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We discuss the strategy for achieving the values of the effective magnetic permeability much smaller than unity

by employing an appropriate arrangement of metamaterial elements (“meta-atoms”). We demonstrate that strong

diamagnetism over a very wide frequency range can be realized in metamaterials by employing nonresonant

elements with deeply subwavelength dimensions. We analyze the effect of the lattice parameters on the

diamagnetic response and find that selecting an appropriate lattice type is crucial for optimal performance. Finally,

we discuss the optimal characteristics required to obtain the lowest possible values of magnetic permeability and

point out an efficient tuning possibility.

DOI: 10.1103/PhysRevB.87.024408 PACS number(s): 81.05.Xj, 75.20.−g, 78.67.Pt

I. INTRODUCTION

Metamaterials have provided a wide playground for the-

oretical and applied electromagnetics, material science, and

engineering for at least a decade, yielding a number of

interesting designs and a range of novel phenomena and

applications. Typically,1 the research on metamaterials is

focused on negative refraction or other uses of negative effec-

tive parameters of metamaterials, which would be therefore

based on resonant elements with a narrow-band response. The

concept of metamaterials is, however, much broader, offering

more flexibility and applications than assumed within the

mainstream.2 This relies on a strong mutual interaction in

metamaterials made possible by dense packing of their ele-

ments (“meta-atoms”).3,4 The consequence is a significant shift

of the resonance frequency,3 offering convenient opportunities

for tuning5 and nonlinear effects.6

However, mutual interaction is not only useful for affecting

the resonance. As we show below, it is also helpful for tailoring

the collective response of metamaterials’ elements to gain

unusual magnetic properties, for example, creating artificial

diamagnetism with quite low effective permeability over a

wide frequency range.

Artificial diamagnetics have been well known in engineer-

ing from early times,7 but normally it has been assumed

that their effective permeability is not much smaller than

unity. More recently, interest in this topic was revitalized

in the context of metamaterials,8–10 with a suggestion to

produce strong diamagnetism at vanishing frequency using

a lattice of densely packed superconducting cubes or plates,8

and experimental approaches to measure such properties.11

A diamagnetic response of closed conducting rings was also

recently revisited for a metamaterial built up with square split

resonators or closed square loops.12 Unfortunately, the selected

parameters were not optimal so the estimates in Ref. 12 did not

predict particularly small permeability values, with the lowest

suggested value being about 0.5.

In this paper, we provide a comprehensive analysis of the

diamagnetic properties available in dense anisotropic arrays of

closed rings, offering a more refined treatment of the lattice

effects (Sec. II). We discuss the optimal design parameters

for implementations of such metamaterials and reveal that

very low effective magnetic permeability (below 0.05) can be

achieved in such structures (Sec. III). For certain parameters,

the desired diamagnetic response easily spans a few orders of

magnitude in frequency, as discussed in Sec. III F.

II. EFFECTIVE PERMEABILITY IN

NONRESONANT ARRAYS

Our theoretical treatment is applicable when the size of

one element as well as lattice constants are much smaller

than the free-space wavelength, that is, in the quasistatic limit.

Contrary to the case of resonant elements, where special efforts

are required to provide a reliable description,13 here the size

of the elements can be easily brought into the necessary

range without compromising the performance. The upper

frequency limit for our analysis can be taken such that the

free space wavelength is still sufficiently in excess of the ring

circumference, so the applicable range of angular frequencies

is well below the characteristic threshold ω0 = c/2r , c being

the light velocity and r the radius of the rings.

