , N . Then

N
∑

n=1

Lmnqn +
(

k2 − k2
L

)

N
∑

n=1

M
∑

α=1

∣

∣k̄iα

∣

∣

2 − k2
L

∣

∣k̄iα

∣

∣

2 − k2
RmαR∗

nαqn = 0 (19)

where

qn = ∆tJn (20)

Z(L)
mn = Lmn∆t (21)

Next, let

Wαβ =
1

1

k2 − k2
L

− 1
∣

∣k̄iα

∣

∣

2 − k2
L

δαβ (22)

Dαβ =
1

∣

∣k̄iα

∣

∣

2 − k2
L

δαβ (23)

where δαβ is the Kronecker delta function. Then

(

k2 − k2
L

)

∣

∣k̄iα

∣

∣

2 − k2
L

∣

∣k̄iα

∣

∣

2 − k2
=

1
1

k2 − k2
L

− 1
∣

∣k̄iα

∣

∣

2 − k2
L

=

M
∑

β=1

Wαβ (24)

We then get
N

∑

n=1

Lmnqn +
N

∑

n=1

M
∑

β=1

M
∑

α=1

RmαWαβR∗
nβqn = 0 (25)

In matrix notations
¯̄Lq̄ + ¯̄R ¯̄W ¯̄R†q̄ = 0 (26)

where ¯̄R† is the Hermitian adjoint of ¯̄R. The matrix ¯̄R is of dimension N ×M . The matrices ¯̄W and ¯̄D
are M × M diagonal matrices.

Next let
b̄ = ¯̄W ¯̄R†q̄ (27)

The b̄ column vector is of dimension M × 1.
Then

¯̄Lq̄ + ¯̄Rb̄ = 0 (28)

Note that
1

k2 − k2
L

¯̄W − ¯̄D ¯̄W = ¯̄I (29)

¯̄W =

(

1

k2 − k2
L

¯̄I − ¯̄D

)−1

(30)

Substitute in (27)
1

k2 − k2
L

b̄ − ¯̄Db̄ = ¯̄R†q̄ (31)

From (28)

q̄ = − ¯̄L−1 ¯̄Rb̄ (32)
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Substitute (32) into (31), the eigen-problem becomes

¯̄Ab̄ =
1

k2 − k2
L

b̄ (33)

where
¯̄A = ¯̄D − ¯̄R† ¯̄L−1 ¯̄R (34)

is of dimension M × M . Thus the eigenvalue problem of Equation (33) is of dimension M which is the
number of Floquet modes.

Note that ¯̄A is independent of wavenumber (frequency) k.
Solving the eigenvalue problem is a linear eigenvalue problem with all the eigenvalues 1/(k2 − k2

L)
(bands) calculated simultaneously. The eigenvectors b̄ are also calculated. The surface current Js (t′) is
then calculated by using Equations (32) and (20). Then the wave function ψ (x, y) can be calculated by

ψ (x, y) =

∫

S00

dl′gP

(

k, k̄i;x, y, x′, y′
)

Js

(

t′
)

(35)

where (x, y) can be anywhere inside or outside the cylinder. Equation (35) can be used to determine
whether the eigenvalue is a real band (mode) solution or that of the complementary band solution.

3. NUMERICAL RESULTS

We consider the example of a 2D hexagonal lattice defined by the lattice vectors ā1 = a
2 (
√

3x̂ + ŷ), and

ā2 = a
2 (−

√
3x̂ + ŷ). Consider an array of impenetrable circular cylinders of radius b in the lattice. Let

a = 1, and the permittivity be ε = 8.9ε0, where ε0 is the free space permittivity. We consider two cases,
b = 0.2, and b = 0.4.

Let k̄i be a wave vector in the first Brillouin zone as defined in Equation (4).
For each k̄i, the multi-band solutions give the multiple k’s. For each k, we calculate the normalized

frequency fN by

fN (k) =
k

2π

√

ε0

ε
(36)

In the results, we used kL so that fN (kL) = 0.001. We have also used fN(kL) = 0.2 and 0.5, and both
give very similar results. Thus the choice of the low wavenumber kL is robust.

