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ABSTRACT

Context. Trojan asteroids orbit in the Lagrange points of the system Sun-planet-asteroid. Their dynamical stability make their physical
properties important proxies for the early evolution of our solar system.
Aims. To study their origin, we want to characterize the surfaces of Jupiter Trojan asteroids and check possible similarities with
objects of the main belt and of the Kuiper Belt.
Methods. We have obtained high-accuracy broadband linear polarization measurements of six Jupiter Trojans of the L4 population
and tried to estimate the main features of their polarimetric behaviour. We have compared the polarimetric properties of our targets
among themselves, and with those of other atmosphere-less bodies of our solar system.
Results. Our sample show approximately homogeneous polarimetric behaviour, although some distinct features are found between
them. In general, the polarimetric properties of Trojan asteroids are similar to those of D- and P-type main-belt asteroids. No sign of
coma activity is detected in any of the observed objects.
Conclusions. An extended polarimetric survey may help to further investigate the origin and the surface evolution of Jupiter Trojans.
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1. Introduction

Trojan asteroids are confined by solar and planetary gravity to
orbiting the Sun 60◦ ahead (L4 Lagrange point of the binary sys-
tem planet Sun) or behind (L5 Lagrange point) a planet’s posi-
tion along its orbit (Murray & Dermott 1999). Stable Trojans are
supported by Mars, by Jupiter, by Neptune, and by two Saturnian
moons. Because of their dynamical stability, they allow us to
look at the earliest stages of the formation of our solar system.
Saturn and Uranus do not have a stable Trojan population be-
cause their orbits are perturbed on a short time scale compared
to the age of the solar system. Terrestrial planets may support a
population of Trojan asteroids, (e.g. the Earth Trojan 2010 TK7
discovered by Connors et al. 2011), but so far no stable popula-
tion has been identified.

More than 6000 Trojans of Jupiter are known so far (Emery
et al. 2015). In the framework of the Nice model of the formation
of our solar system, Morbidelli et al. (2005) predicted the capture
of Jupiter Trojans from the proto Kuiper belt. While these pre-
dictions were invalidated by further simulations (e.g. Nesvorný
& Morbidelli 2012), Nesvorný et al. (2013) investigated the pos-
sibility of the capture of Jupiter Trojans from the Kuiper-belt re-
gion within the framework of the so-called jumping-Jupiter sce-
nario, and succeeded at reproducing the observed distribution
of the orbital elements of Jupiter Trojan asteroids. The model
by Nesvorný et al. (2013) supports the scenario in which the
majority of Trojans are captured from the trans-Neptunian disk,
while a small fraction of them may come from the outer asteroid
belt.

Unfortunately, direct spectral comparisons between the
optical properties of Jupiter Trojans with those of Kuiper-belt
objects (or trans-Neptunian objects, TNOs) show significant dif-
ferences. TNOs have a wide range of albedos that extend, in par-
ticular, to higher albedos, while all known Jupiter Trojans have
a low albedo and fairly featureless spectrum, all belonging to
“primitive” taxonomies, principally C-, D-, and P-types of the
Tholen (Tholen 1984) classification system (Grav et al. 2012).
These types are the most common ones in the outer part of the
main belt.

Emery et al. (2011) investigated the infrared properties of
Jupiter Trojans and report a bimodal distribution of their spec-
tral slopes. This bimodality is also seen in the albedos in the
infrared (Grav et al. 2012), although it is not apparent in the op-
tical albedo distribution. Emery et al. (2011) interpret the slope
bimodality as the observational evidence of at least two distinct
populations of objects within the Trojan clouds where the “less
red” group originated near Jupiter (i.e. either at Jupiter’s radial
distance from the Sun or in the Main Asteroid Belt), while the
“redder” population originated significantly beyond Jupiter’s or-
bit (where similar “red” objects are prevalent). Therefore, at least
the near-IR spectroscopy observations of Emery et al. (2011) are
broadly consistent with the widely accepted scenario suggested
by Morbidelli et al. (2005) and Nesvorný et al. (2013), while
the inconsistency in the optical albedo and spectral properties
could be naturally explained by the fact that TNOs migrated to
the Jupiter orbit have been exposed to a different irradiation and
thermal environment (Emery et al. 2015).
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Polarimetric measurements are sensitive to the micro-
structure and composition of a scattering surface. In the case of
the atmosphere-less bodies of the solar system, the way that lin-
ear polarization changes as a function of the phase angle (i.e.,
the angle between the sun, the target, and the observer) may re-
veal information about the properties of the topmost surface lay-
ers, such as the complex refractive index, particle size, packing
density, and microscopic optical heterogeneity. Objects that dis-
play different polarimetric behaviours must have different sur-
face structures, so that they probably have different evolution
histories. Polarimetric techniques have been applied to hundreds
of asteroids (e.g., Belskaya et al. 2015), as well as to a few
Centaurs (Bagnulo et al. 2006; Belskaya et al. 2010) and TNOs
(Boehnhardt et al. 2004; Bagnulo et al. 2006, 2008; Belskaya
et al. 2010). These works have revealed that certain objects ex-
hibit very distinct polarimetric features. For instances, at very
small phase angles, some TNOs and Centaurs exhibit a very
steep polarimetric curve that is not observed in main-belt as-
teroids. This finding is evidence of substantial differences in the
surface micro-structure of these bodies compared to other bodies
in the inner part of the solar system. It is therefore very natural
to explore whether optical polarimetry may help in finding other
similarities or differences among Jupiter Trojans, and between
Jupiter Trojans and other classes of solar system objects.

