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Abstract

Self-organized criticality is an attractive model for human brain dynamics, but there has been little direct evidence for its
existence in large-scale systems measured by neuroimaging. In general, critical systems are associated with fractal or power
law scaling, long-range correlations in space and time, and rapid reconfiguration in response to external inputs. Here, we
consider two measures of phase synchronization: the phase-lock interval, or duration of coupling between a pair of
(neurophysiological) processes, and the lability of global synchronization of a (brain functional) network. Using
computational simulations of two mechanistically distinct systems displaying complex dynamics, the Ising model and
the Kuramoto model, we show that both synchronization metrics have power law probability distributions specifically when
these systems are in a critical state. We then demonstrate power law scaling of both pairwise and global synchronization
metrics in functional MRI and magnetoencephalographic data recorded from normal volunteers under resting conditions.
These results strongly suggest that human brain functional systems exist in an endogenous state of dynamical criticality,
characterized by a greater than random probability of both prolonged periods of phase-locking and occurrence of large
rapid changes in the state of global synchronization, analogous to the neuronal ‘‘avalanches’’ previously described in
cellular systems. Moreover, evidence for critical dynamics was identified consistently in neurophysiological systems
operating at frequency intervals ranging from 0.05–0.11 to 62.5–125 Hz, confirming that criticality is a property of human
brain functional network organization at all frequency intervals in the brain’s physiological bandwidth.
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Introduction

Critical dynamics are recognized as typical of many different

physical systems including piles of rice or sand, earthquakes and

mountain avalanches. Dynamic systems in a critical state will

generally demonstrate scale-invariant organization in space and/

or time, meaning that there will be similar fluctuations occurring

at all time and length scales in the system. In other words, there is

no characteristic scale to critical dynamics, which will be optimally

described by scale-invariant or fractal metrics. Thus, power law or

fractal scaling has been widely accepted as a typical empirical

signature of non-equilibrium systems in a self-organized critical

state [1], although the existence of power law scaling does not by

itself prove that the system is self-organized critical (SOC). For

example, turbulence is a conceptually distinct class of dynamics,

which is also characterized by self-similar or scale-invariant energy

cascades, that can be empirically disambiguated from criticality

[2,3].

The existence of power laws for the spatial and temporal

statistics of critical systems is compatible with the related

observations that the dynamics of individual units or components

of such systems will show long-range correlations in space and

time, and change in state of a single unit can rapidly trigger

macroscopic reconfiguration of the system. Many of these

phenomena can be studied using computational models of

dynamic systems such as the Ising model of magnetization (see

Figure 1) and the Kuramoto model of phase coupled oscillators

(see Figure 2). In both these models, the dynamics can be

controlled by continuous manipulation of a single parameter. For

the Ising model, this control parameter is the temperature;

whereas for the Kuramoto model it is the strength of coupling

between oscillators. In both cases, as the control parameter is

gradually increased (or decreased), the dynamics of the systems will

pass through a phase transition, from an ordered to a random state

(or vice versa), at which point the emergence of power law scaling

and other fractal phenomena will be observed at the so-called

critical value of the control parameter. Self-organized critical

systems differ from these computational models in the sense that

they are not driven to the cusp of a phase transition by external

manipulation of an control parameter but instead spontaneously

evolve to exist dynamically at that point.

Self-organized criticality is an intuitively attractive model for

functionally relevant brain dynamics [4–7]. Many cognitive and

behavioral states, including perception, memory and action, have

been described as the emergent properties of coherent or phase-

locked oscillation in transient neuronal ensembles [8–11]. Critical
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dynamics of such neurophysiological systems would be expected to

optimize their capacity for information transfer and storage, and

would be compatible with their rapid reconfiguration in response

to changing environmental contingencies, conferring an adaptive

ability to switch quickly between behavioral states [12].

In support of the criticality model for brain dynamics, there is

already considerable evidence for fractal or power law scaling of

anatomically localized neurophysiological processes - including spike

frequency, synaptic transmitter release, endogenous EEG and

fMRI oscillations [13–15] - measured on a wide range of spatial

and time scales. However, there have been fewer direct

demonstrations of critical dynamics of anatomically distributed

neurophysiological systems. Beggs, Plenz and colleagues [16–18]

have provided empirical evidence of criticality for neuronal

network dynamics, represented by a power law probability

distribution for the number of electrodes simultaneously recording

spike activity in multielectrode array recordings of cortical slices,

consistent with the fairly frequent occurrence of neuronal

‘‘avalanches’’. At the much larger spatial scale of human

magnetoencephalography (MEG), the topology of small-world

human brain functional networks was found to be self-similar over

a range of frequency scales, and the network’s topology at each

scale was consistent with dynamics close to the critical point of

transition from macroscopically chaotic to ordered states [12].

Here we provide more direct evidence for critical dynamics of

human brain functional networks measured using both functional

magnetic resonance imaging (fMRI) and MEG.

We focused on two measures of the phase synchronization

between component processes of a dynamic system (which are

defined more formally later): the phase lock interval (PLI) and the

lability of global synchronization. The phase lock interval is simply

the length of time that a pair of bandpass filtered neurophysio-

logical signals, simultaneously recorded from two different MEG

sensors or two different brain regions in fMRI, are in phase

synchronization with each other. Thus it is a measure of functional

coupling between an arbitrary pair of signals in the system. The

lability of global synchronization is a measure of how extensively

the total number of phase locked pairs of signals in the whole

system can change over time. A globally labile system will

experience occasional massive coordinated changes in coupling

between many of its component elements. In this sense, global

lability is informally analogous to the measure of neuronal

‘‘avalanches’’ introduced by Beggs & Plenz (2003) to describe

simultaneous spiking of large numbers of cells in a multielectrode

array measurement of spontaneous neuronal activity.