Case 1: b = 0.2, ε = 8.9ε0, a = 1

We first consider the case when the wave vector is

β1 = 0.1

β2 = 0.05

In Table 1, we list the fN for 10 eigenvalues. Three different Nmax are chosen to truncate the Floquet
modes: (Nmax = 3, M = 49), (Nmax = 5, M = 121), (Nmax = 20, M = 1681). The KKR solutions are
also listed. The results with (Nmax = 3, M = 49) agree with KKR to 2 significant figures. The results
with (Nmax = 5, M = 121) agree with KKR to 3 significant figures. This shows the BBGFL method
is efficient and accurate. The surface currents of several eigenvalues are illustrated in Figure 2. In the
table the mode fN = 0.642 is that of the complementary band because the surface integral equation
gives the solution of the band problem as well as the complementary band problem. On the other hand,
the KKR method (Appendix A) only gives the solutions for the real band problem. For the case of PEC,
the complementary band problem corresponds to the TM waveguide solution of Jn(kb) = 0, where Jn

is Bessel function of nth order. This can also be established by using Equation (35) to calculate the
wave outside the cylinder and the wave turns out to be zero outside the cylinder.

We next calculate the band diagram for the first 9 bands, (not including the complementary band).
The band diagram of the lattice structure are computed using the BBGFL approach and plotted in
Figure 3 using (M ≈ 600). The KKR results are also shown at selected points. The agreement of the
results of BBGFL and that of KKR are excellent.

Case 2: b = 0.4, ε = 8.9ε0, a = 1
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Table 1. Comparison of band eigenvalues fN computed from BBGFL using different number of Floquet
modes (Nmax,M) after low wavenumber extraction. The results are compared against the KKR results.
Results are computed for k̄i = 0.1b̄1 + 0.05b̄2. The 7-th mode 0.642 is shown to be a complementary
band solution by testing the scattering field outside the PEC cylinder. The geometry parameters are
as specified for case 1.

order

BBGFL

Nmax = 3

M = 49

BBGFL

Nmax = 5

M = 121

BBGFL

Nmax = 20

M = 1681

KKR Root of

1 0.215 0.215 0.215 0.215

2 0.368 0.368 0.368 0.368

3 0.413 0.413 0.413 0.413

4 0.438 0.438 0.438 0.438

5 0.523 0.523 0.523 0.523

6 0.528 0.527 0.527 0.526

7 0.645 0.643 0.642 None J0(kb), 0.639

8 0.670 0.670 0.669 0.669

9 0.685 0.684 0.684 0.684

10 0.705 0.704 0.704 0.704

Figure 2. Surface currents of 5 band solutions:
(e.g., 4 : 0.4380 means the normalized frequency
of the fourth mode ordered in ascending order is
0.4380). The 7-th mode of fN = 0.6438 indicated
by “(0)” is that of the complementary band. The
modes indicated by “(1)” are real band solution.
Results are computed for k̄i = 0.1b̄1 +0.05b̄2. The
geometry parameters are as specified for case 1.
Results are computed with M ≈ 600.
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Figure 3. Band diagram of the hexagonal
structure with background dielectric constant of
8.9 and PEC cylinders with radius b = 0.2a. The
lowest 9 bands (not including the complementary
band) are plotted in the first irreducible Brillouin
zone for the TM waves (Dirichlet boundary
condition) shown as solid lines. Results are
compared with KKR approach at Γ, M , and K
points. KKR results are plotted as cross marks.

The area ratio of scatterers to background is πb2/Ω0 = 58%. In Table 2, we list fN for the first
10 eigenvalues with k̄i = 0.1b̄1 + 0.05b̄2. The results with three different Nmax to truncate the Floquet
modes are compared against the KKR solutions. The BBGFL solutions have both multi-band solutions
and the complementary multi-band solutions. The results are in good agreement with that of KKR.
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The surface currents corresponding to 5 of the first 10 solutions are plotted in Figure 4.
In Figure 5, we draw the band diagram for the crystal structure with periodic PEC cylinders of

radius b = 0.4a. Only the four physical band out of the first 10 eigenvalues are shown. The KKR results
are also computed at the Γ, M , and K points. The results are in good agreement.

