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Metallic structures with sharp corners harvest the energy of incident light through plasmonic

resonances, concentrating it in the corners and greatly increasing the local energy density. Despite its

wide array of applications, this effect is normally strongly dependent on how sharp the corners are,

presenting problems for fabrication. In this Letter, an analytical approach is proposed, based on trans-

formation optics, to investigate a general class of plasmonic nanostructures with blunt edges or corners.

Comprehensive discussions are provided on how the geometry affects the local field enhancement as well

as the frequency and energy of each plasmonic resonance. Remarkably, our results evidence the possibility

of designing broadband light harvesting devices with an absorption property insensitive to the geometry

bluntness.

DOI: 10.1103/PhysRevLett.108.023901 PACS numbers: 42.25.Bs, 42.70.�a, 73.20.Mf, 78.67.Bf

Surface plasmons (SPs) are coherent electron oscilla-
tions that offer subwavelength light confinement at a
metal-dielectric interface [1–4]. A metallic nanoparticle
of finite size usually sustains SP resonances at quantized
frequencies [1,2], but recent theoretical work has shown
that this no longer holds true for nanostructures with
singularities such as a sharp edge or corner [5,6].
Transformation optics [7] can explain this counterintuitive
phenomenon, which shows that the SP spectrum of a
singular nanoparticle is identical to that of an infinite
metallodielectric system and is therefore continuous rather
than discrete. The SP modes supported by a singular
plasmonic structure (such as the crescent [5,6] or kissing
cylinders [8]) propagate towards the singularity, slowing
down as they progress and never reaching the singularity.
Therefore, an extremely large field enhancement and a
continuous absorption cross section are expected over a
broad frequency band.

However, considering experimental realizations, singu-
larities or perfectly sharp boundaries in those structures are
unlikely due to limitations in fabrication techniques and
the surface tension of the metal. In real-world applications,
plasmonic nanostructures always contain blunt tips [9–18].
Therefore, the possibility of quantitatively examining how
the edge rounding at the sharp boundary will alter the
optical responses (particularly, the field enhancement and
light harvesting property) has great significance on both
theoretical and practical levels. While many nanostructures
with blunt edges have been specifically investigated with
numerical [12–14] or experimental methods [9–11,15–18],
there has never been a systematic strategy reported so far to
analytically deal with this problem. In this Letter, we
propose an analytical model for a general class of blunt
plasmonic devices by applying conformal mappings to the
truncated metallodielectric system associated with the

singular structures. To illustrate the usefulness of this
approach, we consider one of the most commonly used
singular structures, the two-dimensional (2D) nanocres-
cent, and study how the energy and bandwidth of each
plasmonic resonance can be tailored by tuning the geome-
try. The analytical treatment reveals that the resonant
properties of each SP mode are directly related to the
crescent thickness t and the vertex angle � formed at the
crescent tip [t and � are defined in Fig. 1(b)]. Interestingly,
by appropriately adjusting these parameters, a relatively
broadband absorption cross section nearly independent of
the tip bluntness can be obtained. This property is benefi-
cial for experimental realizations, since it relaxes the re-
quirements on the fabrication precision at sharp tips. With
regard to the local energy density, although the bluntness
causes a remarkable reduction of the maximum field
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FIG. 1 (color online). The coordinate transformation which
bridges (a) the truncated periodic metallodielectric system and
(b) the blunt crescent. Here, z ¼ xþ iy and z0 ¼ x0 þ iy0 are
usual complex numbers, D is the total dimension of the crescent,
a denotes the distance between the two crescent tips, t represents
the maximum distance between the inner and outer crescent
boundaries (referred to as the crescent thickness), � is the angle
formed at the crescent tips, and � denotes the angle between the
x axis and the outer boundary of the crescent.
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enhancement at the geometry tips, as predictable by intu-
ition, the field distribution at the rest part of the crescent is
almost unaffected. The proposed strategy is not restricted
to the specific structure we discuss here. By adopting
different transformations, it could be used to treat a general
class of 2D blunt nanostructures and even be extended to
three-dimensional (3D) cases, thereby providing a power-
ful tool for the design of practical plasmonic devices.