In order to calibrate the behavior of these two synchronization

metrics in relation to unquestionably critical dynamics, we first

applied them to analysis of the Ising and Kuramoto models as

their control parameters were manipulated systematically. These

preliminary analyses of two mechanistically distinct computational

models demonstrated that the probability distributions of both

synchronization metrics followed a power law specifically when the

models were in a critical state. This suggested that power law

scaling of network synchronization was indicative of critical

dynamics regardless of differences in the mechanistic interactions

between components in the two models. On this basis, we

proceeded to investigate the behavior of these synchronization

metrics in neurophysiological data recorded from healthy human

volunteers using functional MRI and MEG.

Methods and Materials

Synchronization Metrics and Scaling in Critical Models
Scale-dependent phase synchronization. To calculate a

locally time-averaged estimate of the phase difference between two

time series, Fi and Fj , we used their wavelet coefficients derived

using Hilbert transform pairs [19]. For a comprehensive review of

methods to characterize bivariate relationships between time

series, especially the relevant prior work by Lachaux et al. [20,21],

see Pereda et al. [22].

In this work the instantaneous complex phase vector is defined as:

Cij tð Þ~
Wk Fið Þ{Wk Fj

� �

Wk Fið Þj j Wk Fj

� ��� �� : ð1Þ

HereWk denotes the k-th scale of a Hilbert wavelet transform, and {

denotes the complex conjugate. In order to get a less noisy estimate

of the phase it is beneficial to average over a brief period of time

using a sliding window technique. Mathematically this is equivalent

to:

Cij tð Þ~
SWk Fið Þ{Wk Fj

� �
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S Wk Fið Þj j2TS Wk Fj

� ��� ��2T
q : ð2Þ

averaging STDt over the interval t,tzDt½ � with Dt~2kLwin. The

window size Lwin expressed in units of wavelet-scale determines the

number of cycles over which the average is taken and was chosen as

Lwin~8 here. This means that 8 oscillations of the highest frequency

sampled by a particular wavelet scale are used for the average and,

since the wavelet width is one octave, 4 oscillations of the lowest

frequency.

The argument of Cij tð Þ, henceforth denoted Cij for simplicity, is

then the local mean phase difference between the two signals i and

j in the frequency interval defined by the k-th wavelet scale, i.e.,

Dwij tð Þ~Arg Cij

� �
: ð3Þ

Moreover, the modulus squared of the complex time average

s2ij~ Cij

�� ��2 provides a direct measure of the significance of this

Author Summary

Systems in a critical state are poised on the cusp of a
transition between ordered and random behavior. At this
point, they demonstrate complex patterning of fluctua-
tions at all scales of space and time. Criticality is an
attractive model for brain dynamics because it optimizes
information transfer, storage capacity, and sensitivity to
external stimuli in computational models. However, to
date there has been little direct experimental evidence for
critical dynamics of human brain networks. Here, we
considered two measures of functional coupling or phase
synchronization between components of a dynamic
system: the phase lock interval or duration of synchroni-
zation between a specific pair of time series or processes in
the system and the lability of global synchronization
among all pairs of processes. We confirmed that both
synchronization metrics demonstrated scale invariant
behaviors in two computational models of critical dynam-
ics as well as in human brain functional systems oscillating
at low frequencies (,0.5 Hz, measured using functional
MRI) and at higher frequencies (1–125 Hz, measured using
magnetoencephalography). We conclude that human
brain functional networks demonstrate critical dynamics
in all frequency intervals, a phenomenon we have
described as broadband criticality.

Critical Human Brain Networks
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phase difference estimate. To see this, we note that

limDt?? Cij

�� ��2~0 for independent phases and 1 when there is

complete phase locking. In fact s2 is formally equivalent to the

definition of classical coherence, with Fourier coefficients replaced

by wavelet coefficients.

We also note that Cij is very similar to the standard phase

synchronization index gamma described by Pikovsky et al. [23].

Specifically, gamma is equivalent to SCijT
�� ��, the modulus of the

time-windowed moving average of our metric Cij , as defined in

Equation 1. However, we decided to perform the averaging in a

slightly different way, as shown in Equation 2, such that phase

vectors with larger amplitude were given greater weight in the

average. This refinement of the standard gamma metric improves

its robustness against phase interference inherent in the rather

noisy experimental data.

Intervals of phase-locking, or phase synchronization, can be

defined as periods when Dwij tð Þ
�� �� is smaller than some arbitrary

value. Here we will define the two processes as phase-locked or

synchronized when {p=4vDwij tð Þvp=4, and the duration of

phase locking, or phase locked interval, is the length of time for

which this condition holds true. The threshold value of p=4j j was
chosen because it represents the mid-point between exact

synchronization Dwij tð Þ~0 and complete independence

Dwij tð Þ~p=2 or {p=2. (Note that phase differences

p=2v Dwj jvp denote various degrees of anti-correlation rather

than independence.) Additionally we require s2ijw1=2, limiting

our analysis to phase difference estimates above this level of

significance.

Global lability of synchronization. Given estimates of the

phase difference between each pair of signals in the system, it is

then possible to count the number of pairs of signals that are

phase-locked at any point in time:

N tð Þ~
X

ivj

Dwij tð Þ
��v p

4
and s2ij tð Þw1=2: ð4Þ

This provides a global measure of the extent of synchronization in

the system. We can also calculate the difference in the number of

synchronized pairs at two points in time:

D
2 t,Dtð Þ: N tzDtð Þ{N tð Þj j2, ð5Þ

choosing a value of Dt larger than the window size Lwin used to

calculate the phase difference. This provides a measure of the

lability of global synchronization of the system. Large values of

D
2 t,Dtð Þ indicate extensive change in global synchronization.

