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Abstract 12 

In this paper, a novel strategy to generate broad-band earthquake ground motions from the results 13 

of 3D physics-based numerical simulations (PBS) is presented. Physics-based simulated ground 14 

motions embody a rigorous seismic wave propagation model (i.e., including source-, path- and 15 

site- effects), which is however reliable only in the long period range (typically above 0.75 – 1 s), 16 

owing to the limitations posed both by computational constraints and by insufficient knowledge 17 

of the medium at short wavelengths. To cope with these limitations, the proposed approach makes 18 

use of Artificial Neural Networks (ANN), trained on a set of strong motion records, to predict the 19 

response spectral ordinates at short periods. The essence of the procedure is, first, to use the trained 20 

ANN to estimate the short period response spectral ordinates using as input the long period ones 21 

obtained by the PBS, and, then, to enrich the PBS time-histories at short periods by scaling 22 

iteratively their Fourier spectrum, with no phase change, until their response spectrum matches the 23 

ANN target spectrum. After several validation checks of the accuracy of the ANN predictions, the 24 

case study of the M6.0 Po Plain earthquake of May 29, 2012 is illustrated as a comprehensive 25 

example of application of the proposed procedure. The capability of the proposed approach to 26 

reproduce in a realistic way the engineering features of earthquake ground motion, including the 27 

peak values and their spatial correlation structure, is successfully proved. 28 

  29 
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Introduction 30 

Earthquake ground motion prediction tools underwent a major development in the recent years, 31 

mainly because of the increasing number of strong motion records, especially in the near-field of 32 

important earthquakes. This contributed to expand research on ground motion prediction equations 33 

(GMPEs), i.e., the empirical models providing peak values of ground motion across the entire 34 

frequency band of engineering interest, as a function of magnitude, of suitable measures of source-35 

to-site distance and of site conditions.  36 

Due to simplicity and to limited computational cost, GMPEs are among the most important 37 

ingredients of seismic hazard assessment. However, despite their overall effectiveness and ease-38 

of-use, the practical application of GMPEs presents several important shortcomings: (i) they 39 

provide only peak values of motion, whereas the use of non-linear time history analyses requiring 40 

reliable input motions is becoming more and more relevant within many applications of 41 

performance-based seismic design; (ii) although their number is continuously growing, the 42 

available records to calibrate a GMPE are still too few to cover the variety of situations, in terms 43 

of combinations of magnitude, distance, fault slip distribution, directivity, and shallow geological 44 

condition, which may cause a significant variability of ground motions in terms of amplitude, 45 

duration and frequency content; (iii) the data-driven calibration of GMPEs implies that the 46 

empirical coefficients vary when calibration datasets are updated; (iv) GMPEs encompass generic 47 

site conditions, represented for instance by means of the average shear velocity in the top 30 48 

meters, VS30, therefore neglecting the site-specific features, such as surface or buried topographies, 49 

basin edges, irregular soil layering, which may critically change the features of ground motion 50 

with respect to the generic site response; (v) the point-wise prediction by GMPEs cannot reproduce 51 

the spatial correlation structure of the peak values of motion at multiple sites, strongly limiting 52 
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their use for seismic hazard and risk assessment study at regional scale, such as within large urban 53 

areas. As a matter of fact, in such situations additional models describing the spatial correlation of 54 

ground motion have to be applied to standard GMPEs (see e.g. Jayaram and Baker, 2009; Esposito 55 

and Iervolino, 2012).  56 

A variety of procedures was proposed in the past to improve the above limitations of GMPEs and 57 

the accuracy of earthquake ground motion prediction (see Douglas and Aochi, 2008, for a 58 

comprehensive review). Among such procedures, boosted by the ever increasing availability of 59 

parallel high performance computing, 3D physics-based numerical simulations (PBSs) are 60 

becoming one of the leading tools to obtain synthetic ground motion time histories, whose use for 61 

seismic hazard and engineering applications is subject to growing attention and debate (see e.g. 62 

Bradley et al., 2017).  63 

Being based on a more or less detailed spatial discretization of the continuum and on the numerical 64 

integration of the seismic wave equation, carried out according to different methods (such as finite 65 

differences, finite elements or spectral elements), PBSs require a sufficiently detailed model of the 66 

seismic source, of the propagation path, and of the Earth crustal layers. To enjoy the effectiveness 67 

of semi-analytical solutions of elastic wave propagation, the shallow Earth’s structure is often 68 

modelled as a system of horizontal layers (see e.g. Spudich and Xu, 2002; Hisada and Bielak, 69 

2003). In this paper, we will refer only to those approaches where 3D numerical models of the 70 

shallow geological layers can be considered.  71 

Physics-based numerical modeling already proved in the recent past to be well suited for global 72 

(Graves, 1996; Wald and Graves, 1998; Pitarka et al., 1998; Komatitsch and Tromp, 2002a,b) and 73 

regional scale simulations (Bao et al., 1998; Olsen, 2000; Dumbser and Käser, 2006; Day et al., 74 

2008; Tsuda et al., 2011; Smerzini and Villani, 2012; Taborda and Bielak, 2014; Villani et al., 75 
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2014; Paolucci et al., 2015; Chaljub et al., 2015; Gatti et al., 2017), making potentially feasible 76 

the challenging problem of a multi-scale simulation from the seismic source to the structural 77 

response within a single computational model (Mazzieri et al., 2013; Isbiliroglu et al., 2015). 78 

Typically, PBSs are based either on a kinematic description of the co-seismic slip distribution 79 

model or on a spontaneous dynamic rupture process. Spatially correlated random field models of 80 

slip function parameters (e.g., Herrero and Bernard, 1994; Mai and Beroza, 2003; Crempien and 81 

Archuleta, 2015; Anderson, 2015) are often considered to provide a realistic level of complexity 82 

of the generated seismic wavefield and enhance its frequency content within physical constraints 83 

from seismological observations. However, even in the presence of an ideal seismic source model, 84 

exciting the whole frequency spectrum, the accuracy of the PBS in the high-frequency range is 85 

limited, on the one hand, by the increased computational burden as the mesh gets finer, and, on 86 

the other hand, by the lack of detailed knowledge to construct a geological model with sufficient 87 

details also at short wavelengths, especially for complex configurations. As a result, accuracy 88 

achieved by PBS is usually bounded up to 1 – 1.5 Hz, although some examples of higher frequency 89 

ranges covered by deterministic PBS, with good performance validations against records, have 90 

also been published (e.g., Smerzini and Villani, 2012, modeling the M6.3 L’Aquila near-source 91 

earthquake ground motion up to 2.5 Hz; Taborda and Bielak, 2014, modeling the M5.4 Chino Hills 92 

earthquake up to 4 Hz, Maufroy et al., 2015, simulating a sequence of small earthquakes in the 93 