Figures 1(a) and 1(b) show the basic idea of our trans-
formation strategy and the general structure under inves-
tigation. In our recent study, an original approach based on
transformation optics has been proposed to study the opti-
cal responses of a series of singular plasmonic structures
[5,6]. For a singular structure that is difficult to analyze
with traditional electromagnetic methods, one could find a
shortcut by transforming it into another structure on which
the analytical solution may be easily found. For instance,
under a conformal mapping z0 ¼ a=ðez � 1Þ þ a=2 (with
the parameters a, z, and z0 defined in the figure caption of
Fig. 1), which links periodic infinitely long metallic slabs
[shown by dashed lines in Fig. 1(a)] and a crescent-shaped
cylinder with perfectly sharp tips [shown by dashed lines in
Fig. 1(b)], the absorption properties of the structures are
preserved. Thus, the singular crescent exhibits a continu-
ous absorption cross section over a broadband spectrum,
similar to the infinite metallodielectric plasmonic en-
semble. Now, we modify our strategy to study the blunt
nanocrescent, which is simply obtained by removing the
perfectly sharp tips of the singular crescent structure [see
the shaded (dark) region in Fig. 1(b)]. Accordingly, in the
initial space (the x-y frame), the infinite metallodielectric
system is truncated on both sides [see the shaded (dark)
region in Fig. 1(a)]. The distances from the dipole to the
two truncation points l1 and l2 determine, respectively, the
bluntness of each tip of the crescent:

�1ð2Þ¼ Dsin�tanð�=2Þ
jsinh½ðl1ð2Þþi�Þ=2�jjsinh½ðl1ð2Þþi�þi�Þ=2�j: (1)

Here, �1 and �2 denote the bluntness dimensions (or the
diameters at the two blunt tips). The remaining geometrical
parameters D, �, and � are all defined in the figure caption
of Fig. 1.

Under the condition that the dimension of the crescent is
sufficiently small (typically D � 40 nm), the near-field
approximation can be applied in our derivation. The dipole
arrays in the original space are transformed into a uniform
electric field E0

0, which enables a good approximation of an

incident plane wave. In this case, the material properties of
the nanostructure and the electrostatic potential are pre-
served under conformal mappings [5,6]. Therefore, we can
study analytically the resonant behavior of the blunt nano-
crescent under a plane wave illumination by solving the
problem of periodic truncated slabs in the quasistatic limit

[19]. Since the whole system under investigation has a
finite physical size, the SP modes are now distributed at
several discrete frequencies, with the resonant condition
given by

�
"sð!Þ � 1

"sð!Þ þ 1

�
2½en½ð2���Þ=ð�1þ�2Þ� � en½�=ð�1þ�2Þ��2

� ½en½2�=ð�1þ�2Þ� � 1�2 ¼ 0; (2)

where �1ð2Þ ¼ l1ð2Þ=�, n is the angular moment of the SP

modes, and "sð!Þ is the permittivity of silver at the fre-
quency !.
We first examine how the geometry bluntness affects the