Figure 1. Ising model simulations of a dynamic system at critical and non-critical temperatures. (A) Binary 1286128 lattices showing the
configuration of spins after 2,000 timesteps at low temperature, T~0 (left); critical temperature, T~Tc (middle); and high temperature, T~105

(right). At hot temperature the spins are randomly configured, at low temperature they are close to an entirely ordered state, and at critical
temperature they have a fractal configuration. (B) Probability distribution of phase lock interval (PLI) between pairs of processes at critical (black line)
and at hot temperature (red line) plotted on a log-log scale. The black dashed line represents a power law with slope a~{1:5. (C) Probability
distribution of lability of global synchronization (D2) at critical temperature (black line) and at hot temperature (red dotted line); the black dashed line
represents a power law with slope a~{0:5. For the cold Ising model the equilibrium state of the system is a monolithic lattice with either all spins
up or down, resulting in an entirely static system for which the PLI distribution is a Dirac Delta peak at the duration of the time series. The key point is
that the probability distributions of both duration of pairwise synchronization, indexed by the phase lock interval, and lability of global
synchronization, show power law behaviour for the 2D Ising model specifically at critical temperature.
doi:10.1371/journal.pcbi.1000314.g001

Critical Human Brain Networks
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Computational Models
The Ising model. The Ising model [24] was originally

defined as a 1D model of ferromagnetism but has since been

extended in generality to two and higher dimensions [25].

Recently it has also become widely used as a paradigmatic

example of critical dynamics in a relatively simple system [26]. We

defined a 2D Ising model operationally as follows. In a square

L|Lf g lattice, each one of i~1,2,3, . . . ,L sites was associated

with a variable or ‘‘spin’’, si, with one of two possible values, +1

(an up spin) or 21 (a down spin). Thus any particular

configuration of the lattice was completely specified by the set of

variables s1,s2,s3, . . . ,sLf g. The energy of the system is given by

E~{J
XN

i,j~nn ið Þ

sisj ð6Þ

where J is the coupling constant and the sum of j runs over the

nearest neighbors nn ið Þ of a given site i. At a given point in time, a

spin can flip from one possible state to another if it is energetically

favorable but also if it is not, with the probability P~e{E=kT ,

where k is Boltzmann’s constant and T is the temperature

(analogous to an actual physical system). The simulation was

implemented with the Metropolis Monte Carlo algorithm solving

for a given temperature T . In the case of the 2D Ising model the

critical temperature Tc is defined [27] by the equation

sinh
2J

kTc

� �
~1 ð7Þ

or equivalently Tc~2:269 if we choose units such that J~k~1

without loss of generality.

We instantiated this model in a {96696} lattice at three

different temperatures: T~0 (cold), T~Tc (critical) and T~105

(hot). Our objective was to estimate instantaneous phase

differences between each pair of signals (Equation 3), and the

lability of global synchronization (Equation 5), in these simulations

to provide a point of reference for comparable analysis of

neurophysiological data. To produce time series that were

Figure 2. Kuramoto model simulations of dynamic system states as functions of coupling strength between oscillators. When the
coupling strength has critical value Kc , the system is metastable and demonstrates the greatest fluctuations in the mean field and in the number of
synchronized pairs. Top panel: change of effective frequencies of oscillators (black lines) with coupling strength K (equivalent to natural frequencies
for low K). Vertically symmetric red bands indicate range over time of effective mean-field coupling strength Kr. Natural frequencies lower than Kr
synchronize with the mean frequency v~0, leading to variations in fraction of synchronized pairs subject to fluctuating mean-field strength Kr.
Bottom panel: dependence on coupling strength K of time averaged order parameter SrT (black circles), and of fraction of synchronized oscillators N
(red circles) with standard deviation indicated by error bars in gray. The open black symbols and green curve show fluctuation amplitudes of Kr and
N , respectively.
doi:10.1371/journal.pcbi.1000314.g002
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continuously variable in the range [264,64], rather than binary,

the magnetization was averaged over local neighborhoods or

square {868} sub-lattices at each time point, resulting in 144

continuous time series. Each simulation was initiated with the

spins in a random configuration and iterated for 12,192 time steps.

At low temperatures it will take the system some time to reach its

equilibrium state and we therefore restricted our analysis to the

final 8,192 timepoints of each simulation.

In the simulated data from the 2D Ising model at critical

temperature, we found that the probability distributions for both

the phase-lock interval (PLI) and global lability (D2) demonstrated

power law scaling specifically when the system was at critical

temperature; see Figure 1.

The Kuramoto model. The 2D Ising model is one of the

simplest computational models available for studying critical

dynamics, which is its main advantage. However, the physical

mechanism on which it is based, magnetic coupling of

neighbouring spins in a ferromagnetic material, and the extreme

simplicity of its components, binary spins, may seem to be

implausibly related to the components and mechanisms of brain

networks. We therefore also implemented the Kuramoto model as

an alternative, independent model of critical dynamics. This

seemed a natural choice since our measures of network dynamics

are based on phase synchronization, and the Kuramoto model

describes the phase evolution of its elements explicitly. It is also a

parsimoniously simple system, yet able to produce a number of

surprisingly complex phenomena. In particular, it will undergo a

second order phase transition when the coupling parameter is in

the vicinity of its critical value Kc, analogous to the critical

temperature in the Ising model. The Kuramoto model has been

widely used to study synchronization phenomena in complex

dynamical systems [28] arising in many different contexts ranging

from physics to biology. For example, it has been applied to the

neurophysiological problem of stimulus integration in sensory

processing in neural networks [8,29] and also to the study of

intermittent dynamics in EEG data [30].

In the Kuramoto model, the system is comprised of N limit-

cycle oscillators each of which has its own natural frequency vi,

and is also coupled to all other oscillators in the system through a

periodic function of the pairwise phase difference hj{hi, such that

the differential equation for the evolution of the phase of a given

oscillator hi is:

_hhi~viz
K

N

XN

j~1

sin hj{hi
� �

, i~1, . . . ,N ð8Þ

where K denotes coupling strength. The distribution of natural

frequencies g vð Þ can be chosen freely but is usually limited to

being unimodal and symmetric about its mean v. Moreover,

without loss of generality, we can transform the coordinate system

into a comoving frame, rotating at v, such that the effective mean

frequency becomes v~0.