Volvi basin, Greece, up to 4 Hz).  94 

Different recent research works have addressed the high-frequency limitation of PBS, such as in 95 

the framework of the Southern California Earthquake Center (SCEC) Broadband Platform, aiming 96 

to extend the frequency band of synthetics and to enable PBS to be used with confidence in 97 

engineering applications (see Goulet et al., 2015). Broad-band (BB) waveforms are generally 98 
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produced by a hybrid approach combining low-frequency results from deterministic PBS with 99 

high-frequency signals from stochastic approaches, typically through either point- or finite-source 100 

methods (e.g., Boore, 2003; Motazedian and Atkinson, 2005) or stochastic Green’s function 101 

methods (e.g., Kamae et al., 1998; Mai et al., 2010). Hybrid waveforms are then obtained by gluing 102 

the low-frequency and high-frequency portions of the spectrum with amplitude and phase 103 

matching algorithms (e.g., Mai and Beroza, 2003). Table 1 lists a sample of recently published 104 

studies of BB earthquake ground motions based on coupling low-frequency 3D PBS with high-105 

frequency stochastic contributions. 106 

Although it has been applied to many case studies worldwide, the hybrid approach may have some 107 

basic drawbacks, which prevent its use especially for regional applications: (i) typically, the low 108 

(from PBS) and high (from stochastic) frequency parts turn out to be poorly correlated, being 109 

generated through independent methods with different assumptions regarding the source and the 110 

propagation medium; (ii) the low and high frequency seismograms are combined around a cross-111 

over frequency fc, where the corresponding Fourier spectra are multiplied by weighting functions 112 

and summed up. Such operation may result in a Fourier spectrum of the hybrid broadband ground 113 

motion presenting artificial holes around the cross-over frequency and, to overcome this issue, 114 

may require a site-specific calibration of fc (see e.g. Ameri et al., 2012).  115 

In this paper we propose a novel approach to generate BB ground motions, which couples the 116 

results of PBS for a specific earthquake ground motion scenario with the predictions of an 117 

Artificial Neural Network (ANN), overcoming some of the main issues of hybrid modeling. The 118 

basic steps of the procedure can be summarized as follows: (1) the ANN is trained on a strong 119 

motion dataset, to correlate short-period (TT*) spectral ordinates with the long period ones 120 

(TT*), being T* the threshold period beyond which results of the PBS are supposed to be accurate; 121 
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(2) the trained ANN is used to obtain the short period spectral ordinates of the physics-based 122 

earthquake ground motion for periods below T* (Figure 1); (3) the PBS long period time histories 123 

are enriched at high frequencies with an iterative spectral matching approach, until the response 124 

spectrum matches the short period part obtained by the ANN. 125 

A detailed introduction of the procedure, denoted hereafter by ANN2BB, is given in the following 126 

chapters, with an application example to the PBS obtained for the Mw6.0 Po Plain earthquake of 127 

May 29, 2012 (Paolucci et al., 2015), for which a comprehensive validation exercise can be made, 128 

based on more than 30 strong motion records obtained at less than 30 km epicentral distance. Such 129 

validation aims at encompassing different key aspects to evaluate the applicability of physics-130 

based earthquake ground motion to engineering practice, not only in terms of the high-frequency 131 

content and of the proper attenuation of peak values with distance, but also in terms of the 132 

verification of the spatial correlation of peak ground motion values. 133 

Correlation of long and short period spectral ordinates through an ANN 134 

trained on a strong motion dataset 135 

Design and training of an ANN 136 

Artificial Neural Networks are generally used to estimate the non-linear relationship between a 137 

highly populated vector of input variables and a vector of output unknowns, for the correlation of 138 

which fast and closed-form rules cannot easily be applied. As a matter of fact, under mild 139 

mathematical conditions, any problem involving a continuous mapping between vector spaces can 140 

be approximated to arbitrary precision (i.e. within an error tolerance) by feed-forward ANNs which 141 

is the most often used type (Cybenko, 1989). Our purpose is to establish through the ANN a 142 

correlation between 𝑁𝑆𝑎𝐿𝑃 long period response spectral ordinates selected for 𝑇 ≥ 𝑇⋆, being 𝑇⋆ the 143 
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threshold period corresponding to the range of validity of PBS, with 𝑁𝑆𝑎𝑆𝑃 short period response 144 

spectral ordinates for 𝑇 < 𝑇⋆. A high-quality strong ground motion dataset (denoted in the 145 

following by SIMBAD, see Smerzini et al., 2014 for details) was used for training. SIMBAD 146 

consists of 𝑁𝑑𝑏  500 three components records from about 130 shallow crustal earthquakes 147 

worldwide, roughly homogeneously distributed in the MW range from 5 to 7.3 and epicentral 148 

distance Repi < 35 km. Quantitative information on site characterization, preferably in terms of 149 

VS30, is available for all stations.  150 

Two separate ANNs are considered and trained independently, one referring to the geometric mean 151 

of the horizontal components and one to the vertical one. As long as the database is updated with 152 

new strong motion records, the procedure can ideally be extended by training different ANNs 153 

separately, for different homogeneous datasets (such as for different soil classes) and/or for 154 

different components of motion (such as fault normal and fault parallel). In our case, the neural 155 

network is designed as a two-layers (i.e. nodes are grouped in layers) feed-forward (i.e. the arcs 156 

joining nodes are unidirectional, and there are no cycles) neural network with 𝑁𝑛ℎ sigmoid hidden 157 

neurons (the so-called activation functions) and a linear output neuron. The number of nodes in 158 

the input layer 𝑁𝑛𝑖  equals the number of input variables 𝑁𝑆𝑎𝐿𝑃. The number of nodes in the output 159 

layer 𝑁𝑛𝑜 equals the number of target values 𝑁𝑆𝑎𝑆𝑃 . With this kind of configuration, the ANN takes 160 

the name of Multi Layer Perceptron (Bishop, 1995; Bishop and Roach, 1992). The 161 

backpropagation of error was used in the training phase (McClelland et al., 1986). The idea is to 162 

propagate the error signal, computed in single teaching step, back to all connected neurons. Back-163 