number of SP modes and the distribution of these modes in
the frequency domain. Figure 2(a) depicts the number of
SP modes supported by four blunt silver crescents of differ-
ent shapes. The material property of silver is taken from the
experimental data [20] in all the derivations. Generally, the
number of SP modes decreases exponentially as the tip
bluntness increases. From Fig. 2(a), we can also see that
altering the crescent thickness t only leads to a slight shift
of the curve and increasing the tip angle � results in a
smaller slope of the curve. In other words, SP modes on the
crescent with a large tip angle are relatively robust to the
geometry bluntness. As we will show, this fact provides a
potential possibility for optimizing the absorption behavior
of the blunt structure; Fig. 2(b) displays the resonant
frequencies of a specific silver blunt crescent and the SP
dispersion of the corresponding singular structure (with the
same � and t). The black curve stands for the case of a
singular crescent where a continuous spectrum of interac-
tions with light is expected, and the red circles correspond
to the quantized modes exhibited by the blunt structure. It
is worth noting that these modes are equally spaced in the k
space, indicating a none-equal distribution in the frequency
domain, and the high-order resonances are compressed
towards the surface plasmon frequency !sp.
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FIG. 2 (color online). (a) Number of SP modes as a function of
the tip bluntness. Here, four crescents with different � and t
(shown in the inset) are considered. In all the cases, we assume
that the two tips of the crescent are equally blunt (�1 ¼ �2).
(b) The resonant features of a silver blunt crescent (� ¼ 9�,
t ¼ 0:5D, and �1 ¼ �2 ¼ 0:01D) and the corresponding singu-
lar structure.
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We next study the effect of the crescent shape on the
extinction properties of SP modes, and this discussion
finally leads to a blunt plasmonic structure for broadband
light harvesting. In the quasistatic limit, the extinction
cross section �ext and the scattering cross section �sca

of the crescent can be directly deduced from the power
dissipated by the dipole in the original x-y frame:

�x
ext ¼ �4k0 Im

�
�xx

1þ i��xx

��
D sin�

�1 þ �2

�
2
;

�y
ext ¼ �4k0 Im

�
�yy

1þ i��yy

��
D sin�

�1 þ �2

�
2
;

(3)

�x
sca ¼ 2k30

��������
�xx

1þ i��xx

��������
2
�
D sin�

�1 þ �2

�
4
;

�y
sca ¼ 2k30

��������
�yy

1þ i��yy

��������
2
�
D sin�

�1 þ �2

�
4
;

(4)

where k0 ¼ !
ffiffiffiffiffiffiffiffiffiffiffi
"0	0

p
is the wave number in free space

and the coefficients �xx, �yy, and � take the following

forms:
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where 
 ¼ ln½ð"s � 1Þ=ð"s þ 1Þ�, �1 ¼ e�=ð�1þ�2Þ, �2 ¼
eð2�����Þ=ð�1þ�2Þ, and �3 ¼ e�=ð�1þ�2Þ. The absorption
cross section is then deduced as �x;y

abs ¼ �x;y
ext � �x;y

sca.

Figure 3 shows the absorption spectrum (under x polariza-
tion) for four blunt crescents with different shapes (differ-
ent t and �) but the same bluntness dimension
(�1 ¼ �2 ¼ 0:01D). In each case, crescents of two
different sizes (D ¼ 20 nm and D ¼ 100 nm) are consid-
ered. (Note that whenD> 40 nm, the radiative damping is
no longer negligible. In our calculations, it is modeled as a
fictive absorbing dipole in the initial space [19].)
Numerical simulations performed using the software
COMSOL are compared with the analytical calculations,
and the good agreement demonstrates the validity of our
analytical model (see the Supplemental Material [19] for
more comparisons on different bluntness dimensions). It is
worth pointing out that, for structures with larger physical
sizes (e.g.,D ¼ 100 nm), the numerical results are slightly
redshifted from our theoretical predictions, which is a
result of ignoring retardation effects in the analytical
treatment.
Figure 3 demonstrates the strong dependence of SP

excitations on crescent shape. Firstly, we find that the
energy of higher-order modes is directly related to the
crescent thickness t. For a thin flat crescent shown in
Fig. 3(a) where t ¼ 0:04D, only the dipole mode couples
strongly to the incident light and all the higher-order modes
are absent or weakly excited. As the crescent thickness
increases to t ¼ 0:16D (while � is kept unchanged), two
high-order modes (with angular moment n ¼ 3 and 5) are
excited in turn [see Fig. 3(b)]. When t further increases to
0:5D, all the higher-order modes emerge consecutively
[see Fig. 3(c)]. The second point that can be observed is
that the tip angle � determines the linewidth and resonant
frequencies of the SP modes: from Fig. 3(c) to Fig. 3(d),
we keep t unchanged while increasing � to 45�. The
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FIG. 3 (color online). Normalized absorption cross sections
�x