Table 2. Comparison of band eigenvalues fN computed from BBGFL using different number of Floquet
modes. The results are compared against the KKR results. Results are computed for k̄i = 0.1b̄1+0.05b̄2.
The geometry parameters are as specified for case 2.

order

BBGFL

Nmax = 3

M = 49

BBGFL

Nmax = 5

M = 121

BBGFL

Nmax = 20

M = 1681

KKR Root of

1 0.322 0.322 0.322 None J0(kb), 0.321

2 0.513 0.512 0.512 None J1(kb), 0.511

3 0.513 0.513 0.512 None J1(kb), 0.511

4 0.598 0.594 0.593 0.589

5 0.611 0.608 0.607 0.604

6 0.689 0.687 0.687 None J2(kb), 0.685

7 0.690 0.687 0.687 None J2(kb), 0.685

8 0.742 0.739 0.738 None J0(kb), 0.736

9 0.828 0.817 0.815
0.809

10 0.847 0.820 0.817

Figure 4. Surface currents of the band solutions:
(e.g., 5 : 0.6085 means the normalized frequency
of the fifth mode in ascending order is 0.6085).
The 4th and 5th eigenvalues are band solutions, as
indicated by “(1)” in the plot following the mode
frequency. The rest 3 modes as indicated by “(0)”
are that of complementary bands. Results are
computed for k̄i = 0.1b̄1 + 0.05b̄2. The geometry
parameters are as specified for case 2. Results are
computed with M ≈ 600.

Figure 5. Band diagram of the hexagonal
structure with background dielectric constant of
8.9 and PEC cylinders with radius b = 0.4a. The
lowest 4 bands (not including the complementary
multi-bands) are plotted in the first irreducible
Brillouin zone for TM waves (Dirichlet boundary
condition) shown as solid lines. Results are
compared with KKR approach at Γ, M , and K
points. KKR results are plotted as cross marks.
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Table 3. The CPU time in seconds for computing results in Figures 3 and 5. The time is recorded on
an HP ProDesk 600 G1 desktop with Intel R© CoreTM i7-4790 CPU @ 3.60 GHz and 32 GB RAM. Note
the time used to compute the complete band diagram is approximately 30 times the CPU time for one
k̄i since the exact CPU time varies from run to run.

Time in

seconds

Compute

gR(kL, k̄i; ρ̄m, ρ̄n)

and Z
(L)
mn , sec

Multi-bands

eigen-matrix

solution (33)

for one k̄i, sec

Total multi-bands

solution for

one k̄i, sec

the complete

band diagram

using 30k̄i, sec

Figure 3 3.836 0.714 4.550 138.715

Figure 5 3.744 0.728 4.472 142.435

In Table 3, we list the CPU for the results of band diagrams in Figures 3 and 5. Mat lab R© was
used in computing the band diagram. We compute the solutions for each k̄i in the Brillouin zone. For

each k̄i, we compute the low wavenumber part of gR

(

kL, k̄i; ρ̄m, ρ̄n

)

and Z
(L)
mn . Next we compute the

multiband solutions for the eigenvalues and eigenvectors of Equation (33). The multiband solutions
are computed simultaneously. Adding the two CPU gives the CPU of the multiband solutions for one
k̄i. In Figures 3 and 5, we use 30 k̄i points in the Brillouin zone. The CPU is the product of that of
one k̄i and the number of points of k̄i. The comparison of CPU with KKR is approximate as KKR
needs to search iteratively for each band solution, requiring many values of k search for one k̄i. A crude
estimate is that the BBGFL method is about 100 times faster than KKR. The procedure of calculation
of gR(kL, k̄i, ρ̄, ρ̄′) is described in Appendix B.

4. CONCLUSIONS

In this paper we have adapted the BBGFL method, previously applied to waveguide/cavity
problems [20–23], to calculate band solutions of periodic structures in 2D problem with 2D periodicity.
We considered the case of Dirichlet boundary conditions. The method is shown to be computationally
efficient and accurate. The multiband solutions are calculated simultaneously rather than an iterative
search on each root. The method is illustrated for the 2D hexagonal lattice. In the low wavenumber
extraction, the choice of the low wavenumber kL is robust. The use of low wavenumber extraction makes
the BBGFL method applicable to general lattices. We are extending the method to dielectric scatterers
in a dielectric background for the 2D problem. We are also extending the method to 3D problem with
3D periodicity. Since surface integral equation is solved using MoM, the BBGFL method can be applied
to scatterers of arbitrary shapes.