In this work, we carry out a pilot study intending to
explore whether polarimetry can bring additional constraints
that help to understand the origin and the composition of
Jupiter Trojans better. We present polarimetric observations
of six objects belonging to the L4 Jupiter Trojan popula-
tion: (588) Achilles, (1583) Antilochus, (3548) Eurybates,
(4543) Phoinix, (6545) 1986 TR6, and (21601) 1998 XO89. All
our targets have sizes in the diameter range of 50–160 km, and
represent both spectral groups defined by Emery et al. (2011).

From ground-based facilities, Jupiter Trojans may be ob-
served up to a maximum phase-angle of ∼12◦. Our observa-
tions cover the range 7−12◦ and are characterized by a ultra-high
signal-to-noise ratio (S/N) of ∼5000, so their accuracy is not lim-
ited by photon noise, but by instrumental polarization and other
systematic effects. Our observations are aimed at directly ad-
dressing the question of how diverse the polarimetric properties
of the L4 population of Trojans are and how they compare with
the polarimetric properties of other objects of the solar system.
With our data we can estimate the minimum of their polarization
curves and make a comparison with the behaviour of low-albedo
main-belt asteroids. Finally, by combining the polarimetric im-
ages, we can also try to detect coma activity (if any) with great
precision.

2. Observations and results
Our observations were obtained with the FORS2 instrument
(Appenzeller & Rupprecht 1992; Appenzeller et al. 1998) of the
ESO VLT using the well-established beam-swapping technique
(e.g., Bagnulo et al. 2009), setting the retarder waveplate at 0◦,
22.5◦, . . . ,157.5◦. For each observing series, the exposure time
accumulated over all exposures varied from a few minutes for
(588) Achilles up to 40 min for (6545) 1986 TR6.

2.1. Instrument setting

Jupiter Trojans are relatively bright targets for the VLT, there-
fore the S/N may be limited by the number of photons that can
be measured with the instrument CCD without reaching satura-
tion, rather than by mirror size and shutter time. The telescope
time requested to reach an ultra-high S/N is in part determined

Fig. 1. Principle of aperture polarimetry. The figure is explained in the
text (Sects. 2.2 and 2.2.1).

by overheads for CCD readout. The standard readout mode of
the FORS CCD has a conversion factor from e− to ADU of 1.25
and 2 × 2 binning readout mode. Each pixel size, after rebin-
ning, corresponds to 0.25′′. Therefore, for a 1′′ seeing, the 216−1
maximum ADU counts set by the ADC converter limits the S/N
achievable with each frame to ∼1000−1400 (neglecting back-
ground noise and taking into account that the incoming radiation
is split into two beams). To increase the efficiency, we requested
the use of a non-standard 1 × 1 readout mode for our observ-
ing run. This way, pixel size was reduced to 0.125′′, and with
a conversion factor of ADU to e− of 1.25, we could expect to
reach a S/N per frame of ∼2000−2800. We also requested spe-
cial sky flat fields obtained with the same readout mode. While
flat-fielding is not a necessary step for the polarimetry of bright
objects, we found that it improved the quality of our results be-
cause it reduces the noise introduced by background subtraction.
For consistency with previous FORS measurements of Centaurs
and TNO, our broadband linear polarization measurements were
obtained in the R filter.

2.2. Aperture polarimetry

Fluxes were calculated for apertures up to a 30-pixel radius
(=3.75′′) with one-pixel (=0.125′′) increments. Sky background
was generally calculated in an annulus with inner and outer radii
of 28 and 58 pixels (i.e. 4.5′′and 7.25′′), respectively. Imaging
aperture polarimetry was performed as explained in Bagnulo
et al. (2011) by selecting the aperture at which the reduced
Stokes paremeters PQ = Q/I and PU = U/I converge to a well-
defined value. Polarimetric measurements are reported the per-
pendicular to the great circle passing through the object and the
Sun adopting as a reference direction. This way, PQ represents
the flux perpendicular to the plane Sun-object-Earth (the scat-
tering plane) minus the flux parallel to that plane, divided by
the sum of these fluxes. For symmetry reasons, PU values are
always expected to be zero, and inspecting their values allows
us to perform an indirect quality check of the PQ values. This
“growth-curve” method is illustrated in Fig. 1 for one individual
case, while Figs. A.1 and A.2 show the same plot for all observed
targets.

Figures 1, A.1, and A.2 contain a lot of information, and it is
worthwhile commenting on them in detail. In the left-hand panel
of Fig. 1, the blue empty circles show the PQ values measured
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Table 1. Polarimetry and photometry of six Jupiter Trojans asteroids in the special R FORS filter.