For our simulations, we selected a set of 44 normally distributed

frequencies with zero mean and unit variance g vð Þ~N 0,1ð Þ. As
demonstrated analytically by Kuramoto [31], the critical coupling

exponentKc does not depend on the exact shape of g vð Þ, but is solely
a function of the probability density at the central frequency g 0ð Þ:

Kc~
2

pg 0ð Þ
: ð9Þ

With g vð Þ~N 0,1ð Þ this would formally give Kc~

ffiffiffiffiffiffiffiffi
8=p

p
~1:596,

but since we used a discrete frequency distribution rather than a

continuous one, we calculate the probability density independently

using a smoothing kernel approach. This gives a slightly different

result, depending on the exact set of natural frequencies vi.

It is convenient to introduce a global order parameter r as the

modulus of the complex mean over all phase vectors

reiy~
1

N

XN

j~1

eihj ð10Þ

where y is the mean phase. With this definition Equation 8 can be

rewritten in terms of coupling to the mean field:

_hhi~vizKr sin y{hið Þ, i~1, . . . ,N: ð11Þ

In this form, the equation for the phase evolution in the model

becomes more intuitive. In particular, under the assumption that

the mean field reaches a stationary equilibrium in the limit t??,

then r and y become invariant and the differential equations

decouple completely. This is how Kuramoto initially solved the

model analytically. However, we are not interested in the model

when it is in a quasi-stationary state but rather when it is in an

unstable or metastable state, which is the case when the coupling

strength is at the critical value Kc.

This can be seen in Figure 2, which illustrates the rapid change

of the system states when the coupling strength exceeds Kc. The

point of critical coupling strength is marked by the greatest

fluctuation in the number of synchronized pairs, and the greatest

range of Kr, the strength of effective coupling to the mean field

(see Equation 11). Consequently the oscillators whose effective

frequencies lie within this range experience intermittent periods of

strong and weak driving by the mean field, pushing them in and

out of synchronization, resulting in a chaotic system. The

evolution of each individual oscillator is thus dynamically

equivalent to a circle-map oscillator, a prototypical chaotic system

[32].

To generate time series from the Kuramoto model in critical

and non-critical states, we simulated the phase evolution of a set of

44 coupled oscillators (with natural frequencies specified as

described above) and solved the set of 44 coupled evolution

equations (Equation 8) numerically using ODE solvers which

distinguish automatically between stiff and non-stiff problems

[33,34]. Each simulation ran for 105 time steps, which were

selected to be sufficiently small to sample the highest frequencies in

the model accurately with at least 8 values per cycle. Two sets of

time series were produced: one with the coupling parameter set at

its critical value Kc and one with K~0, i.e. free running

oscillators.

In the simulated data from the Kuramoto model, we found that

the probability distributions for both the phase-lock interval (PLI)

and global lability (D2) demonstrated power law scaling specifically

when the system was at critical coupling strength; see Figure 3.

The goodness-of-fit for a power law probability distribution of PLI

was compared, using Akaike’s information criterion (AIC), to the

goodness-of-fit for exponential and log normal distributions. We

used a variant of the AIC including a second order correction for

small sample sizes, defined as

AICc~AICz
2k kz1ð Þ

n{k{1
: ð12Þ

where k is the number of parameters in the model, and n is the

number of observations in the data [35].

Critical Human Brain Networks
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The AIC is designed to identify the fit which best explains the

data with a minimum of free parameters. As shown in Table 1, the

power law distribution quite consistently provided the best fit over

all wavelet scales.

Acquisition and Preprocessing of Experimental Data
All experimental studies on human subjects were conducted

according to the principles of the Declaration of Helsinki and the

standards of Good Clinical Practice. All participants provided

informed consent in writing. The study protocols were ethically

approved by the Addenbrooke’s NHS Trust Research Ethics

Committee and the Cambridgeshire 2 Research Ethics Commit-

tee, Cambridge UK.

Functional MRI. A group of 17 healthy volunteers (aged 18–

33 years, mean= 24.3 years) was scanned, lying quietly at rest with

eyes closed for 9 min, 37.5 s [36]. Gradient-echo echoplanar

imaging (EPI) data depicting BOLD contrast were acquired using

a Medspec S300 scanner (Bruker Medical, http://bruker-medical.

de) operating at 3.0 T in the Wolfson Brain Imaging Centre

(Cambridge, UK). 525 volumes were acquired with the following

parameters: number of slices, 21 (interleaved); slice thickness,

4 mm; interslice gap, 1 mm; matrix size, 64664; flip angle, 90u;

repetition time (TR), 1100 ms; echo time, 27.5 ms; in-plane

resolution, 3.125 mm. The first seven volumes were discarded to

allow for T1 saturation effects, leaving 518 volumes available for

analysis.