For convenience in the equations, we take all the geo-

metrical parameters normalized to r , so they can be written

as dimensionless quantities. We assume all the rings to be

arranged with identical orientation (all having parallel axes)

with the lattice constants ar in the ring planes and br along

their axes (Fig. 1). In the plane of the rings, they can have

tetragonal or hexagonal lattices, and the adjacent layers can

be also shifted by ar/2, which provides a significant effect

on the array properties3; as we show below, the lattice type

is crucial for optimizing diamagnetic response. The density

of the rings is then n = a−2b−1r−3 for the tetragonal lattice

and n = 2/
√

3 · a−2b−1r−3 for the hexagonal lattice. For the

sake of uniform notation, we introduce a geometrical factor γ

which equals 1 for tetragonal and 2/
√

3 for hexagonal lattices,

so now we can generally write n = γ · a−2b−1r−3. For the sake

of analytical simplicity, we assume the rings to have toroidal

shape and introduce a dimensionless parameter w, which is the

ratio of the radius of the wire which is used to make the rings, to

the ring radius r; that is, the wire radius is wr . Geometrically,

it is clear that w < 1, a > 2(1 + w), and b > 2w, but for the
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(а)

(b) (c)

FIG. 1. (Color online) Various types of lattice arrangements.

(a) General view of the anisotropic lattice (simple tetragonal

arrangement in the plane) and possible modifications (top view).

(b) Tetragonal lattice with each layer displaced by one half of the

lattice constant. (c) Hexagonal lattice with each layer displaced by

one half of the lattice constant.

analytical theory below to be precise, w ≪ 1 is implied and a

and b should be significantly larger than the above geometrical

limits, to minimize the effect of capacitive coupling.

For dense arrays of conducting rings, their mutual interac-

tion is particularly important and cannot be reduced to that

with the nearest neighbors. A rigorous approach to determine

quasistatic effective permeability in such a strongly coupled

system was presented in Ref. 3 and we only outline the

key steps here. Clearly, the macroscopic permeability can be

calculated through spatial averaging of the local microscopic

magnetic field and evaluation of the average magnetization, to

be performed in a physically infinitesimal volume being much

smaller than the wavelength and encompassing a sufficiently

large number of unit cells.14,15 In the quasistatic limit, it

can be assumed that the external field is uniform within that

volume and therefore all the unit cells are identically excited

with an external field H0, inducing current I in each ring.

The averaging can be thus performed over one unit cell, and

the average magnetization M is determined by the magnetic

moment πr2I of one ring divided by the unit cell volume:

M = nπr2I . However, the averaging procedure is less trivial

than in conventional materials, because the specific shape of

individual elements and their dense arrangement do not allow

us to use the dipole approximation to calculate the local field

and mutual effects. Instead, explicit fields of the individual

currents have to be averaged, which can be done analytically,3

permitting us to express the permeability through the external

(applied) magnetic field and induced magnetization as

μ =
(

H0 + 2
3
M

) / (

H0 − 1
3
M

)

, (1)

which is valid for unbounded media or sufficiently large

spherical samples.

In the quasistatic limit, a closed ring can be described as an

effective contour characterized with resistance and inductance;

however, the skin effect may become significant while the qua-

sistatic consideration is still valid. For a consistent evaluation

in the entire frequency range, we have to apply a general form

of the impedance,15

Z = −i ωLe + R
ζ

2

J0(ζ )

J1(ζ )
, (2)

where Le = μ0r(ln(8/w) − 2) is the external contribution to

the self-inductance, R = 2ρ/rw2 is the static resistance, and

ζ = (1 + i)rw/δ, is the argument to the zero (J0) and first (J1)

order Bessel functions of the first kind (δ =
√

2ρ/μ0ω is the

skin depth).

Then the current I , excited in each ring, is determined by

solving the corresponding Kirchhoff’s equation,

I =
i ωπr2μ0H0

(

Z − i ω
∑

n�=n′ Lnn′

) , (3)

where the mutual interactions are manifested by the summa-

tion over the mutual inductances between the rings.3 The

result of this summation can be conveniently expressed as
∑

n�=n′ Lnn′ = μ0r�, where � is dimensionless, so that we can

define the total inductance as L� = Le + μ0r�. As explained

in Ref. 3, the summation should be limited to the interior of

the sphere which corresponds to the macroscopic averaging.

In practice, it is sufficient to perform this summation within

a radius of several lattice constants, which corresponds to

a characteristic length of response formation.3,14 For dense

arrays, contribution of the mutual inductances can be much

larger than the self-inductance, providing a dominant part of

the impedance.