Phase
Time Exp angle α PQ NQ PU NU

Date (UT) (s) OBJECT (◦) (%) (%) (%) (%) mR R(1, 1, α)

2013 04 12 04:40 400 588 9.31 −1.07 ± 0.02 −0.02 0.01 ± 0.02 −0.04 14.92 8.39
2013 04 18 01:16 96 Achilles 10.03 −1.07 ± 0.04 0.00 −0.07 ± 0.04 −0.06 15.00 8.43
2013 05 26 01:33 680 (1906 TG) 11.93 −0.98 ± 0.03 −0.02 −0.01 ± 0.03 0.01 ≤15.59 ≤8.62

2013 04 11 02:26 560 1583 9.15 −1.22 ± 0.02 0.02 −0.01 ± 0.02 −0.01 15.74 8.87
2013 04 18 04:13 480 Antilochus 9.75 −1.23 ± 0.03 −0.01 0.01 ± 0.03 0.02 15.89 8.98
2013 05 13 00:52 400 (1950 SA) 11.07 −1.25 ± 0.03 0.00 0.00 ± 0.03 0.02 15.96 8.90

2013 04 12 03:31 1280 3548 7.35 −1.18 ± 0.03 −0.02 −0.04 ± 0.03 0.03 16.73 9.93
2013 04 18 03:41 1450 Eurybates 8.21 −1.25 ± 0.03 −0.05 −0.04 ± 0.03 0.03 16.78 9.95
2013 04 19 04:31 1420 (1973 SO) 8.35 −1.31 ± 0.03 −0.03 0.02 ± 0.03 −0.04 16.72 9.88
2013 06 01 01:30 1760 11.18 −1.28 ± 0.04 0.00 0.03 ± 0.04 −0.08 ≤17.29 ≤10.16

2013 04 11 03:00 1440 4543 7.32 −0.91 ± 0.03 −0.02 0.00 ± 0.03 −0.02 ≤16.71 ≤9.82
2013 04 19 01:24 1660 Phoinix 8.40 −0.91 ± 0.03 0.02 −0.02 ± 0.03 0.01 16.78 9.85
2013 06 04 01:56 1920 (1989 CQ1) 10.96 −0.97 ± 0.03 −0.02 0.04 ± 0.03 −0.02 17.39 10.14

2013 04 12 04:08 1080 6545 8.79 −1.20 ± 0.03 0.03 0.02 ± 0.03 −0.04 17.24 10.43
2013 04 25 02:58 2400 (1986 TR6) 10.13 −1.04 ± 0.09 0.07 0.11 ± 0.10 −0.01 ≤17.37 ≤10.49
2013 06 05 01:25 2400 11.14 −1.25 ± 0.04 0.07 0.02 ± 0.04 −0.01 17.81 10.64

2013 04 11 03:40 1360 21601 6.83 −1.17 ± 0.03 0.02 −0.02 ± 0.03 −0.01 16.84 10.14
2013 04 19 05:10 1390 (1998 X089) 7.85 −1.18 ± 0.03 0.11 0.01 ± 0.03 −0.06 16.93 10.20
2013 05 26 02:27 1920 11.07 −1.13 ± 0.09 0.10 −0.07 ± 0.09 −0.01 ≤17.67 ≤10.72
2013 06 05 02:20 1920 11.36 −1.19 ± 0.03 −0.05 0.04 ± 0.03 0.05 17.59 10.58

Notes. PQ and PU are the reduced Stokes parameters measured in a reference system such that PQ is the flux perpendicular to the plane Sun-
Object-Earth (the scattering plane) minus the flux parallel to that plane, divided by the sum of the two fluxes. Null parameters NQ and NU are
expected to be zero within error bars. mR is the observed magnitude in the R filter, and R(1, 1, α) is the magnitude as if the object was observed at
geocentric and heliocentric distances =1 au at phase angle α. Photometric error bars are estimated a priori = 0.05.

as a function of the aperture used for the flux measurement, with
their error bars calculated from photon noise and background
subtraction using Eqs. (A3), (A4), and (A11) of Bagnulo et al.
(2009). The PQ values are offset to the value adopted in Table 1.
Ideally, for apertures slightly larger than the seeing, PQ should
converge to a well defined value, that should be adopted as PQ
measurement value in Table 1.

Practically speaking, Figs. 1 and A.1 clearly show that PQ
sometimes depends on the aperture in a complicated way, mainly
due to the presence of background objects that enter into the
aperture where flux is measured (see e.g. the case of Eurybates
observed on June 1 in Figs. A.1 and A.2.) The values reported in
Table 1 were selected through visual inspection of Figs. A.1, as
the value corresponding to the smallest aperture of a “plateau”
of the growth curve rather than to its asymptotic value.

Lower in the figure, the empty red circles show the null pa-
rameters offset to the value adopted in Table 1, and offset by
−0.5% for display purpose. The solid circle shows the aper-
ture adopted for the PQ measurement, and the corresponding NQ
value is shown with a dotted line. In practice, the distances be-
tween the solid line at −0.5% and the empty circles correspond
to the null parameter values, and the distance between solid line
and the dotted line shows the NQ value of Table 1. The physical
significance of the null parameters is discussed in Sect. 2.2.1.