Each dataset was corrected initially for geometric displacements

because of head movement and co-registered with the Montreal

Neurological Institute gradient-echo echoplanar imaging (EPI)

template image, using an affine transform implemented in SPM2

software (http://www.fil.ion.ucl.ac.uk). Two datasets that had

been affected by head movement in excess of 3 mm translation, or

0.3u rotation, in x, y, or z dimensions, were discarded. The

remaining data were not spatially smoothed before regional

parcellation using the anatomically labeled template image

validated previously by Tzourio-Mazoyer et al. [37]. This

parcellation divides each cerebral hemisphere into 45 anatomical

regions of interest. Regional mean time series were estimated for

each individual by averaging the fMRI time series over all voxels

in each of 90 regions. Each regional mean time series was further

corrected for the effects of head movement by regression on the

time series of translations and rotations of the head estimated in

Figure 3. Simulated Kuramoto model data. Top row: results from system at critical coupling strength Kc , bottom row: no coupling, i.e. free
running oscillators. In all panels simulation data is denoted by solid lines (filled symbols) and the corresponding surrogate data by dotted lines. The
colors encode wavelet scales 3–11. Left column: Power spectrum of simulated Kuramoto model time series plotted on logarithmic axes. In the critical
state the spectrum shows clustering of the effective frequencies forming a common broad peak and follows a power law with exponent 22 on the
low-frequency end. The spectrum of the uncoupled model is a simple superposition of the natural oscillator frequencies. The colored vertical lines
represent the frequency intervals corresponding to wavelet scales 3–11 (scales 1 and 2 indicated by dotted lines not used). Middle column:
Probability distributions for phase-lock interval PLI. Only the critical system produces a power law, clearly distinct from the surrogate data showing an
exponential fall-off. The black dashed line represents a power law with a~{2. Right column: Probability distribution for lability of global
synchronization D2 is plotted on logarithmic axes for each wavelet scale. Again a power law is only seen in the critical model, whereas surrogate data
and uncoupled model produce exponential distributions. The straight dashed line represents a power law with a~{1.
doi:10.1371/journal.pcbi.1000314.g003

Critical Human Brain Networks
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the course of initial movement correction by image realignment

[38]. The residuals of these regressions constituted the set of

regional mean time series used for wavelet-based synchronization

analysis. Each region was additionally assigned to a functionally-

related cluster or module based on a prior hierarchical cluster

analysis of resting-state fMRI data on an independent sample [39].

Magnetoencephalography. Data were acquired from two

healthy subjects, sitting quietly with the instruction to keep their

eyes shut for 3.5 minutes. MEG data were continuously sampled

at a frequency of 1000 Hz by 204 planar gradiometers and 102

magnetometers in an Elekta Neuromag MEG scanner at the

MRC Cognition and Brain Sciences Unit (Cambridge, UK). Head

position, horizontal and vertical electrooculogram were

continuously monitored throughout recording. The data set was

corrected for the presence of internal and external noise sources

and for disturbances as a result of head movements using signal

space separation [40] with the spatiotemporal extension [41] via

MaxFilter (Elekta Neuromag, Finland). Bad channels were

removed from the data set prior to applying signal space

separation and interpolated from neighbouring sensors afterwards.

Results

Neurophysiological Systems
Phase-locking and lability of global synchronization in

functional MRI. Periods of phase-locking between pairs of

regional fMRI time series were estimated using the Hilbert

transform of their wavelet coefficients at scales 1, 2, and 3 of the

discrete wavelet transform (corresponding to an overall frequency

range of 0.05–0.45 Hz). As illustrated in Figure 4, showing a short

segment of signals from the scale 3 frequency interval (0.05–

0.11 Hz), this procedure results in a continuously variable estimate

of the locally time-averaged phase of each time series wi tð Þ, and
the phase difference between each pair of time series Dwi,j tð Þ.
Periods of phase synchronization or phase-locking were defined as

time intervals when the phase difference was arbitrarily close to

zero, i.e., Dwi,j tð Þ
�� ��vp=4.

We can see immediately that there is variability in the extent of

phase-locking between different pairs. The bilaterally homologous

pair of regions (right and left precentral gyrus) show more

prolonged periods of phase-locking than the anatomically

unrelated pair of regions (left precentral gyrus and olfactory

cortex). Moreover, all pairs of signals show periods of phase-

locking interspersed with periods of phase independence. The

intermittency of phase-locking was quantified by plotting the

empirical probability distribution of the phase-lock interval (PLI)

over all pairs of signals in the image. As shown in Figure 5, this

distribution followed a power law, i.e., Prob PLIð Þ*PLIa, with

the power law exponent a*{3:0 (its precise value depending on

scale; see inset of Figure 5B). The goodness-of-fit for a power law

probability distribution of PLI was compared, using AIC, to the

goodness-of-fit for exponential and log normal distributions. As

shown in Table 1, the power law distribution quite consistently

provided the best fit over all wavelet scales.

Considering separately those pairs of signals within the same

functional module of the network, we found that pairwise intra-

modular synchronization also followed a power law distribution

for phase-lock interval but the scaling exponent was considerably

smaller for the intra-modular distribution (a*{2:5), indicating
that the probability of long periods of phase synchronization was

greater for intra-modular pairs. In contrast, the probability

distribution of phase-lock interval for pairs of surrogate signals,

created by randomly permuting the phases of the original fMRI

signals in the Fourier domain, was better described by an

exponential than by a power law. A complementary perspective

is provided by plotting the cumulative probability distributions for

the fMRI and surrogate data, weighted by the time duration of

phase locking, which provides a clearer indication of the periods of

time spent in phase-synchronized or phase-incoherent states; see

Figure 5C.

For a finer-grained representation of the variability of phase

synchronization between different pairs of 90 regional fMRI

time series, we calculated the relative prevalence of long-

term lock versus short-term lock duration as eaa~
log SPLIwLwin

�
SPLI§1

� �
*az1 for all possible pairs and collated

the results in a {90690} matrix; see Figure 6. (For individual pairs

we have only very small number statistics and eaa is more robust

than a direct fit of a). This analysis confirms that intra-modular

connections between regions are typically associated with smaller

absolute values of a, reflecting greater probability of long intervals

of phase-locking between regions belonging to the same functional

module (module definition according to [39]; in particular see

their Figure 3). In fact a number of connections inside these

modules were locked for the whole length of the analyzed

timeseries in a majority of subjects (yellow and white matrix

Table 1. Power law scaling of phase lock interval (PLI)
probability distributions. Akaike goodness-of-fit criterion for
various fitting functions applied to the PLI distributions of the
Kuramoto model and the fMRI and MEG data, respectively.