propagation needs a teacher that knows the correct output for any input (supervised learning) and 164 

uses gradient descent methods (Levenberg, 1944; Marquardt, 1963) on the error to train the 165 

weights. In this work, a built-in neural network fitting tool available in Matlab, namely the package 166 
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nftool, was used. The nftool package solves the problem of data fitting using a two-layer feed-167 

forward network trained with the Levenberg-Marquardt algorithm. A simplified sketch of the logic 168 

scheme at the basis of the ANN training process is shown in Figure 2. 169 

Referring to Figures 1 and 2, the 𝑁𝑆𝑎𝐿𝑃 input parameters are \{𝐿𝑜𝑔10[𝑆𝐴(𝑇𝑗)]\}𝑗=1𝑁𝑆𝑎𝐿𝑃 , where SA is 170 

the acceleration response spectral ordinates at period 𝑇𝑗, ranging from the corner period 𝑇⋆(grey 171 

line in Figure 1) to 5 s. The outputs are 𝑁𝑆𝑎𝑆𝑃 ground motion parameters, specifically, 172 

\{𝐿𝑜𝑔10[𝑆𝐴(𝑇𝑘)]\}𝑘=1𝑁𝑆𝑎𝑆𝑃 , at periods 𝑇𝑘 = 0 (i.e. PGA = Peak Ground Acceleration), up to 𝑇⋆. Note 173 

that the ANN is designed to predict multiple outputs given multiple inputs: specifically, 174 

considering T*=0.75 s, as in this study, the number of outputs and inputs is 20 and 9, respectively, 175 

with a sampling equal to Tj = [0.75,0.8:0.1:1.0,1.25:0.25:5.0] s for the input and of Tk = 176 

[0,0.05,0.1:0.1:0.7] s. In such conditions, two common sets of weights w and biases b are 177 

iteratively adjusted to map the input to the hidden layer, as well as the hidden layer to the output 178 

layer.  179 

As for the training of the ANN, the adopted scheme is based on the random subdivision of the 180 

entire dataset of 𝑁𝑑𝑏 input-output data into three subsets (as implemented in Matlab nftool): (1) a 181 

training set, used to calibrate the adjustable ANN weights; (2) a validation set, made of patterns 182 

different from those of the training set and thus used to monitor the accuracy of the ANN model 183 

during the training procedure; (3) a test set, not used during ANN training and validation, but 184 

needed to evaluate the network capability of generalization in the presence of new data. This 185 

distinction helps limiting the problem of overfitting, which is a well-known shortcoming of ANN 186 

design. As a matter of fact, even though the error on the training set is driven to a very small value, 187 

the network may fail in generalizing the learned training patterns if the patterns of the training set 188 

do not sufficiently cover the variety of new situations. An early stop criterion was adopted to stop 189 
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the training phase when the error on the validation set starts growing. In our computations, the 190 

training/validation/testing sets were set to 85%/10%/5%. More specifically, before selecting the 191 

final network, different ANNs were constructed, for a total of 𝑁𝑡𝑟𝑎𝑖𝑛  = 50, each based on a 192 

different training subset randomly extracted among 95% of the records. The final ANN was 193 

selected as the one providing the best performance, i.e., the lowest mean square error on the 194 

remaining 5% of the dataset.  195 

A number of hidden neurons 𝑁𝑛ℎ = 30 was assumed, after a parametric analysis proving that this 196 

number provides a reasonable compromise in terms of accuracy of the network (see for details 197 

Gatti, 2017).  198 

 199 
Testing the ANN performance  200 

The performance of the selected ANN in predicting the actual recordings has been evaluated by 201 

computing the logarithmic residuals of the response spectral ordinates predicted by the ANN 202 

(SAANN) with respect to the observed ones from SIMBAD dataset (SAObs), i.e. log10(SAANN/SAObs). 203 

Figure 3 illustrates the residual bars corresponding to 1 for the geometric mean of horizontal 204 

components, as a function of T/T*, for different values of T*, corresponding to different possible 205 

intervals of validity of the PBS results, namely T*=0.50s (left panel), 0.75 s (center) and 1.0 s 206 

(right). The number of input and output parameters (𝑁𝑆𝑎𝐿𝑃, 𝑁𝑆𝑎𝑆𝑃) in the three cases are (22,6), (20,9) 207 

and (17, 11), respectively. Results are shown and compared for the training, validation and test 208 

phases. It is shown that, in terms of normalized period, performance is similar for the different 209 

values of T*, with an obvious tendency of larger uncertainties as period gets lower, being more 210 

distant than the corner period T*. In spite of this effect, it is noted that typically the accuracy of 211 

PGA prediction is higher. When expressed in non-normalized terms, the lower is T* the more 212 

accurate is the prediction. It is worth underling that, with few exceptions, the error of both the 213 
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validation and test phases is bounded to 0.3 in log10 scale (i.e., a factor of 2), which corresponds 214 

incidentally to the total standard deviation, log10, of typical GMPEs (see e.g. Cauzzi et al. 2015 215 

derived on a similar database). This suggests that, with respect to standard empirical approaches, 216 

the reduction of uncertainty is improved as the period gets close to T*.  217 

A similar exercise was made for training, validating and testing an ANN to predict short period 218 

vertical spectral ordinates, based on the same dataset. Results are shown in Figure 4 and denote, 219 

as expected, a slightly worst performance of the vertical ANN with respect to the horizontal one, 220 

owing to the generally poor correlation of short vs long period spectral ordinates of vertical ground 221 

motions. This is clear especially for the ANN trained for T*=1 s, with error bars of the validation 222 

and testing phases exceeding a factor of 3 (i.e., 0.5 in log10 scale) and with a significant bias on 223 

the negative side, showing that, for both the validation and test datasets, the ANN predictions 224 

underestimate significantly the observations. However, results get significantly better when 225 

decreasing T* and, already with T* = 0.75 s, the error bars do not exceed a factor 0.4 in log10 scale 226 

and the bias is significantly reduced. 227 

Note that the previous horizontal and vertical ANNs were trained on a dataset (about 500 three-228 

component waveforms), containing strong motion records within relatively limited epicentral 229 

distance and magnitude ranges. For this reason, we did not find a significant improvement on the 230 

results when distance and magnitude were considered as additional input parameters of the training 231 

phase, as it could be in case of training of more general ANNs on wider record datasets. On the 232 

other hand, more specific ANNs may be trained on subsets of records, aiming for example at 233 

distinguishing between soft and stiff soil conditions and, hence, at providing improved accuracy 234 

for site-specific evaluations. A check was made with such objective, as documented in Gatti 235 