The black solid line shows the logarithm of the total flux ex-
pressed in arbitrary units. In this context it does not have any di-
agnostic meaning, but demonstrates that polarimetric measure-
ments converge at lower aperture values than photometry and

suggests that simple aperture polarimetry leads to results more
robust than those of aperture photometry.

The right-hand panels of Figs. 1 and A.2 refer to PU and NU
and are organized in exactly the same way as the left-hand panels
of Figs. 1 and A.1, respectively. For quality-check purposes, the
aperture of PU was selected to be identical to that of PQ (see
Sect. 2.2.2).

2.2.1. Quality checks with the null parameters

The polarimetric measurements presented here were obtained
using the so-called beam-swapping technique; i.e., Stokes pa-
rameters are obtained as the difference between two observations
obtained at position angles of the retarder waveplate separated
by 45◦. This technique allows one to minimize spurious contri-
butions due to the instrument. For instance, the reduced Stokes
parameter PQ was obtained as

1
2

[
PQ(φ = 0◦) + PQ(φ = 90◦)

]
, (1)

where

PQ(φ) =
1
2

( f ‖ − f⊥

f ‖ + f⊥

)
φ

−

(
f ‖ − f⊥

f ‖ + f⊥

)
φ+45◦

 , (2)

where φ is the position angle of the retarder waveplate, and
f ‖ ( f⊥) is the flux measured in the parallel (perpendicular) beam
of the retarder waveplate.
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The null parameter NQ (NU) is defined as the difference be-
tween the PQ values obtained from distinct pairs of observations:

1
2

[
PQ(φ = 0◦) − PQ(φ = 90◦)

]
. (3)

Bagnulo et al. (2009) have shown that, in the ideal case, the re-
sults of repeated measurements of the null parameters are ex-
pected to be scattered about zero according to a Gaussian distri-
bution with the same σ as the PQ (PU) error bar. (Of course, we
do not expect a Gaussian distribution for the NQ values measured
on the same frames but with different apertures, since these are
not independent measurements.) The consistency of the null pa-
rameters with zero within the PQ error bars are therefore an indi-
rect form of quality check. For instance, an NQ value inconsistent
with zero could be due to the presence of a cosmic ray, or a back-
ground object or reflection in the aperture for some positions of
the retarder waveplate. These events would also affect the PQ
measurement, therefore one has to be wary of PQ measurements
that have high NQ values. Figures 1, A.1, and A.2 show that the
null parameters are scattered about zero well within 2σ.

2.2.2. Quality checks with PU

If the target is macroscopically symmetric about the scattering
plane, PU is expected to be zero. An individual PU measurement
that significantly deviates from zero means either that there is a
problem with the measurement (similar to what is discussed for
the null parameter) or that the object is not symmetric about the
plane identified by the object, the Sun, and the observer. When
considering a large sample, all PU measurements of different
objects should be scattered around zero. The null parameters
should be scattered around zero, and the null parameters nor-
malized by their error bar should be fit by a Gaussian with σ = 1
centred on zero.

Inspection of the distribution of PU parameters initially
showed a systematic offset by ∼−1σ. Another way to see exactly
the same effect is to calculate the average polarization position
angle measured from the perpendicular to the scattering plane:
we found 90.4◦ instead of 90.0◦. This 0.4◦ rotation offset can be
easily explained by an imperfect alignment of the polarimetric
optics and by an imperfect estimate of the chromatism of the
retarder waveplate. To compensate for the waveplate chroma-
tism in the R Bessel filter, we had originally adopted the rotation
suggested by the FORS user manual of −1.2◦. After inspecting
the PU values, we instead decided to adopt a rotation by −0.8◦.
Figure 2 shows the histograms of the PU , NQ, and NU values
normalized to their error bars. The marginal deviations from the
expected Gaussian distribution do not look systematic and may
only be ascribed to the sample still being relatively small statis-
tically.

2.3. Aperture photometry

The importance of acquiring simultaneous photometry and
polarimetry has probably been underestimated in the past.
Modelling attempts need both pieces of information, which are
only available for a handful of asteroids. However, at least with
certain instrument configurations, photometry may be a by-
product of polarimetric measurements. In the case of the FORS
instrument, an acquisition image is always obtained prior to in-
serting the polarimetric optics. This can be used to estimate the
absolute brightness of the target, if the observing night is photo-
metric. (In fact, even if this is not the case, one could in principle

Fig. 2. Distribution of the PU , NQ and NU parameters normalised by
the error bars, compared to a Gaussian with σ = 1.

observe the same field again during a photometric night and
calibrate the previous observations). Therefore we performed
aperture photometry from our acquisition images, and then we
calculated

R(r = 1 au,∆ = 1 au, α) = mR − 5 Log10 (r ∆)

where r and ∆ are the heliocentric and geocentric distances,
respectively, and mR is obtained from the instrument magni-
tude m(instr)

R using

mR = m(instr)
R − kRX − kVR (V − R)X + ZPR

where ZPR, kR, and kVR are the zero point and the extinction
coefficient in the R filter and the (V − R) colour index tabu-
lated in the FORS2 QC1 database, respectively, and X is the
airmass. Aperture photometry can also be performed on the im-
ages obtained with the polarimetric optics in, if these are cali-
brated. From a comparison between photometry obtained from
the acquisition images and photometry obtained from the polari-
metric images (obtained adding f ‖ and f⊥), we estimated that
zero points of the frames obtained in polarimetric mode with the
R special filter can be obtained by subtracting 0.31 from the zero
points obtained in imaging mode.