Kuramoto

Model Power-Law Exponential Log-Normal

125262.5 Hz 211.4 48.3 9.2

62.5231 Hz 220.7 40.2 3.0

31215.5 Hz 12.1 36.1 6.6

15.528 Hz 28.5 32.9 5.9

824 Hz 20.9 23.6 6.8

422 Hz 2.3 19.0 2.1

221 Hz 22.0 11.1 0.4

120.5 Hz 15.7 13.4 15.0

0.520 Hz ? ? ?

MEG Data Power-Law Exponential Log-Normal

125262.5 Hz 0.8 28.0 5.5

62.5231 Hz 26.8 31.3 5.4

31215.5 Hz 26.5 35.5 5.4

15.528 Hz 22.1 28.8 3.6

824 Hz 20.0 34.2 12.9

422 Hz 25.3 31.6 9.7

221 Hz 24.7 24.1 6.6

120.5 Hz 6.7 19.9 12.2

fMRI Data Power-Law Exponential Log-Normal

0.4520.22 Hz 215.7 50.7 13.7

Intra-modular 27.2 60.7 17.4

0.2220.11 Hz 20.5 18.0 29.5

Intra-modular 218.1 18.6 210.8

0.1120.05 Hz 27.7 9.7 0.4

Intra-modular 210.3 5.3 23.9

Smaller values indicate a better fit, but comparisons are only meaningful across
rows.
doi:10.1371/journal.pcbi.1000314.t001
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elements in Figure 6), causing the excess for the maximal PLI in

the distribution shown in Figure 5A.

Even though this paper does not primarily deal with topological

analysis, it should be noted that functional network properties

calculated by thresholding this matrix of pairwise phase-locking

were consistent with results previously reported by Achard et al.

[42], who found an exponentially truncated power law for the

degree distribution in an independent sample of fMRI data. The

network hubs in these data were mostly regions of association

cortex with connections predominantly to other nodes in the same

Figure 4. Illustration of phase synchronization between pairs of neurophysiological processes in low and high frequency intervals.
(A) Top panel: Amplitude of functional MRI signals in the frequency interval 0.05–0.1 Hz (corresponding to wavelet scale 3) is shown for three brain
regions in a single subject: left precentral gyrus (black), right precentral gyrus (red), and left olfactory cortex (green). Bottom panel: Phase difference
between two pairs of fMRI processes is shown for right and left precentral gyrus (black), and left precentral gyrus and olfactory cortex (red). The
shaded area represents phase differences less than+p=4; while phase difference is in this regime the pair of processes is said to be phase-locked. (B)
Top panel: Amplitude of MEG signals in the frequency interval 31–63 Hz (approximately equivalent to the classical c band) is shown for three sensors
in a single subject: two left temporal sources (black and green), and a left frontal source (red). Bottom panel: Phase difference between two pairs of
MEG processes is shown for 2 left temporal sensors (black) and for left frontal and temporal sensors (red). The horizontal bars in the top-left corner of
each panel denote the temporal extent of Lwin, respectively, corresponding to about 8 wavelet cycles. Only a short section of the actual time-series is
shown.
doi:10.1371/journal.pcbi.1000314.g004
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functional modules. In particular the dorsal superior frontal gyrus

bilaterally was distinguished by high degree and numerous inter-

modular connections.

The probability distribution for D2, the lability of global synchroni-

zation, is also represented on logarithmic axes in Figure 5D. This

distribution approximates closely to a power law, whereas the

equivalent distribution calculated for surrogate data does not. This

result indicates that large changes in the number of simultaneously

phase-locked processes aremore likely to occur in functionalMRIdata

than would be expected under the null hypothesis.

Phase-locking and lability of global synchronization in

MEG. For a representative MEG time series, the signal

Figure 5. Phase-locking and global synchronization in a low frequency network measured using functional MRI. Colors denote
wavelet scales: black = scale 1 (0.4520.22 Hz); red = scale 2 (0.2220.11 Hz); green = scale 3 (0.1120.05 Hz). (A) Probability distributions of phase-
lock interval (PLI, s) are plotted on logarithmic axes for all pairs of processes (filled symbols) and for all (intra-modular) pairs of processes within the
same functional module (open symbols). The corresponding distributions for phase-scrambled surrogate data are shown by the dotted lines, and the
straight dashed line indicates a power-law with a~{2. (B) Cumulative probability distributions of phase-lock intervals are shown on logarithmic axes
for all pairs of processes (solid lines) and surrogate data (dotted lines). Inset shows the power law scaling exponent a as a function of wavelet scale
(larger scales represent lower frequencies). (C) Weighted cumulative probability distribution of phase-lock intervals are shown on linear axes for all
pairs of processes (solid lines), intra-modular pairs of processes (dashed lines) and surrogate data (thin dotted lines). The negative range on the x-axis
stands for intervals without phase-lock. (D) Probability distributions for lability of global synchronization (D2) are shown on logarithmic axes for fMRI
data (filled symbols and solid lines) and surrogate data (dotted lines). The dashed straight line indicates a power law with a~{1=2 to guide the eye.
doi:10.1371/journal.pcbi.1000314.g005

Critical Human Brain Networks

PLoS Computational Biology | www.ploscompbiol.org 9 March 2009 | Volume 5 | Issue 3 | e1000314



amplitude in wavelet scale 4 (corresponding to a frequency interval

of 31–62.5 Hz) is shown for three representative sensors in

Figure 4. Also shown are the time-localized estimates of phase

difference between two pairs of these sensors.