(2017), but only a slight decrease of performance was found with respect to the ANN trained on 236 
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the complete dataset, as if the improved classification of records was not sufficient to balance the 237 

significant decrease of number of records for each ANN. As a final remark, although we did not 238 

make quantitative tests on the minimum number of records needed for robust estimates, our 239 

performance checks indicate that stable results are obtained only within the magnitude and distance 240 

ranges of the dataset, and extrapolation out of such ranges is not reliable. 241 

The ANN2BB procedure to produce broad-band strong ground motions from 242 

3D physics-based numerical simulations 243 

Based on the tests illustrated in the previous section, different ANNs may be trained for different 244 

values of T*, related to the frequency resolution of the numerical model (in this application, 245 

T*=0.75 s is considered). Therefore, this first step allows one to compute, for all PBS with range 246 

of validity T>T*, a site-specific ANN-based broad-band response spectrum, denoted in the 247 

following by ANN2BB, as well as maps of peak values of short period ground motion. Note that, 248 

at this stage, such BB response spectrum does not correspond to a specific waveform.  249 

To obtain BB time histories from the ANN2BB spectra, a spectral matching approach is used, 250 

similar to those adopted in the engineering practice to adapt a real accelerogram to a prescribed 251 

target spectrum (NIST, 2011), where the record is iteratively scaled either in the frequency domain 252 

(see e.g. Shahbazian and Pezeshk, 2010) or by wavelet transforms (e.g. Atik and Abrahamson, 253 

2010), with no phase change, until its response spectrum approaches the target within a given 254 

tolerance. In our case, instead of a recorded accelerogram, we consider the time history resulting 255 

from the physics-based simulation, and, as a target, the ANN2BB spectrum. In this work we 256 

selected the scaling in the frequency domain, but other spectral matching procedures can obviously 257 

be used.  258 
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The difficulty, with respect to the standard spectral matching approach, comes from the low-259 

frequency band-limited nature of the simulated time-history, which implies that the high-frequency 260 

content of the waveform, essentially consisting of numerical noise, is not usable for scaling. To 261 

overcome this issue, before spectral matching to the desired target ANN2BB spectrum, the high-262 

frequency portion of the simulated waveform was enriched by a stochastic component, by gluing 263 

the low and high-frequency parts with the procedure described in Smerzini and Villani (2012). For 264 

high-frequency signals, we successfully tested both the Sabetta and Pugliese (1996) and the Boore 265 

(2003) approaches, the latter implemented in the code EXSIM (Motazedian and Atkinson, 2005), 266 

and selected the result providing the best fit to the target ANN2BB spectrum. Note that, as spectral 267 

matching is achieved by scaling only amplitudes, the high-frequency random phases generated in 268 

the hybrid step are maintained.  269 

To summarize, the main steps of the ANN2BB procedure are the following: 270 

1) an earthquake ground motion scenario is produced based on 3D PBS, whose accuracy in terms 271 

of response spectral ordinates is limited to T  T*, owing to mesh discretization issues as well 272 

as to limited information on the geological models; 273 

2) an ANN is trained based on a strong motion records dataset to predict short period spectral 274 

ordinates (T < T*) based on long period ones (T  T*); 275 

3) for each simulated waveform, a ANN2BB response spectrum is computed, the spectral 276 

ordinates of which, for T  T*, coincide with the simulated ones, while, for T < T*, they are 277 

obtained from the ANN. Both horizontal and vertical components can be obtained, although 278 

with a lower level of accuracy for the vertical case; 279 

4) the simulated low-frequency waveform is enriched in the high-frequency by a stochastic 280 

contribution, characterized by the magnitude and source-to-site distance of the scenario 281 
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earthquake under consideration; 282 

5) the hybrid PBS-stochastic waveform is iteratively modified in the frequency domain, with no 283 

phase change, until its response spectrum matches the target ANN2BB spectrum. 284 

A case study: broad-band ground motions from the numerical simulations of 285 

the May 29 2012 Po Plain earthquake 286 

To test the proposed approach for the generation of BB ground motions and to verify the accuracy 287 

of results against observations during recent earthquakes, we considered as a case study the 288 

numerical simulation of the MW6 May 29 2012 Po Plain earthquake, Northern Italy. This 289 

earthquake is very meaningful for validation purposes, because of the availability of a significant 290 

number of near-source strong-motion records, some of which obtained at very short inter-station 291 

distances, as well as of the good knowledge on the complex geologic setting of the Po Plain, which 292 

enabled the construction of a robust 3D numerical model including its complex buried 293 

morphology. 3D physics-based numerical modelling of ground shaking during the May 29 2012 294 

Po Plain earthquake, has been addressed in a previous work (Paolucci et al., 2015), where the 295 

validation of simulated ground motions against recordings has been thoroughly analysed and 296 

discussed, limited to the frequency range of design of the numerical mesh.  297 

We aim herein at extending the validation to the simulated BB ground motions, encompassing 298 

several aspects of engineering relevance, from the comparison of BB simulated with records at 299 

selected near-source sites, as well as the spatial distribution of peak values of ground motion and 300 

their spatial correlation features.  301 

Review of the case study and main results 302 
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On May 20 and 29 2012, two earthquakes with moment magnitude MW of 6.1 and 6, respectively, 303 

occurred in the Po Plain region, Northern Italy, along a thrust fault system with a nearly East-West 304 

strike and dipping to the South (Luzi et al. 2013). The May 29 earthquake was extensively recorded 305 

by several accelerometric networks, making available a unique dataset of high-quality strong-306 

motion recordings in the near-source region of a major thrust event and within a deep soft sediment 307 

basin structure like the Po Plain. More than 30 recordings are available at epicentral distances less 308 

than 30 km and have been the basis for the validation of the 3D PBSs.  309 

Referring to Paolucci et al. (2015) for a detailed description of the spectral-element model, we 310 

limit herein to underline its main features. The model, with an extension of about 74 km x 51 km 311 

x 20 km, can propagate up to about 1.5 Hz and includes the following distinctive elements: (i) an 312 

ad hoc calibrated kinematic source model of the Mirandola fault with a major slip asperity in the 313 

up-dip direction; (ii) the 3D velocity model of the Po Plain which accounts for the pronounced 314 

irregularity of the base of Quaternary sediments, with thickness varying abruptly in a short distance 315 

range from few tens of m in the epicentral area down to several km; (iii) a linear visco-elastic soil 316 

model, with frequency proportional quality factor Q.  317 

The numerical model was found to predict with satisfactory accuracy, measured through 318 

quantitative goodness-of-fit criteria, the most salient features of near-source ground motion, such 319 

as, in particular, (i) the strong up-dip directivity effects leading to large fault-normal velocity 320 

pulses, (ii) the small-scale variability at short distance from the source, resulting in the out-of-321 

phase motion at stations separated by only 3 km distance, (iii) the prominent trains of surface 322 

waves propagating with larger amplitudes in the Northern direction and dominating ground motion 323 

already at some 10 km distance from the epicenter, (iv) the spatial distribution of ground uplift on 324 

the hanging wall of the fault, in substantial agreement with geodetic measurements, (v) the 325 
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macroseismic intensity distribution.  326 