It is then straightforward to obtain the effective permeability

of this metamaterial as

μ = 1 −
[

ba2

γπ2

(

L�

μ0r
−

1

ζ

J0(ζ )

J1(ζ )

)

+
1

3

]−1

, (4)

where, we recall, ζ = (i + 1)wr
√

μ0ω/2ρ.

III. DIAMAGNETIC PROPERTIES

Analyzing expression (4), we can conclude that in the limit

of low frequency its real part tends to unity and its imaginary

part to zero, as expected for a nonmagnetic material. In the

opposite limit of high frequency, more specifically, when

ImZ ≫ ReZ (provided that the corresponding frequency is

within the quasistatic limitations), the real part tends to the

value

μ̄′ = 1 −
[

ba2

γπ2

(

� + ln
8

w
− 2

)

+
1

3

]−1

, (5)

which is below unity. We should emphasize that the latter

expression is independent of the absolute scale of the problem,

which only manifests itself in the level of dissipation (see

Sec. III E) and in the diamagnetic transition frequency (see

Sec. III F).

A few examples showing the general appearance of the

permeability (4) are provided in Fig. 2. We start with a

tetragonal lattice with a = 2.5 and b = 0.5 (this roughly

corresponds to an arrangement considered in Ref. 12) and

the normalized wire radius w = 0.1; the diamagnetic response

extends for a few orders of magnitude in frequency and reaches

an effective permeability of about 0.5 (see the dotted curves).
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FIG. 2. (Color online) Effective permeability for different lat-

tices: normal tetragonal lattice with a = 2.5, b = 0.5, w = 0.1

(dotted curves), shifted tetragonal lattice with the same parameters

(dashed curves), and shifted hexagonal lattice with a = 2.04, b =
0.02, w = 0.009 (solid curves). The real part is shown with red

thick lines and the imaginary part with blue thin lines. Frequency is

normalized to the threshold value ω0. Radius of the ring r = 500 μm.

However, a mere transition to a shifted tetragonal lattice with

the same parameters (dashed curves) provides a remarkable

improvement with the permeability going below 0.3. Further

enhancement is demonstrated with a shifted hexagonal lattice

with a more dense packing, a = 2.02, b = 0.02, w = 0.009,

where the permeability plummets to 0.06, with just a slightly

smaller frequency range. Note that, while the plots extend up

to the threshold frequency ω0, the actual physical limit for this

theory to be reliable is at about 0.1ω0. In these examples, the

ring radius was assumed to be 500 μm, but as we explain in

detail in Sec. III F, the problem is very well scalable.

The plots clearly show the predicted behavior, with the real

part of μ transiting from unity in the low-frequency limit to

diamagnetic values at higher frequencies, and the imaginary

part having its maximum in the area of transition. More

specifically, the maximum of the imaginary part corresponds

to the frequency ω̃, where ReZ ∼ ImZ; for certain parameters,

Imμ at its maximum may exceed the corresponding Reμ part.

A. Limitations of the theoretical approach

Before we proceed to a detailed parametric analysis, we

would like to indicate the limitations of the theory developed

above. The standard restrictions arising from a quasistatic

consideration, as discussed in Sec. II, are not so crucial for our

results because the system is nonresonant and the transition

to the diamagnetic regime typically occurs well below the

quasistatic validity threshold; these details are discussed in

Sec. III F.

More relevant is the precision in the calculations of

the lattice sum �, which implies the mutual inductance

be evaluated within a filament current approximation. This,

however, may be inaccurate for the nearest neighbors in case

the wire radius is not much smaller than the ring radius and,

at the same time, the lattice constants are not much larger than

the wire diameter. In such a case, current redistribution would

affect the mutual inductance.

To provide a quantitative evaluation of possible discrep-

ancy, we note the following: Given the symmetry of the

problem, it is clear that the most extreme current distribution

in this system would correspond to, effectively, two linear

circular currents flowing along the opposite points of the wire

cross section, as displaced from the wire center in z direction.