Both ZPR and kVR are night dependent (their values are
∼28.28 and 0.01, respectively). Based on the night-to-night vari-
ations, we a priori assigned an error of 0.05 and 0.0005 to the
zero point and to the colour term, respectively. ESO classifies
each night with the symbols S(table), U(known), or Non stable.
Unfortunately, only three out of our 20 observing series were
obtained during stable nights. The reason is that to maximize
the chances that our observations would be performed during
the desired time windows, we set only loose constraints on sky
transparency. However, since we obtained several frames during
an extended period of time (typically 30–60 min), it is still pos-
sible to roughly evaluate the stability of the atmospheric con-
ditions at the time of our observations. We also note that the
Line of Sight Sky Absorption Monitor (LOSSAM, available on-
line through the ESO web site) shows that most of the observing
nights were actually clear.

FORS acquisition images have a hard-coded 2×2 pixel read-
out mode. Aperture photometry was calculated on apertures up
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to 15 pixel, and background was calculated in an annulus with
inner radius of 20 and 30 pixels, respectively (corresponding to
5′′ and 7.5′′). The results of our photometric measurements are
also reported in Table 1, and Fig. A.3 shows the magnitude mea-
sured in each observing series.

2.4. Searching for coma activity

After background subtraction, all polarimetric frames of each
observing series were coadded (combining together both images
split by the Wollaston prism and obtained at different positions
of the retarder waveplate). The resulting frames were analysed as
explained in Sect. 3.2 of Bagnulo et al. (2010) to check for the
presence of coma activity. Briefly, we assumed that the number
of detected electrons e− of the object per unit of time within a
circular aperture of radius a is the sum of the contribution of the
nucleus plus the potential contribution of a coma, plus, possibly,
a spurious contribution due to imperfect background subtraction.
To check for the presence of a coma, it is probably sufficient
to compare the point-spread function (PSF) of the main target
with those of the background stars. However, if we are interested
in a more quantitative estimate (e.g. an upper limit), following
A’Hearn et al. (1984), we can assume that the flux of a weak
coma around the nucleus in a certain wavelength band can be
written as

FC = A f
(
ρ

2r∆

)2
F�, (4)

where A is the bond albedo (unitless), f the filling factor (unit-
less), r the heliocentric distance expressed in au, ∆ the geocentric
distance, and ρ the projected distance from the nucleus (corre-
sponding to the aperture). Finally, F� is the solar flux at 1 au,
integrated in the same band as FC, and convolved with the filter
transmission curve. Following the approach of Tozzi & Licandro
(2002), Bagnulo et al. (2010) have shown that if the derivative
of the flux with respect to the aperture converges to a constant
value k(C), then

A fρ = 1.234 × 1019 × 100.4 (m�−ZPm) r2
(

∆

dp

)
k(C), (5)

where m� is the apparent magnitude of the Sun (i.e., at 1 au) in
the considered filter, ZPm is the zero point in that filter for the
observing night, and dp the CCD pixel scale in arcsec (0.125′′

in our case). In Eq. (5) r and ∆ are measured in au and k(C) in
e− per pixel, and A fρ is obtained in cm. We found that in all
cases, A fρ is consistent with zero within a typical error bar of
10 cm (see Fig. 3). We conclude that there is no evidence of any
coma activity.

3. Discussion

All our polarimetric and photometric measurements are reported
in Table 1. In the following we first discuss the differences found
among our sample, searching for a correlation between polari-
metric properties and other characteristics of our objects, then
we consider Trojans as a homogeneous class to compare with
other atmosphere-less objects of the solar system.

Orbital constraints meant that all six Trojans asteroids were
observed in the negative branch, i.e. at those phase angles where
we expect that the polarization of the reflected light is parallel
to the scattering plane. We measured polarization values from
−1.3% to −0.9% in a phase-angle range 7−12◦. The variations
in polarization within the observed phase-angle range are small

Fig. 3. Flux (top panel) and its derivative (bottom panel) as a function
of the aperture for asteroid (6545) 1986 TR6 observed on 2013-06-05
(black solid circles and solid lines) and for a background star of similar
brightness (blue empty circules and dashed lines).

for all objects, yet, thanks to the high S/N of our observations,
it is possible to distinguish some different behaviours. Figure 4
shows the results of our polarimetric observations as a function
of the phase angle.