APPENDIX A. KKR METHOD

In this appendix, we summarize the governing equations for the KKR method for the case when the PEC
cylinder is circular with radius b. The procedure follows that of reference [9]. For the band problem,
we use Equation (8). The solution outside the cylinder is expressed as

ψ (ρ̄) =
∑

m

cmJm (kρ) exp (imφ) (A1)

On the surface of the cylinder, the surface unknown is

n̂ · ∇ψ (x, y) =
∑

m

cmkJ ′
m (kb) exp (imφ) (A2)

The periodic Green’s function is expressed as

gP

(

k, k̄i, ρ̄ − ρ̄′
)

= −1

4
N0

(

k
∣

∣ρ̄ − ρ̄′
∣

∣

)

+
∑

m

DmJm

(

k
∣

∣ρ̄ − ρ̄′
∣

∣

)

exp
(

imφρ̄ρ̄′
)

(A3)
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where Nm is Neumann function of mth order.
Since ρ′ = b and ρ < ρ′, using addition theorem of cylindrical waves [24] gives

gP

(

k, k̄i, ρ̄ − ρ̄′
)

= −1

4

∑

n

Jn (kρ) exp (inφ) Nn (kb) exp
(

−inφ′
)

+
∑

m′

Dm′

∑

n

Jn (kρ) exp (inφ)Jn−m′ (kb) exp
(

−i
(

n − m′
)

φ′
)

(A4)

Substituting into (8), integrate over φ′ and since the set Jn (kρ) exp (inφ) is complete, we have the
matrix equation,

∑

m

Qnmcm = 0 (A5)

where

Qnm = Dn−m

[

−Jm (kb) kJ ′
m (kb)

]

+
δnm

4
Nm (kb) kJ ′

m (kb) (A6)

Let
c̄ = ¯̄P d̄ (A7)

where

Pmm′ =
1

−Jm (kb) kJ ′
m (kb)

δmm′ (A8)

Then
¯̄Λd̄ = 0 (A9)

where

Λnm = Dn−m − δnm

4

Nm (kb)

Jm (kb)
(A10)

The band solution is given by
det ¯̄Λ (k) = 0 (A11)

The solution requires an iterative search, with band solution of one k at a time. Unlike the surface
integral equation, the KKR solution only has that of the band problem of Equation (8), and not
Equation (9) of the complementary band problem.

APPENDIX B. CALCULATION OF gR(kL, k̄i; ρ̄, ρ̄′)

The low wavenumber part of the impedance matrix is Z
(L)
mn . In computing Z

(L)
mn , we note from (15a) and

(15b) that we need to compute the response part, gR(kL, k̄i; ρ̄, ρ̄′), of the periodic Green’s function once
at the low wavenumber kL. Note that gR(kL, k̄i; ρ̄, ρ̄′) is a smooth function and only depends on ρ̄− ρ̄′.
We use the following efficient procedure.

For ρ̄ �= 0,

gP

(

k, k̄i; ρ̄
)

=
1

Ω0

ML
∑

α=1

exp
(

ik̄iα · ρ̄
)

|kiα|2 − k2
L

(B1)

Then using Equations (A3) and (B1) and integrating gP

(

k, k̄i; ρ̄
)

over a circle of radius |ρ̄| = R1, we

obtain the expression of the coefficients Dn

(

k, k̄i

)

Dn

(

k, k̄i

)

=
1

Jn (kR1)

[

in

Ω0

ML
∑

α=1

Jn (|kiα|R1)
exp (−inφkiα

)

|kiα|2 − k2
L

+
1

4
N0 (kR1) δn0

]

(B2)

where φkiα
is the polar angle of the vector k̄iα and R1 is an arbitrary radius. After Dn(k, k̄i) coefficients

are obtained, the gR(k, k̄i; ρ̄) is calculated by

gR

(

k, k̄i; ρ̄
)

=
∑

n

Cn

(

k, k̄i

) Jn (kρ)

Jn (kR2)
exp (inφ) (B3)
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where

Cn

(

k, k̄i

)

=

(

Dn

(

k, k̄i

)

− 1

4
δn0

)

Jn (kR2) (B4)

In Equations (B3) and (B4), R2 is chosen to have better normalization of the coefficients Cn(k, k̄i).
In the BBGFL procedure, Equations (B2), (B3) and (B4) are calculated only once at the

wavenumber kL. We choose ML = (401)2.
Note that ML is different from M . The quantity M is the truncation of BBGFL which is small. On

the other hand ML is used to evaluate the periodic Green’s function at |ρ̄− ρ̄′| = R1 and k = kL. Thus
ML is much larger than M . Since the surface integral equation is solved on the surface of the scatterer
so that 0 ≤ |ρ̄− ρ̄′| ≤ 2b in the MoM implementation, we choose R1 = R2 = 2b. For the coefficients, we
calculate Cn(kL, k̄i) and Dn(kL, k̄i) for |n| ≤ 4.
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