We generalized this analysis to estimation of phase differences,

and phase-lock intervals, for pairs of MEG sensors in each wavelet

scale and were thereby able to estimate the scale-specific probability

distribution of phase-lock intervals; see Figure 7A. The distributions

of PLI approximated a power law reasonably well at all scales,

whereas the surrogate data did not. The power law exponent a,
estimated by fitting a straight line to the log transformed density,

became increasingly positive as a function of increasing scale (inset of

Figure 7B), indicating that the probability of long periods of phase-

synchronization tended to be greater in the lower frequency intervals

corresponding to larger wavelet scales. This behavior is also

represented from a complementary perspective by comparison of

the cumulative probability distributions for PLI at each of the

wavelet scales (Figure 7C). The goodness-of-fit for a power law

probability distribution of PLI was compared, using AIC, to the

goodness-of-fit for exponential and log normal distributions. As

shown in Table 1, the power law distribution quite consistently

provided the best fit over all wavelet scales.

The probability distribution for lability of global synchroniza-

tion D2 was likewise plotted on logarithmic axes for each wavelet

scale; see Figure 7D. The probability of a large change in the

number of simultaneously phase-locked processes was generally

greater in the MEG data than in comparable surrogate data but

power law behavior was evidently limited by the finite size of the

system prohibiting very large values of D2.

Discussion

The aim of this paper was to show by analysis of two

mechanistically distinct computational models (the Ising and

Kuramoto models) that power law scaling of synchronization

metrics is a consistent macroscopic feature of dynamical systems in

a critical state; and then to demonstrate that analogous scaling

behaviour is a feature also of human brain functional networks

measured using functional MRI and MEG. The wavelet-based

analysis of fMRI data addressed phase synchronization in low

frequency networks oscillating in the interval 0.05–0.45 Hz;

whereas the analysis of MEG data addressed higher frequency

networks in the interval 1–125 Hz. In both kinds of data, and in all

frequency intervals, we found strong evidence for power law

scaling of both the phase-lock interval and the lability of global

synchronization.

This pattern of results indicates that scaling of synchronization

metrics can arise in critical systems regardless of the underlying

mechanisms and that broadband criticality is clearly evident in

large scale human brain networks derived from substantively

different modalities of neuroimaging data. A corollary of these

observations is that it is not possible to deduce the mechanism by

which criticality emerges in a system simply by measuring these

macroscopic behaviors. However, by providing one of the first

direct demonstrations that criticality is an emergent property of

human brain networks, we hope to motivate future research into

the generative mechanisms of criticality in these systems. It would

also be important to investigate whether the underlying mecha-

nisms for human brain network criticality are different between

fMRI and MEG networks and perhaps also between MEG

networks at different frequencies.

Power Law Scaling
Power law scaling of human neurophysiological processes has

been previously described in both functional MRI and MEG or

electrophysiological datasets [14,15,43]. However, we believe this

is the first demonstration of power law scaling of synchronization

metrics in human brain networks. It was notable that although

Figure 6. Effects of spatial proximity and modularity on scaling of phase locking between fMRI time series. Left: Dependence of phase-
lock index on log of physical distance between a pair of brain regions (dots). The number density is indicated by contours, where the change in
abundance with distance has been normalized out. The red line has a slope of 0.25 and serves to guide the eye. Right: Matrix representing the relative
prevalence of long-term phase lock versus short-term phase lock intervals for all pairs of brain regions in resting-state fMRI data. The color of each
element indicates the value of eaa*az1 for a specific pair of processes (see text for exact definition of eaa). Intra-modular pairs of regions are located
close to the diagonal and are segregated and identified by black rectangles (grey rectangles denote coarser anatomical separation of brain regions as
labeled; see text). All graphs shown are for wavelet scale 1 in the fMRI data.
doi:10.1371/journal.pcbi.1000314.g006
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power law scaling was demonstrated for all frequency intervals in

both fMRI and MEG data, and for all anatomical pairs of regions

in the fMRI data, the value of the scaling exponent a was variable

in relation to both the modularity and the frequency interval of the

networks. Thus the scaling exponent a of the PLI distribution was

smaller for (intra-modular) pairs of fMRI signals belonging to the

same functional module than for (inter-modular) pairs belonging

to different functional modules, indicating that prolonged periods

of phase locking are generally more likely to occur between

functionally related processes. These results are consistent with

previous findings that intra-modular pairs of fMRI signals are

more strongly correlated than inter-modular pairs [39], probably a

Figure 7. Probability distributions for phase-lock interval and lability of global synchronization in MEG data. In all panels MEG data is
denoted by solid lines (filled symbols) and the corresponding surrogate data by dotted lines. The colors encode wavelet scales as follows: black =
scale 3 (125262.5 Hz); red = 4 (62.5231 Hz); green = 5 (31215.5 Hz); blue = 6 (15.528 Hz); light blue = 7 (824 Hz); pink = 8 (422 Hz); yellow =
9 (221 Hz); gray = 10 (120.5 Hz); black = 11 (0.520 Hz). (A) Probability distribution of phase-lock intervals is plotted on logarithmic axes for each
wavelet scale. The black dashed line represents a power law with a~{2. (B) Cumulative probability distribution of phase-lock intervals is plotted on
logarithmic axes for each wavelet scale. The exponents of the power law distributions tend to increase as a function of increasing scale (inset). (C)
Weighted cumulative distribution of phase-lock intervals on linear axes for each wavelet scale indicating the fraction of time spent locked for a time
longer than the PLI indicated. (D) Probability distribution for lability of global synchronization D2 is plotted on logarithmic axes for each wavelet scale.
The straight dashed line represents a power law with a~{1.
doi:10.1371/journal.pcbi.1000314.g007
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direct consequence of their stronger structural connectivity [44], as

demonstrated in simulations of hierarchical dynamics on the

cortical network of the cat [45]. The dependency of a on

frequency interval of the networks was most evident by analysis of

the MEG data. Here we found that a tended to be smaller,

indicating a higher probability of long periods of phase locking, in

lower frequency networks. This observation is also consistent with

prior work demonstrating that wavelet correlations between MEG

sensors increase with decreasing frequency in a theoretically

predictable way [46]. These considerations suggest that scaling of

synchronization metrics, although novel in the context of human

neuroimaging, has a profile of variability that makes sense in the

context of prior observations on functional brain networks.