Several functions have been proposed to fit polarimetric
measurements versus phase angle α. One of the most popular
ones is the one proposed by Lumme & Muinonen (1993):

P(α) = b sinc1 (α) cosc2

(
α

2

)
sin(α − α0) (6)

where b is a parameter in the range [0, 1], α0 is the inversion
angle (typically <∼30◦), and c1 and c2 are positive constants.
Equation (6) was used, for example, by Penttilä et al. (2005)
for a statistical study of the asteroids and comets. The number of
our data points per object is even smaller than the number of free
parameters, therefore it does not make sense to fit our data with-
out making assumptions (such as about the inversion angle of
the polarimetric curves). However, assuming that the minimum
of the polarization is reached in the phase-angle range 6−12◦
(a typical range for low-albedo objects would be 8−10◦), even
a simple visual inspection allow us to estimate the polarization
minima of the various objects and, in particular, to conclude that
our sample does not show homogeneous polarimetric behaviour.

The object (3548) Eurybates is the largest member of a dy-
namical family mainly consisting of C-type objects (Fornasier
et al. 2007). It has the deepest minimum (Pmin ∼ −1.3%). All the
remaining objects belong to the D-type taxonomic class (Grav
et al. 2012). The objects (588) Achilles and (4543) Phoinix ex-
hibit a shallower polarization curve (i.e., lower absolute values
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Fig. 4. Polarimetric measurements of six Jupiter Trojans asteroids.

of the polarization) than the other four Trojans. Figure 4 also
suggests that the minimum of the polarization curve of (588)
Achilles is reached at a phase-angle value that is lower than that
of (4543) Phoinix. Objects (1583) Antilochus, (6545) 1986 TR6,
and (21601) 1998 X089 all seem to have similar polarimetric be-
haviour, with a minimum ∼−1.2%.

Before progressing in our analysis, it is important to discuss
whether the observed diversities are real. This question arises
since our photon-error bars are very small (a few units in 10−4),
and compared to them, instrumental or systematic errors may
not be negligible. However, the relatively smooth behaviour with
phase angle and the good consistency with zero of both the PU
and the null parameters suggest that our photon-noise error bars
are probably representative of the real error. Exceptions to the
smooth behaviour are represented by the point at phase angle
10.1◦ of asteroid (6545) 1986 TR6 (obtained on April 25 2013)
and the point at phase angle 8.4◦ of asteroid (3548) Eurybates
(obtained on April 19 2013). Figures A.1 and A.2 show that, in
the former case, polarimetric measurements depend strongly on
the aperture and fail to converge to a well-defined value, proba-
bly due to the strong background, therefore the observed discrep-
ancy (still within the error bar) is due to a larger error than what
is typical in our dataset. The case of asteroid (3548) Eurybates
is more puzzling. There is nothing in Fig. A.1 that suggests a
problem with aperture polarimetry in any of the observations,
therefore one may hypothesize that the abrupt change observed
between the point at phase 8.1◦ and the point at phase angle 8.4◦
is due to asteroid rotation.

The rotation periods of the observed Trojans range from
7.306 h for (588) Achilles to 38.866 h (4543) Phoinix, and their
ligtcurves amplitudes are <∼0.3 mag. While during an observing
series we do not expect short-term photometric variations caused
by asteroid rotation, it is possible that polarimetric data depend
on the rotation phase at which observations were obtained.

Polarimetric behaviour may depend on the rotational phase
of the observations. Although rarely observed, one notable ex-
ample is that of asteroid (4) Vesta, with a rotational polarimet-
ric amplitude of ∼0.03% (Wiktorowicz & Nofi 2015) to 0.1%
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Fig. 5. Proper orbital elements of 5020 numbered and multi-opposition
Trojans appearing in the database by Knezevic & Milani (last up-
dated in June 2014; available at http://hamilton.dm.unipi.it/
~astdys2/propsynth/tro.syn). The six Trojans observed in this
work are indicated by the red points and identified by number.

(Lupishko et al. 1988). To test whether our polarimetric data are
rotationally modulated, we calculated the rotation phase shift be-
tween observations of each object and found, for instance, that
a large shift (0.36) occurs between the observations at phase an-
gles 6.8◦ and 7.8◦ of asteroid (21601) (1998 X089). However,
the polarization values at these phase angles are consistent
with each other, and overall, the polarization curve is relatively
smooth. By contrast, the rotation phase shift between phase an-
gles 8.2◦and 8.4◦ of asteroid (3548) Eurybates is only 0.1 of
a rotation period. These differences may, therefore, not be due
to rotation but instead to photon noise fluctuations or to small
changes in the (already small) instrumental polarization. We
conclude that there is no obvious evidence of a polarimetric
modulation introduced by asteroid rotation in our data. On the
other hand, our sample shows a polarimetric behaviour that is
not perfectly homogeneous, which must reflect some difference
in their surface structure and/or albedo.