While we do not argue this is the actual distribution, this case

represents a maximum possible deviation from a filament cur-

rent approximation, thus being suitable for an upper estimate.

For such an extreme case, we can evaluate the effective mu-

tual inductance in a way, analogous to the mutual inductance

between the flat rings of finite width.16 It was shown that,

despite a nontrivial current profile in the ring cross section, for

inductance calculations, each ring may be represented with

two filament currents positioned within the cross section at a

certain distance from each other, and then the effective mutual

inductance can be calculated as the average between the four

emerging mutual inductances [see Eq. (6) and the text on

p. 1134 of the Ref. 16]. This method provides a very good

match to the exact numerical calculation based on full-wave

simulations.

Adopting this approach, we have checked how much the

mutual inductance calculated for the extreme configuration

described above differs from that between single filaments. As

expected, the discrepancy was only found to be remarkable

when b is close to 2w and w is not much smaller than unity.

In turn, this is reflected in the overall calculations of the lattice

sum � to a smaller extent, because only the nearest neighbors

are significantly affected. We note that the difference was

also visible for shifted lattices, although to a much smaller

degree; for sufficiently thin wire (w < 0.01) the discrepancy

is small even with b quite close to 2w. In the analysis below, we

take this concern into account and provide the corresponding

comparison where relevant.

B. General remarks on parametric features

Having achieved the desired result that the permeability (5)

is remarkably diamagnetic in a wide frequency range, we now

proceed to a more detailed parametric analysis and discussion

of the optimal configuration.

We can see that the lattice constants and type play a crucial

role in determining the minimum achievable value (5). First

of all, we note that a hexagonal lattice produces a stronger

diamagnetism through a larger density and slightly smaller

�; and then � can be minimized even further by choosing a

shifted lattice.

Then, a decrease in a and b generally works towards mini-

mizing μ̄, both through an increasing density. For minimizing

a > 2 there is no such freedom, but b can be made quite small.

The appearance of Eq. (5) may give an impression that μ̄

can be made arbitrarily small or even negative in the limit

b → 0. This, however, is not true because the decrease of b is

compensated by the corresponding increase in �. On the other

hand, μ̄ decreases with a growth of w, which acts against

the recommendation of making lattice constants as small as

possible.

The final balance can be numerically revealed from Eq. (5)

by assuming that the lattice constants are put to minimal

possible values for a given w. To obtain the asymptotic
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FIG. 3. (Color online) Asymptotic limits for the effective perme-

ability which can be achieved in shifted tetragonal lattice (dashed

green line) or hexagonal lattice (solid blue line), depending on

w with appropriately varied a and b. In each case, the lower

curves correspond to filament current approximation with the lattice

parameters varied as b = 2w and a = 2 + b, and the upper curves

correspond to an extreme current distribution (see the text) with

b = 2w/(1 + w) and a = 2 + b. The actual values must lie between

the two curves in each case.

limitations, a parametric analysis on w can be performed

taking formally a = 2 + b and b = 2w. This, however, is

increasingly inaccurate when w �≪ 1, and we therefore also

provide a calculation for the most extreme current redistribu-

tion (see Sec. III A for details), taking a small additional offset

between the rings so that b = 2w/(1 + w) and a = 2 + b.

Such calculations are reasonable for shifted lattices because

the rings in the neighboring layers in a shifted lattice get close

to each other orthogonally at a few points only (unlike those

in nonshifted lattices, lying next to each other along the entire

circumference).

The resulting dependence of μ̄′ on w for shifted lattices

is shown in Fig. 3. We can see that diamagnetic values

approaching 0.05 are likely to be achieved; however, there is no

need to take w much smaller than 0.01 because a sufficiently

low magnitude of μ̄′ is already achieved and very little progress

can be made by changing to smaller values of a, b, and w.