However, it is important to bear in mind some methodological

caveats when evaluating the empirical demonstrations of power

law scaling we have reported. Given that an ideal scale-free system

has no well defined limits in space or time, the ‘‘lack of infinity’’ in

the data we are studying inevitably has some effect on our results.

In particular, the finite length of our time series prevents us from

estimating the phase lock interval (PLI) distribution for time

intervals longer than about 10 minutes, which will be counted in

the last bin of the PLI histogram, corresponding to the duration of

the time-series. This will also impact on the estimation of the

power law exponent and its impact will be greater for estimation of

scaling parameters in lower frequency networks, where we have

fewer data points per time series. Therefore we should be cautious

about strong interpretations of the absolute value of the estimated

power law exponents.

Finite size effects are also clearly visible in the estimated

probability distributions of the lability of global synchronization.

These are seen not only in the experimental fMRI and MEG data,

but also in both computational models, and are a direct

consequence of the finite spatial extent of the system in terms of

a limited number of pairs. However, it is important to note that the

probability distributions of lability are distinct for surrogate data

compared to experimental data in all cases. Also, the probability

distribution of the number of synchronized pairs N (not shown) for

the surrogate data is a narrow Gaussian centered around a small

N , whereas the experimental and simulated data display a much

wider non-Gaussian distribution with a comparatively large

number of synchronized pairs on average, limited only by the

system size.

The importance of finite size effects in interpreting the shape of

the empirically estimated probability distributions motivated us to

test formally for the goodness-of-fit of a power law distribution

(compared to exponential and log normal distributions) for the

probability of PLI and lability of global synchronization in the

Kuramoto model at critical coupling strength, and both the fMRI

and MEG data, at all scales; see Table 1. These results indicate

that the power law form is quite consistently the best fitting model

for the probability distribution across all datasets and scales.

Neuroscientific Implications
The added value of this analysis is arguably twofold. First, it

indicates that phase synchronization is likely to be an important

mechanism of functional network formation at all frequencies and

in the endogenous or resting state. Phase synchronization of

spatially distributed neurophysiological processes is already

accepted as a key mechanism in the transient formation of

neuronal ensembles coding the representation of perceived objects

or memories [9,10]. However, most attention has focused on

phase synchronization in high frequency intervals, e.g., the gamma

frequency band (30–80 Hz), and in response to experimentally

controlled stimulation [47]. Our results show that intermittent

periods of phase-locking, sometimes for long time intervals, are

characteristic of endogenous human brain network dynamics. By

analogy to the experimental data demonstrating changes in

gamma synchronization in response to conscious perception of

external objects, one might speculate that spontaneously occurring

periods of phase synchronization might represent changes in

subjective mental state, or conscious perception of internal objects.

In any case, it is clear from these data that intermittent phase

synchronization of neurophysiological systems is a general intrinsic

property of the brain and not restricted to certain frequency bands

or stimulus conditions.

We would also draw attention to an analogy between the

neuronal avalanches previously described in multielectrode array

recordings [16–18], which represent rapid simultaneous changes

in spiking coordinated across a large number of individual

neurons, and the scaling behavior of our measure of the lability

of global synchronization, which indicates the potential for whole

brain systems to demonstrate rapid and extensive changes in

global phase locking. This analogy seems consistent with the

fundamental principle of scale invariance in understanding critical

systems: qualitatively similar network dynamics can be expected at

very different (cellular versus whole brain) spatial scales.

The second and main theoretical implication of these results is

that they provide direct empirical support for the hypothesis that

human brain networks exist dynamically in a critical state.

Criticality has been studied most intensively to date in simulated

neural networks. These studies indicate that networks at a critical

point between order and chaos are optimized for information

transmission, and generate a maximum number of metastable

global states, conferring a high capacity for information storage

[7,18]. Critical systems rapidly adapt to minimal exogenous

perturbation [26], which could have obvious selection advantages

for a nervous system. It has also been shown that critical dynamics

can emerge by the operation of biologically plausible rewiring

rules on initially random networks. For example, a Hebbian

rewiring rule, whereby connections are formed between nodes

with highly correlated activity (and deleted between nodes with

poorly correlated activity), led to the self-organization of critical

dynamics in an initially random network [48]. Likewise, when

connectivity between neurons was modified by a spike timing

dependent plasticity rule, critical dynamics emerged in a

functional network with small-world topology [49]. A small-world

network is characterized by short average path length between

nodes, but large clustering coefficient [50]. This architecture can

deliver high efficiency of information processing for low connec-

tion costs and is common to many systems such as the internet, the

global air transport network and the proteome, as well as the

brain. The link between critical dynamics and small-world

topology is also implicit in our results, given the strong prior

evidence for small-world properties of human brain functional

networks derived from fMRI and MEG data [12,42].

A key, unresolved question concerns the cognitive or mental

significance of brain systems criticality. There is very little

empirical data directly supporting the important theoretical

connection between critical brain dynamics and the adaptivity

or versatility of the behavioral repertoire the brain can support.

However, it has been reported that changes in the power law

scaling exponents of human MEG sensors were highly predictive

of success in discriminating low intensity visual stimuli [51],

suggesting that critical dynamics can indeed be related to optimal

perceptual function. An intriguing study in a substantively

different biological system, namely gene expression changes in

the macrophage following pathogen challenge, found evidence of

critical dynamics in normal intra-cellular signaling and non-critical
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dynamics in cells that had been behaviorally impaired in their

response to pathogens by specific gene knockouts, implying that

criticality in this signaling system conferred an adaptivity

advantage [52]. A key challenge for future studies will be to

define more precisely how the parameters of critical network

dynamics, empirically estimated in neuroimaging data, can be

related to adaptivity and optimality of human cognitive and

behavioral performance.
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