abs=D for blunt crescents of different shapes: (a) � ¼ 9� and

t ¼ 0:04D, (b) � ¼ 9� and t ¼ 0:16D, (c) � ¼ 9� and t ¼ 0:5D,
and (d) � ¼ 45� and t ¼ 0:5D. In each case, the bluntness
dimension is fixed as �1 ¼ �2 ¼ 0:01D, and crescents of two
different sizes (D ¼ 20 nm and D ¼ 100 nm) are considered.
The shaded (brown) regions in the subfigures identify the visible
spectrum. Theoretical calculations are compared with numerical
simulations.
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hybridization of SPs at the crescent tips results in a blue-
shift and increased linewidths of all the modes (especially
for the lower-order ones), yielding a spread range of each
resonance. Finally, all the resonance bands overlap with
each other, giving rise to a continuous spectrum in the
visible frequency range. The absorption cross section of a
single cylinder is also plotted as a comparison to demon-
strate the broadband light harvesting property of the
crescent.

To further determine how the geometry bluntness affects
the absorption behavior of the crescent, we calculate
�x

abs=D while varying the bluntness dimension �1ð2Þ. The
absorption cross section is first calculated for a thin cres-
cent with a small tip angle [here, we use the same geometry
as shown in Fig. 3(b)]. As the bluntness dimension in-
creases, all the resonances are blueshifted and finally de-
generate at the surface plasmon frequency, as shown in
Fig. 4(a). Nevertheless, for the crescent geometry in
Fig. 3(d), the continuous absorption spectrum is nearly
independent of the bluntness dimension until � reaches
up to 0:04D. This surprising result evidences the possibil-
ity of designing broadband light harvesting devices robust
to the geometry bluntness.

In general, both the spectral position of the crescent and
the local field enhancement depend upon the geometry
bluntness. Therefore, in Fig. 5, we compare the normalized
electric fieldsE0

x=E
0
0 along the inner boundaries of the blunt

(red dashed line) and the corresponding singular (blue solid
line) crescents. As expected, the maximum field enhance-
ment is distinctly decreased from the order of 103 to 25 as
the claw tips are turned blunt. However, away from the
tip, the field only undergoes minor changes due to the
bluntness. It should be pointed out that quantummechanical
effects are not considered in our calculation. For subnan-
ometer bluntness dimensions, a more general quantum
description and nonlocal constitutive relation of the metal
may be necessary to further improve our analytical model
[21,22].

To conclude, this Letter describes a systematic method-
ology to address the dependence of resonance properties
and field enhancement of SP modes on the geometry of
blunt nanostructures. Our analytical study on 2D nanocres-
cents provides a unique understanding of the localized SP
modes and reveals the physics behind those phenomena.
Because of its ease of applicability, we anticipate that this
approach will be of value in understanding and predicting
the effects of edge rounding in a variety of plasmonic
structures, such as wedges [9–12], overlapping cylinders
[23], and rough surfaces [24,25]. In conjunction with a
recent 3D transformation optics approach [26], our analyti-
cal model may even be generalized to treat 3D plasmonic
structures with blunt tips. For example, a kissing spherical
dimer with a blunt touching point can be mapped to a
cylindrical plasmonic cavity, where the surface plasmon
excitations may be analytically described. Extended study
on this topic will be performed in our future work. Unlike a
numerical method, the analytical strategy considered here
allows for an efficient and rapid optimization of the nano-
structures, which not only opens the possibility of designing
a bluntness-independent wideband light harvesting device
but also has implications for numerous optical applications,
such as nonlinear phenomena and molecular spectroscopy.
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