Maps of peak values of ground motion  327 

The validation checks quoted in the previous section, and reported in detail by Paolucci et al. 328 

(2015), were limited to information extracted from the numerical results up to about 1.5 Hz, i.e., 329 

the range of validity of the PBS. We consider now additional tests, based on the BB results 330 

obtained with the ANN2BB procedure outlined previously.  331 

The spatial variability of peak values of ground motion is first addressed and compared with 332 

available observations. To this end, Figure 5 compares the maps of simulated PGA (geometric 333 

mean of horizontal components) obtained by (a) the ANN2BB procedure (steps 1 to 5 of the 334 

previous section), (b) the hybrid PBS-stochastic approach (steps 1 to 4) and (c) the PBS results 335 

filtered at 1.5 Hz (only step 1). The Sabetta and Pugliese (1996) approach was considered to 336 

produce the stochastic high-frequency portion of motion at step 4. On the same maps of Figure 5, 337 

the values of recorded PGA are also superimposed, taken from processed ITACA waveforms. In 338 

Figure 5d, recorded and simulated (ANN2BB) horizontal PGA values are shown as a function of 339 

the Joyner-Boore distance, RJB, and compared with the GMPE of Bindi et al. (2014), referred to 340 

as BI14. The latter was obtained assuming MW=6.0, reverse focal mechanism and VS30=220 m/s. 341 

The following observations can be made:  342 

- the proposed ANN2BB approach provides high-frequency ground motion predictions correlated 343 

to the low-frequency motion obtained by PBS. This is made evident by the similarity of the spatial 344 

pattern, related to source effects, of Figure 5a (ANN2BB) and Figure 5c (PBS), although PBS 345 

values are bounded because of the low frequency range of the simulations. Furthermore, from the 346 

comparison between the maps at top of Figure 5, it is apparent that the PGAs obtained by the 347 

present approach reflect some physical features related to the wave propagation phenomenon itself 348 
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(directivity, directionality, site conditions, etc.), that are missing from the stochastic approach. 349 

Namely, (i) the larger values of peaks on the northern side of the fault are consistent with the up-350 

dip directivity effects, (ii) the pronounced NW-SE alignment of the peak corresponds to the 351 

prevailing orientation of the submerged bedrock topography included in the 3D numerical model, 352 

thus giving evidence of a complex 3D site effect, as discussed in more detail by Paolucci et al. 353 

(2015);  354 

- there is an overall good agreement between the spatial distribution of simulated PGA and the 355 

recorded values, although simulations tend to be lower than records. This is consistent with a 356 

similar tendency of underestimation of recorded motions from PBS also in the long period range, 357 

as previously noted by Paolucci et al. (2015);  358 

- the comparison with the GMPE by BI14 puts in evidence that PGAs recorded within the Po Plain 359 

lie well below the median empirical prediction. This can be attributed to the reduction of PGA 360 

values that is usually noted at the surface of deep sedimentary basins (Lanzano et al., 2016). It is 361 

also noted that the ANN2BB predicted values are below the GMPE results, consistently with 362 

records, but their decay with distance is faster, probably due to an overestimation of damping 363 

within the shallow soil layers of the numerical model.  364 

Comparison between simulated BBs and recordings  365 

Performance of the ANN2BB approach can be evaluated by checking the BB simulated ground 366 

motions. For this purpose, we show in Figure 6, from left to right, the acceleration, velocity and 367 

displacement time histories of the NS component of the Mirandola (MRN) station, located at an 368 

epicentral distance of 4 km, in one of the areas mostly affected by the earthquake. From top to 369 

bottom, the figure shows in sequence the result of PBS, according to Paolucci et al. (2015), the 370 

stochastic waveform (STO) obtained using the Sabetta and Pugliese (1996) approach, the hybrid 371 
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(HYB) waveform obtained by combining PBS at low-frequency and STO at high-frequency, 372 

having selected 1.5 Hz as the cross-over frequency for gluing the low and high-frequency parts, 373 

the ANN2BB waveform obtained by scaling HYB to the target response spectrum based on the 374 

application of ANN to the PBS spectral ordinates. The last row of Figure 6 portrays the recorded 375 

(REC) waveform. Comparison is further clarified in Figure 7, in terms of response spectra (left) 376 

and Fourier spectra (right) of the waveforms in Figure 6.  377 

It turns out that both the HYB and the ANN2BB waveforms provide a remarkable approximation 378 

of recorded ground motion, both in time and frequency domain, enjoying for the MRN station a 379 

very good performance of the PBS at long periods, as confirmed by comparison with a larger set 380 

of stations, at different distances and azimuths (Figure 8). From this comparison, it is noted that 381 

the performance of ANN2BB is less satisfactory at those sites (e.g. MOG0) where the PBS results 382 

at long periods do not fit closely the observed values.  383 

The main advantage of ANN2BB vs HYB is that the high-frequency part is related through the 384 

ANN to the low-frequency one: therefore, as illustrated in the next section, a good agreement is 385 

also expected in terms of the spatial correlation of peak values of ground motion.  386 

Spatial correlation of peak values of ground motion 387 

The most important motivation driving the search for a recipe to produce BB from 3D physics-388 

based simulations using the ANN2BB approach, is that the correlation provided through the ANN 389 

between the low- and high-frequency parts of simulated ground motions is expected to ensure a 390 

realistic spatial correlation of peaks of ground motion also in the high-frequency range, not covered 391 

by the numerical simulations. For this purpose, a standard tool to quantify the spatial variability of 392 

a random process of spatially distributed samples is the semivariogram γ(h) (Webster and Oliver, 393 