Note that for relatively large w > 0.1, the discrepancy between

the filament current model and maximal possible deviation is

quite large even for shifted lattices, so in this range it would

be necessary to rely on exact numerical calculations to assess

the corresponding design reliably.

C. Efficient tuning possibility

Despite the explicit quadratic dependence on a in Eq. (5),

the actual behavior of μ̄′ is not so trivial for shifted lattices,

because of the strong variations in the lattice sum �. We

illustrate this in Fig. 4, where in the case of the shifted

hexagonal lattice it is not even monotonic, showing an

additional local minimum at a ≈ 3.3. The reason for this is

an extremely strong initial decrease in � values for shifted

lattices when a increases, occurring because of the negative

contribution from the rings in the displaced layers, which,

through shifting, effectively transit from coaxial to almost

FIG. 4. (Color online) Minimal values of the effective permeabil-

ity in shifted (thick lines) or nonshifted (thin lines) tetragonal (dashed

green line) or hexagonal (solid blue line) lattices with various a. In

these examples, b = 0.05 and w = 0.02.

coplanar configuration. Their contribution is most negative

when the vertical overlap between the areas enclosed by

the rings vanishes, which is only achieved when the rings

are appropriately diluted in the plane so that in the shifted

configuration the rings do not have overlapping neighbors in

the adjacent layers.

Nonshifted lattices, on the contrary, feature a rapid mono-

tonic increase with a. This behavior is very promising for

implementing reconfigurable diamagnetism with the lattice

tuning mechanism,5 whereby the lattice structure can be

gradually controlled. Indeed, the difference between the

permeability for a shifted and nonshifted lattice can be a factor

of 8, and for tuning applications it is most efficient to use

hexagonal lattices with a ≈ 3.3 and small b (e.g., 0.05), where

the permeability can be continuously tuned between 0.66 and

0.08 by shifting the lattice in a mechanically reconfigurable

structure. In Fig. 5, we illustrate the efficiency of tuning by

showing the ratio of the permeability between nonshifted and

FIG. 5. (Color online) Tuning efficiency for hexagonal (solid blue

line) and tetragonal (dashed green line) lattices, calculated as the

ratio between the minimal values of the effective permeability in

the nonshifted and entirely shifted structure. Shown for various a at

b = 0.05 and w = 0.02.
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a

b

FIG. 6. (Color online) Minimal values of the effective permeabil-

ity (as indicated by the color bar) in shifted hexagonal lattices with

various a and b and fixed w = 0.01; note the logarithmic scale on b

(vertical axis).

fully shifted lattices with various a, with a fixed b = 0.05

and w = 0.02. An important observation is that quite specific

parameters are required for good tuning, otherwise the tuning

range can be rather small. The hexagonal lattice is dramatically

more efficient as compared with the tetragonal arrangement.

To provide a complete picture of the corresponding para-

metric dependence, we show a two-dimensional parametric

plot (Fig. 6), where μ̄′ is shown for a range of a and b

parameters for a shifted hexagonal lattice, calculated with

w = 0.01 (which suits the minimal lattice parameters used

for this figure). The plot shows that the overall dependence is

not so trivial and provides a useful insight for future design.

D. Minimal values of the permeability

To comment on the limiting values of μ̄′, we need to

simplify Eq. (5) by using an approximate expression for �.

By analyzing the numerically obtained values of � for various

lattices, we were able to conclude that the following functional

form fits the numerical data with a very good accuracy and can

be used when b < 1,

�|a→2 ≈ C +
D

b
+ ln(b), (6)

where the coefficients C and D depend on the lattice type

and a parameter (for example, for a shifted hexagonal lattice

with a → 2, C ≈ −1.95, D ≈ 2.03; for a shifted tetragonal

lattice, C ≈ −2.4, D ≈ 1.89). Taking, formally, b = 2w and

a = 2(1 + w), we obtain

lim
w→b/2

μ̄′ = 1 −
(

(2 + b)2

γπ2

[

D + b(C + ln 16 − 2)
]

+
1

3

)−1

,

where we now can take the limit of b → 0:

lim
w→b/2

μ̄′ b→0−−→ 1 −
(

4D

γπ2
+

1

3

)−1

. (7)

Clearly, this value must be larger than zero, so it is necessary

that D/γ > π2/6 ≈ 1.65; this requirement is fulfilled for all

the lattices. Formally, for the D and γ values corresponding

to the shifted hexagonal lattice, expression (7) would give

an ultimate limit at ≈0.034; however, this is unlikely to be

within a practical reach, keeping in mind the limitations and

approximations assumed with the above theory.