3.1. Searching for correlation with dynamical and surface
properties

3.1.1. Proper orbital elements

No strong correlations have been identified yet between the
physical and orbital properties of Trojans, although there appears
to be a bimodality in spectral slopes (Szabó et al. 2007; Roig
et al. 2008). In confirming a similar bimodality within a sam-
ple of near-IR spectra of Trojans, Emery et al. (2011) point out a
possible weak correlation with inclination amongst their less-red
population. We have searched for trends between polarimetric
behaviour and orbital properties in our sample. Figure 5 shows
the proper orbital elements1 of Jupiter Trojans with the six ob-
jects observed in this work denoted by red points and identified
by their number. All the objects, except (588) Achilles, have low
(.0.05) proper eccentricity and high (>15◦) libration amplitude.
We note that the two objects with a shallow polarization curve –
(588) Achilles and (4543) Phoinix – also have the highest proper
eccentricity in our sample. However, since the eccentricity of
(4543) Phoinix (0.059) is only marginally higher than those of
(3548) Eurybates and 21601 (1998 X089) (0.044 and 0.053, re-
spectively), and given the small size of our sample, we do not at-
tach any high statistical significance to this observation. Finally,

1 These are constants that parameterize the evolution of their osculat-
ing elements, the latter varying with time due to planetary perturbations
(Milani, CeMDa, 1993).
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Table 2. Some parameters of the observed Jupiter Trojans.

Diameter HV (α = 0◦) Albedo estimates
Pmin WISE Akari this DWISE + DAkari +

Object Type (%) (km) (km) WISE Akari work WISE Akari Hthis work Hthis work

1 2 3 4 5 6 7 8 9 10 11 12
588 DU −1.10 130.1± 0.6 133.2± 3.3 8.47 8.67 8.45 0.043± 0.006 0.035± 0.002 0.044 0.042

1583 D −1.25 108.8± 0.5 111.7± 3.9 8.60 8.60 8.97 0.054± 0.004 0.053± 0.004 0.039 0.037
3548 C −1.35 63.9± 0.3 68.4± 3.9 9.80 9.50 9.79 0.052± 0.007 0.060± 0.007 0.053 0.046
4543 D −0.95 63.8± 0.4 69.5± 2.2 9.70 9.70 10.06 0.057± 0.017 0.049± 0.003 0.041 0.035
6545 D −1.25 51.0± 0.6 10.00 10.64 0.068± 0.009 0.038

21601 D* −1.20 54.9± 0.4 56.1± 1.9 9.90 9.40 10.41 0.064± 0.012 0.100± 0.007 0.040 0.039

there appears to be no trend linking polarization behaviour with
inclination; both (588) Achilles and (4543) Phoinix have incli-
nations within 1σ of the mean for the four other objects.

3.1.2. Albedo

It is well known that the minimum of the polarization is inversely
correlated to the albedo; i.e., the higher the absolute value of
the minimum, the lower the albedo (e.g. Zellner et al. 1977a;
Cellino et al. 2015). In fact, various authors have tried to cali-
brate a relationship

log p = C1 log Pmin + C2 (7)

to estimate the albedo p from polarimetric observations. For
instance, Lupishko & Mohamed (1996) give C1 = −1.22 and
C2 = −0.92; Cellino et al. (2015) give C1 = −1.426 ± 0.034 and
C2 = −0.917 ± 0.006.

However, it is known that Eq. (7) is only an approximation
that does not necessarily produce accurate albedo estimates (e.g.
Cellino et al. 2015). In particular, a saturation effect may oc-
cur for the darkest objects, which was discovered in the labo-
ratory for very dark surfaces (Zellner et al. 1977b; Shkuratov
et al. 1992): the depth of negative polarization increases as the
albedo decreases down to ∼0.05, but a further decrease of the
albedo results in a decrease in the absolute value of the polariza-
tion minimum. This effect was observed for the very dark F-type
asteroids by Belskaya et al. (2005; see also Cellino et al. 2015).
In the case of the observed Trojans, the albedo estimated from
Eq. (7) and from our polarimetric minima are of the order of
0.08–0.12, which is inconsistent with what has been found from
independent estimates of the albedo. We conclude that the po-
larimetric measurements of our Trojans are also in the regime of
“saturation” similar to what was observed for F-type asteroids.

In fact, the albedo estimates from the WISE (Grav et al.
2012) and Akari (Usui et al. 2011) mid-IR surveys lead to con-
tradictory conclusions. For instance, according to Akari data
(Col. 10 of Table 2), (588) Achilles and (4543) Phoinix (that
show the shallower polarization minima) are actually the dark-
est objects. This finding is somehow contradicted by the WISE
albedos (Col. 9), according to which (588) Achilles would still
be the darkest object in our sample, but (4543) Phoinix would
have an albedo higher than that of (1583) Antilochous and
(3548) Eurybates. Albedo estimates strongly depend on the val-
ues of absolute magnitudes2 adopted in the surveys (see Cols. 6
and 7). It is therefore of some interest to recalculate them using
our photometric measurements in Table 1.

2 The absolute magnitude H is the magnitude that would be measured
in the V filter if the asteroid was observed at geocentric and heliocentric
distances =1 au and phase angle α = 0◦.

Fig. 6. Relationship between albedo and polarization minimum Pmin for
asteroids (open symbols) and Trojans (filled symbols).