2007) measuring, in general terms, the average dissimilarity of data at inter-station distance h. 394 
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Taking advantage of the well-known methods to model the spatial correlation between earthquake 395 

ground motion values (see e.g. Jayaram and Baker, 2009; Esposito and Iervolino, 2011; Loth and 396 

Baker, 2013), the semivariogram γ(h) and the corresponding correlation coefficient ρ(h) (Webster 397 

and Oliver, 2007) can be evaluated through the following steps: (i) computing the semivariogram 398 

by the method of moments (Matheron, 1965) under the hypothesis of second order stationarity, 399 

(iii) selecting the theoretical model of the semivariogram, (iii) estimating the parameters of the 400 

model, referred to as sill (i.e., the variance of the random process) and range (i.e., the inter-station 401 

distance at which γ(h) tends to the sill, indicating that motions are uncorrelated), by fitting the 402 

computed semivariogram values with the functional form chosen at the previous point and (iv) 403 

computing the correlation coefficient as the complementary to the semivariogram normalized by 404 

the sill. Referring to literature studies for the analytical background (Jayaram and Baker, 2009; 405 

Esposito and Iervolino, 2011; 2012), we note that, in this work, the residual terms, on which the 406 

semivariogram is computed, are evaluated with respect to an average trend defined as: 407 

𝑃(𝑅𝑙𝑖𝑛𝑒) = 𝑎 + 𝑙𝑜𝑔10(𝑅𝑙𝑖𝑛𝑒 + 𝑏)   (1) 408 

where P is the peak parameter of ground motion of interest (e.g., PGA) and Rline is the closest 409 

distance from the surface fault projection of the segment at the top edge of the rupture plane, which 410 

was found to be the best distance metrics for the Po Plain simulations (Hashemi et al., 2015), as 411 

well as for other case studies of normal and reverse fault earthquakes (Paolucci et al., 2016). 412 

Furthermore, a and b are regression coefficients calibrated either on records or on simulated 413 

results. 414 

Figure 9 shows the semivariograms as a function of the inter-station distance from both recorded 415 

and simulated ground motions along the NS component at the accelerometric stations illustrated 416 

in Figure 5. Symbols denote the semivariogram values associated with different response spectral 417 
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ordinates, specifically, PGA, SA(0.2s), SA(1.0s), SA(2.0s), both for the records (crosses) and for 418 

the BB results simulated either through the ANN2BB procedure (open dots) or the HYB procedure 419 

(filled squares). The functional form chosen to fit the corresponding semivariogram data is the 420 

exponential model (Cressie, 1985), shown by continuous and dashed lines for REC and ANN2BB, 421 

respectively. In analogy with previous studies (see e.g. Jayaram and Baker, 2009; Esposito and 422 

Iervolino, 2011), to provide a better representation at short separation distances, we have decided 423 

to fit manually the semivariograms starting from the least-square estimation. On each subplot of 424 

Figure 9 the values of range resulting from the best-fitting model are indicated. Note that larger 425 

values of the range, i.e., the inter-station distance at which the correlation coefficient drops to zero, 426 

means that correlation is preserved at larger distances.  427 

It turns out that the best-fitting exponential models on records and on the ANN2BB results are in 428 

good agreement. In both cases, the value of the range varies between 19 to 25 km, with a relative 429 

error between the two range estimates (i.e. from REC and ANN2BB) bounded between 1% (for 430 

SA 0.2s) and 20% (for PGA). This points out that the ANN2BB approach succeeds in reproducing 431 

accurately the spatial correlation structure of response spectral ordinates even at short periods. 432 

Instead, it is apparent that the application of the HYB procedure produces at short periods (see 433 

PGA and SA 0.2s) a semivariogram which is almost flat, thus denoting a zero correlation 434 

coefficient at all interstation distances. As a final remark, it is found that that the trend of ranges 435 

obtained with ANN2BB method is increasing with the vibration period, passing from 20 km for 436 

PGA to 24 km for SA 2.0s, in agreement with the other research works previously mentioned. 437 

Although the Po Plain earthquake considered in this work provided one of the widest set of near-438 

source records from moderate-to-large earthquakes worldwide, the number of stations has to be 439 

considered limited for the computation of the semivariograms. For this reason, it is not possible to 440 
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group the stations in order to study possible anisotropies in the features of spatial correlation of 441 

ground motion, because the number of stations in each sub-group would be too small. Instead, this 442 

is possible when using the results of numerical simulations, because the number of receivers may 443 

be made arbitrarily large.  444 

Figure 10 shows the correlation models for PGA, left, and SA 1.0s, right, obtained from both 445 

recordings and ANN2BB results. In addition to the results obtained at the accelerometric stations 446 

(solid lines), possible anisotropy patterns have been investigated by considering a sufficiently large 447 

set of synthetics receivers located in the Northern and Southern sector with respect to the fault at 448 

distances Rline lower than 10 km (N and S set, respectively). This figure points out an interesting 449 

feature of the ANN2BB simulated waveforms: when considering only receivers with Rline < 10 450 

km, both in the North and South direction, spatial correlation drops to 0 faster than when the whole 451 

set of receivers is considered (i.e., correlation distances are significantly shorter). This is very clear 452 

in the intermediate-to-long period range (see e.g. right side of Figure 10, referring to T = 1s), while 453 

this trend is less evident at short periods (see left side of the figure, referring to PGA), although it 454 

still appears for the receivers lying on the surface fault projection (Figure 10, left subplot, for Rline 455 