E. Dissipation in the diamagnetic range

The trend of the dissipation is less trivial as the imaginary

part of the permeability depends on frequency as well as

on w and r in a complex way. For the optimal parameters

discussed above, it is possible to express some of the

asymptotic dependencies in a simple form, where we introduce

a dimensionless frequency offset ν = ω/ω0. For the range

where skin effect is essential, we obtain

Imμ|w≫δ/r =
γπ2

4(1+w)2
δ
r

(

D + γπ2

12(1+w)2 + 2w(ln 16 − 2 + C)
)2

(8)

and for w ≪ 1 it can be further simplified as

Imμ|δ/r≪w≪1 =
γπ2

√
ρ/(η0rν)

2(D + γπ2/12)2
=

�
√

ρ/η0

2
√

rν
, (9)

where η0 =
√

μ0/ε0 and � = γπ2

(D+γπ2/12)2 is a dimensionless

coefficient that gathers all the quantities related to lattice ge-

ometry. For example, a shifted hexagonal lattice has � ≈ 1.28,

and a shifted tetragonal one has � ≈ 1.34. Then, for the rings

made of copper,
√

ρ/η0 ≈ 6.3 × 10−6 [m0.5], so the numerical

factor in Eq. (9) is about 4 × 10−6 [m0.5]. Expression (9) shows

that in the range δ/r ≪ w ≪ 1, dissipation increases with

diminishing r , but is approximately independent of w.

For much smaller w, such that the skin effect does not come

into play, another asymptotic dependence can be derived,

Imμ|w≪δ/r =
(γπ2/2w) (δ/r)2

(D + γπ2/12)2
=

2�(ρ/η0)

wrν
, (10)

where, for the same examples as above, the total numerical

coefficient is about ∼10−10m. This behavior features stronger

dependence on the absolute scale and now also on w.

The above asymptotic expressions, however, are only

suitable for rough estimates, and in the intermediate range

the use of the complete expression (4) is necessary. In Fig. 7

we show the magnitudes of Im(μ) calculated with (4) for a

wide range of w and r .

F. Absolute scaling of the problem

The presented analysis is quite general in terms of applica-

ble frequencies, so the results hold as long as the description

of the conductive rings in terms of the specified contour

parameters is valid. However, with increasing frequency the

resistance will generally increase, implying that the transition

to diamagnetic behavior at ω̃ will occur at a relatively

larger frequency. In other words, when diminishing all the

dimensions, ω̃ increases faster than the threshold frequency

ω0. This limits the range where artificial diamagnetism can be

observed at high frequencies, and our estimates show that with

frequency approaching the optical range (where the theory is

not applicable for other reasons anyway) diamagnetism is not

achieved with this method.

Indeed, the ratio ω0/ω̃ is proportional to r , which in this

sense reflects the absolute scale of the problem. For the optimal
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w

r

FIG. 7. (Color online) Decimal logarithm of the imaginary part

of the effective permeability (the scale is shown with the color bar)

observed at the relative frequency ν = 0.01 in a shifted hexagonal

lattice with optimal parameters for various w and r values. All the

quantities are shown in a logarithmic scale.

parameters discussed above (a → 2 + 2w and b → 2w) and

w well smaller than unity, it is also proportional to w:

ω0

ω̃
≈

η0

4ρ
wr for w ≪ 1, (11)

which is a useful equation for estimating quantitatively the

available range of diamagnetic response.