< 10 km, Southern side).  456 

It can be concluded that such spatial anisotropy features of peak values of earthquake ground 457 

motion are mainly related to near-source effects. More specifically, proximity to the extended 458 

seismic source produces a faster decay of spatial correlation at very short distances, owing to the 459 

small-scale spatial variability of ground motion induced by the heterogeneous fault rupture 460 

combined with complex site effects related to the approximately NS orientation of the submerged 461 

bedrock topography.  462 

Conclusions 463 
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In this paper we introduced the ANN2BB procedure, suitable to create realistic BB waveforms 464 

from 3D physics-based numerical simulations. It turns out that the performance of this procedure 465 

is rather good, provided that the simulations are accurate within a frequency band at least extended 466 

to approximately 1.5 Hz, roughly corresponding to T* = 0.75s. In such range, the ANN trained to 467 

correlate long period response spectral ordinates (T  T*) with those at short periods, was found 468 

to provide satisfactory results. The ANN used in this work was trained on a strong motion dataset 469 

consisting of about 500 records with moment magnitude from 5 to 7.3 and epicentral distance up 470 

to 35 km, but other ANNs can be trained with a similar purpose on wider datasets. Separate ANNs 471 

were trained on the geometric mean of the horizontal components and on the vertical components 472 

to allow the prediction of three-component ground motions. 473 

An extension of the training dataset is planned to encompass a wider range of magnitude, distance 474 

and site conditions. Furthermore, since all ANNs considered in this work are deterministic, i.e., 475 

for one set of input spectral ordinates at long period, a single set of output spectral ordinates at 476 

short period is provided, the training of stochastic ANNs is also envisioned, by defining weights 477 

and biases as random variables.  478 

As a comprehensive validation benchmark, we considered the strong motion records obtained in 479 

the near-source region of the May 29, 2012 Po Plain earthquake and the corresponding 3D physics-480 

based numerical simulations carried out by the spectral element code SPEED and illustrated in 481 

detail in Paolucci et al. (2015). Compared to a standard hybrid approach to produce BB waveforms, 482 

consisting of enriching the high-frequency portion of ground motion by a stochastic contribution, 483 

the proposed ANN2BB procedure allows one to obtain a similar realistic aspect of the waveform, 484 

both in time and frequency domains, but, in addition, it also allows one to obtain maps of short-485 

period peak values of ground motion which reproduce more closely the coupling of source-related 486 
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and site-related features of earthquake ground motion. And, as a further important asset of the 487 

proposed procedure, as also illustrated by a similar application in Thessaloniki (Smerzini and 488 

Pitilakis, 2017), it is suitable to portray in a realistic way the spatial correlation features of the peak 489 

values of ground motion also at short periods, with the possibility to point out possible spatial 490 

anisotropies, typically related to the near-source or complex geology conditions. 491 

To conclude, we remark that, while the correlation structure of the high-frequency peak values is 492 

simulated in a satisfactory way, the procedure is not suitable yet to obtain sets of waveforms with 493 

realistic spatial coherency features at high-frequency (measured in terms of the coherency 494 

operator, see Zerva, 2009), apt for use as input motions for seismic analyses of spatially extended 495 

structures. As a matter of fact, the high-frequency stochastic contributions added to the simulated 496 

motions need to be re-phased to reproduce properly travelling waveforms. This is probably the 497 

single major limitation still existing preventing yet to provide simulated BBs fulfilling all the 498 

characteristics of a real earthquake ground motion wavefield. 499 

  500 
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Strong-motion recordings of the May 29 2012 Po Plain earthquake were obtained from the ITalian 502 
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List of Figure Captions 731 

Figure 1. Main idea behind the proposed ANN-based approach to generate BB ground motions: 732 

for a given ground motion, response spectral ordinates at short periods, i.e., for periods TT*, 733 

where T* is the minimum period of validity of the physics-based numerical model, are computed 734 

from the 3D physics-based simulated response spectral ordinates at long periods.  735 

Figure 2. Logic scheme of the ANN training patterns: the long period spectral ordinates (in this 736 

case T* = 0.75 s) represent the teaching inputs, whereas the short period ones are the outputs 737 

predicted by the ANN. The number of neurons in the hidden layer is 𝑁𝑛ℎ = 30. 738 

Figure 3. ANN performance in predicting the horizontal components of SIMBAD records 739 

(geometric mean of horizontal components), expressed in terms of log10(SAANN/SAObs), where 740 

SAANN denotes the response spectral ordinates predicted by the ANN and SAObs is the observed 741 

ones. The performance is estimated at each vibration period T, here normalized with respect to the 742 

corner period T*. The error bars refer to the training (TRN), validation (VLD) and test (TST) set.  743 

Figure 4. Same as Figure 3, but for the ANN trained on the vertical components of records of the 744 

SIMBAD dataset.  745 

Figure 5.  Map of PGA (geometric mean of horizontal components) obtained by a) the proposed 746 

ANN2BB approach, b) the hybrid (HYB) approach by combining the PBS with the stochastic 747 

signals from the Sabetta and Pugliese (1996) method, c) the PBS filtered at 1.5 Hz. The filled dots 748 

superimposed on each map denote the PGA values recorded by the available strong-motion 749 

stations. d) ANN2BB simulated vs recorded values of PGA as a function of the Joyner-Boore 750 

distance, RJB, in comparison with the GMPE of Bindi et al. (2014), BI14.  751 

Figure 6. From left to right, acceleration, velocity and displacement time histories of NS 752 
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component at Mirandola (MRN) station, 29 May 2012 Po Plain earthquake. From the top to the 753 

bottom the subpanels show: (i) the physics based numerical simulation (PBS) filtered with fc = 1.5 754 

Hz; (ii) stochastic waveform (STO) according to Sabetta and Pugliese (1996); (iii) hybrid 755 

synthetics (HYB) obtained by coupling PBS at low frequency and STO at high frequency with a 756 

cross-over frequency of fc = 1.5 Hz; (iv) BB synthetics (ANN2BB) resulting by scaling the HYB 757 

upon the ANN-based short-period spectral ordinates; (v) records (REC). 758 

Figure 7. Same comparison as in Figure 6 but in terms of acceleration response (left) and Fourier 759 

Spectra (right) of NS component at Mirandola (MRN) station.  760 

Figure 8. 2012 Po Plain earthquake simulation: comparison between ANN2BB simulations and 761 

recordings at four accelerometric stations (MIR08, T0802, BON0 and MOG0) in terms of NS 762 

acceleration and velocity time histories (top panels) and acceleration response spectra (bottom). 763 

The location of the selected stations is shown in Figure 5.  764 

Figure 9. Semivariograms obtained using records REC (crosses) and the ANN2BB approach 765 

(circle) for PGA (top left), SA 0.2s (top right), SA 1.0s (bottom left) and SA 2.0s (bottom right). 766 

The corresponding best-fitting exponential models are denoted by solid line and dashed line for 767 

REC and ANN2BB, respectively. Moreover, for the short period response spectral ordinates (see 768 

top panel), the semivariograms (filled squares) and the corresponding best-fitting model (solid 769 

line) from HYB results are also shown for comparison. 770 

Figure 10. Spatial correlation models, (h), obtained from the REC and ANN2BB values obtained 771 

at the accelerometric stations (solid lines) for PGA (left) and SA 1.0s (right). The dash and dash 772 

dot lines show the correlation models computed using a larger number of ANN2BB receivers 773 

located in the Northern (N) and Southern (S) side with respect to the fault at Rline < 1 774 
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Tables 775 

Table 1. Selection of BB earthquake ground motion simulation case studies relying on hybrid 776 

approaches*. 777 

Publications fc  

[Hz] 

Methods 

(LF + HF) 

Area under 

study 

Validation 

Causse et al., 2009 1.0 SE + EGF  Grenoble, France against GMPE 
Graves and Pitarka, 

2010 
1.0 FD + SFF California, USA M6.4, Imperial Valley, 

1979 
M6.9, Loma Prieta 1989 

M7.3, Landers, 1992 
M6.7, Northridge, 1994 

Mena et al., 2010 0.5 FD + Sc-GF San Andreas 
fault, California, 

USA 

against GMPE 

Roten et al., 2012 1.0 FD + Sc-GF Salt Lake City, 
Utah, USA 

against GMPE 

Smerzini and 
Villani, 2012 

2.5 SE + SFF L’Aquila, Italy M6.3, L’Aquila, 2009 

Seyhan et al., 2013 1.0 FD + SFF California, USA against GMPE 
Ramirez-Guzman et 

al. 2015 
1.0 FD, FE +  

SFF, St-GF 
New Madrid 
seismic zone, 

USA 

against GMPE 

Iwaki et al., 2016 1.0 FD + St-GF Japan M6.7, Tottori, 2000 
M6.6, Chuetsu, 2004 

Razafindrakoto et 

al., 2016 
1.0 FD + SFF Christchurch area, 

New Zealand 
2010-2011 earthquake 

sequence 
Akinci et al., 2017 1.0 FD + SFF Marmara Sea, 

Turkey 
against GMPE 

* Low-frequency (LF) methods: FD = Finite Difference; FE = Finite Element, SE = Spectral Element. High-778 
frequency (HF) methods: SFF = stochastic finite-fault (Boore, 2003; Motazedian and Atkinson, 2005; Graves and 779 
Pitarka, 2010); EGF = Empirical Green’s functions (Hartzell, 1978); Sc-GF = scattering Green’s functions (Mai et 780 
al., 2010); St-GF = stochastic Green’s functions (Kamae et al., 1998). fc denotes the cross-over frequency where low 781 
frequency (from PBS) and high frequency (stochastic) synthetics are combined. 782 
  783 
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Figures 784 

 785 

Figure 1. Main idea behind the proposed ANN-based approach to generate BB ground motions: 786 

for a given ground motion, response spectral ordinates at short periods, i.e., for periods TT*, 787 

where T* is the minimum period of validity of the physics-based numerical model, are computed 788 

from the 3D physics-based simulated response spectral ordinates at long periods.  789 

0 km. 790 

 791 

Figure 2. Logic scheme of the ANN training patterns: the long period spectral ordinates (in this 792 

case T* = 0.75 s) represent the teaching inputs, whereas the short period ones are the outputs 793 

predicted by the ANN. The number of neurons in the hidden layer is 𝑁𝑛ℎ = 30. 794 
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 795 

 Figure 3. ANN performance in predicting the horizontal components of SIMBAD records 796 

(geometric mean of horizontal components), expressed in terms of log10(SAANN/SAObs), where 797 

SAANN denotes the response spectral ordinates predicted by the ANN and SAObs is the observed 798 

ones. The performance is estimated at each vibration period T, here normalized with respect to the 799 

corner period T*. The error bars refer to the training (TRN), validation (VLD) and test (TST) set.  800 

 801 

Figure 4. Same as Figure 3, but for the ANN trained on the vertical components of records of the 802 

SIMBAD dataset.  803 

 804 
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 805 

Figure 5.  Map of PGA (geometric mean of horizontal components) obtained by a) the proposed 806 

ANN2BB approach, b) the hybrid (HYB) approach by combining the PBS with the stochastic 807 

signals from the Sabetta and Pugliese (1996) method, c) the PBS filtered at 1.5 Hz. The filled dots 808 

superimposed on each map denote the PGA values recorded by the available strong-motion 809 

stations. d) ANN2BB simulated vs recorded values of PGA as a function of the Joyner-Boore 810 

distance, RJB, in comparison with the GMPE of Bindi et al. (2014), BI14.  811 

 812 
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 813 

Figure 6. From left to right, acceleration, velocity and displacement time histories of NS 814 

component at Mirandola (MRN) station, 29 May 2012 Po Plain earthquake. From the top to the 815 

bottom the subpanels show: (i) the physics based numerical simulation (PBS) filtered with fc = 1.5 816 

Hz; (ii) stochastic waveform (STO) according to Sabetta and Pugliese (1996); (iii) hybrid 817 

synthetics (HYB) obtained by coupling PBS at low frequency and STO at high frequency with a 818 

cross-over frequency of fc = 1.5 Hz; (iv) BB synthetics (ANN2BB) resulting by scaling the HYB 819 

upon the ANN-based short-period spectral ordinates; (v) records (REC).  820 

 821 
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 822 

Figure 7. Same comparison as in Figure 6 but in terms of acceleration response (left) and Fourier 823 

Spectra (right) of NS component at Mirandola (MRN) station.  824 
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 825 

Figure 8. 2012 Po Plain earthquake simulation: comparison between ANN2BB simulations and 826 

recordings at four accelerometric stations (MIR08, T0802, BON0 and MOG0) in terms of NS 827 

acceleration and velocity time histories (top panels) and acceleration response spectra (bottom). 828 

The location of the selected stations is shown in Figure 5.  829 



45 
 

 830 

Figure 9. Semivariograms obtained using records REC (crosses) and the ANN2BB approach 831 

(circle) for PGA (top left), SA(0.2s) (top right), SA(1.0s) (bottom left) and SA(2.0s) (bottom right). 832 

The corresponding best-fitting exponential models are denoted by solid line and dashed line for 833 

REC and ANN2BB, respectively. Moreover, for the short period response spectral ordinates (see 834 

top panel), the semivariograms (filled squares) and the corresponding best-fitting model (solid 835 

line) from HYB results are also shown for comparison. 836 
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 837 

Figure 10. Spatial correlation models, (h), obtained from the REC and ANN2BB values obtained 838 

at the accelerometric stations (solid lines). The dash and dash dot lines show the correlation models 839 

computed using a larger number of ANN2BB receivers located in the Northern (N) and Southern 840 

(S) side with respect to the fault at Rline < 1 841 
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