As the characteristic frequency ω̃ corresponds roughly

to the maximum of the imaginary part of the effective

permeability, at least an order of magnitude in frequency

should be allowed before a practically relevant diamagnetic

response is claimed. On the other hand, the frequency should

r

FIG. 8. (Color online) Real part of the effective permeability (the

scale is shown with the color bar) observed at various frequencies

between 1 Hz and 1 PHz in metamaterials with different ring radii

(from 10 cm to 10 nm). The white dashed line indicates a reliability

threshold taken as ω0/10, so only the data to the left from this line

can be used in practice; the abrupt cutoff to the white space on the

right of this line is the calculation threshold at ω0. The axes are in

logarithmic scale.

not exceed about 0.1ω0 to avoid capacitive coupling and spatial

dispersion. Therefore, the ratio (11) should be larger than

100 in order to have at least a small frequency range of

practical diamagnetism. For a good conductor like copper,

η0/ρ ≈ 2.5 × 1010 m−1, and therefore the absolute scaling

limitation is wr � 1.6 × 10−8, which requires r to exceed

about 200 nm, which is anyway outside the frame of our

analysis in terms of applicable frequency.

Thus, for example, with a ring radius of 1 μm the range of

practical diamagnetism falls between roughly 0.4 and 2.4 THz,

while with a radius of 1 mm an impressive range from

400 kHz to 2.4 GHz can be used. An overall impression of

the diamagnetic range is provided in Fig. 8, where the real part

of the permeability is plotted for a huge range of frequencies

and ring sizes (here, a shifted hexagonal lattice with a = 2.2

and b = 0.2 was used for calculations).

It is interesting to note that for good conductors, the dia-

magnetic transition at ω̃ typically occurs before the skin effect

becomes noticeably relevant, as the characteristic frequency

of the latter, ωs ∼ 2ρ/(μ0w
2r2

0 ) = ω̃/w, is always larger than

ω̃ for optimal parameters.

IV. CONCLUDING REMARKS

We have shown that with an appropriate choice of the

structural parameters in anisotropic lattices of closed rings,

rather low effective permeability—down to at least 0.05—can

be reached. The best characteristics are obtained with the wire

radius being as large as possible to fit the lattice geometry,

and shifted lattices provide a remarkable improvement. To

achieve the magnitudes below 0.1, both shifted tetragonal

and shifted hexagonal lattices are suitable, and the required

lattice constants can be about a < 2.2, b < 0.05 for tetragonal

configurations and about a < 3.5, b < 0.2 for hexagonal

configurations. For lower magnitudes, the shifted hexagonal

lattice is the only choice, allowing us to obtain a permeability

below 0.05 with a < 2.02 and b < 0.02.

These low values of magnetic permeability are expected in

a very wide frequency range, easily spanning several decades

in frequency, and are accompanied by quite small dissipation.

The required geometry involves quite a small fraction of metal,

making it useful for practical applications which require low-

weight anisotropic diamagnetic response, for example, in the

design of cloaking or levitating systems.

We have revealed the remarkable effect of the lattice type,

particularly of a shift of the neighboring layers, that can be

employed for making dynamically tunable diamagnetics with

the structural reconfiguration method.5 Indeed, implementing

that kind of tuning to our diamagnetic metamaterials would

result in a remarkable tunability range, making it possible to

change the magnetic permeability by a factor of 8 with a simple

lattice shift.

Finally, we should note that our analysis has been carried

out for circular elements in order to present the results in a

simple analytical form. However, our results suggest that using

those shapes which would provide a more dense packing, for

example, a tetragonal array of shifted squares, may yield even

smaller values of the permeability.

Achieving low permeability while keeping, at the same

time, low weight of the structure, can be quite helpful to
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facilitate magnetic levitation,17 and the array of conduc-

tive rings considered in this work appears to be suitable

for such use. Also, with the lowest nonresonant magnetic

permeability considered so far, this analysis may pave a

road towards the so-called MNZ (permeability near zero)

materials.18 We therefore believe that the analysis above

will bring a useful inspiration to future metamaterials

research.
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