To calculate the absolute magnitudes, we need to know
magnitude-phase dependences of our targets. Shevchenko et al.
(2012) have shown that D-type Trojans are characterized by a
linear magnitude-phase dependence down to small phase angles
without the opposition effect, i.e., that a linear fit gives a more
precise estimate of the absolute magnitudes of the D- and P-type
Trojans compared to what can be estimated with the so-called
HG function (Slyusarev et al. 2012). For the D-type asteroids,
we therefore performed a linear extrapolation to zero phase an-
gle assuming a 0.04 mag/deg slope, which is typical of these ob-
jects. For the C-type (3548) Eurybates, we assumed a non-linear
magnitude-phase dependence similar to that of C-type asteroids
(Belskaya & Shevchenko 2000). To calculate the absolute mag-
nitudes H- in the V-band, we adopted the literature V−R colours
of these objects, when available, or assumed V − R = 0.45 (see
Fornasier et al. 2007). Our estimates of the absolute magnitudes
H are shown in Col. 8 of Table 2. Although our photometric
measurements agree with the measurements of Cols. 6 and 7,
they exhibit a systematic negative offset, which may be consis-
tent with the findings by Pravec et al. (2012) of a systematic
bias in the absolute magnitudes of asteroids given in the orbital
catalogues. Using our revised absolute magnitudes and diame-
ters from WISE and Akari surveys, we calculated the albedos of
our objects again. Our new albedo estimates (Cols. 11 and 12
of Table 2) are no longer as scattered as the original estimates
from Usui et al. (2011) and Grav et al. (2012), but actually very
similar for all five D-type Trojans. The relationship of Pmin and
albedo based on the updated data on albedos is plotted in Fig. 6.
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Table 3. Polarimetric properties of some atmosphere-less objects.

Pmin αmin αinv
Object Nmin (%) (◦) Ninv (◦)
Trojans 5 −1.15± 0.15 9± 1 0 >∼17
P-type 11 −1.29± 0.22 8± 2 4 19.2± 1.0
F-type) 4 −1.17± 0.11 7± 2 4 16.1± 1.4
G- and C-type 20 −1.70± 0.20 9± 2 9 20.8± 0.6
Centaurs 4 −1.44± 0.47 ∼2? 0 >∼6
Small TNOs 0 <–1.5 >2 0 ?

Notes. The number of objects for which polarization minima (Pmin at
αmin) and inversion angles (αmin) were measured is indicated by Nmin
and Ninv, respectively.

Data for Trojans are within the range of the low albedo asteroids.
The saturation effect for low-albedo asteroids is fairly evident.

If our new estimates of the albedos are correct, then the dif-
ferences observed between (4543) Phoinix, (588) Achilles,
and the group of three asteroids (1583) Antilochus,
(6545) 1986 TR6, and (21601) (1998 X089) may just re-
flect a difference in the surface structure that could also be
revealed, e.g., by a difference in the reflectance spectra. The
spectral properties of (4543) Phoinix have not been measured,
and (588) Achilles is classified as an unusual D type (DU) by
Tholen (1989). The remaining three asteroids are D type. We
therefore expect that the taxonomic class of (4543) Phoinix may
also differ from the typical D type.

3.2. Comparison with other atmosphere-less objects
in the solar system

We have compared the polarimetric properties of Trojans to the
literature data on TNOs (Bagnulo et al. 2008, and references
therein), Centaurs (Belskaya et al. 2010, and references therein),
and low-albedo asteroids (see database compiled by Lupishko3).
The mean values of the polarimetric parameters Pmin, αmin, αinv
and their scattering are given in Table 3.

The polarimetric properties of TNOs and Centaurs are not
characterized as well as those of main-belt asteroids. Because of
their distance, Centaurs can only be observed in a limited phase
angle range (∼0–5◦, compared to ∼0–30◦ of main-belt objects).
However, there are indications that the polarimetric curves of
Centaurs reach a minimum at very small phase angles (as small
as ∼1.5◦ for Centaur Chiron, see Bagnulo et al. 2006; Belskaya
et al. 2010). This feature was interpreted by Belskaya et al.
(2010) as indicative of a thin frost layer of submicron water ice
crystals on their dark surfaces. Both for Trojans and Centaurs,
we can only estimate a lower limit of the inversion angles, since
geometrical constraints make their direct measurements impos-
sible from Earth-based observations. For TNOs that with the ex-
ception of the binary system Pluto-Charon are visible from Earth
only at phase angles <∼2◦, we cannot even estimate the parame-
ters Pmin and αmin.

Figure 7 shows the relationship of polarization minimum
and the phase angle where the minimum occurs for Trojans,
Centaurs, and main-belt asteroids. The polarization-phase an-
gle behaviour of the observed Trojans is very similar to that
of low-albedo asteroids, in particular the P-type asteroids, and
quite different from those Centaurs for which polarimetric mea-
surements have been obtained, in spite of closer proximity to the
latter group of objects.

3 Available at http://sbn.psi.edu/pds/resource/apd.html
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Fig. 7. Depth of the polarization minimum Pmin versus the phase-angle
αmin where the minimum occurs for asteroids (black), Trojans (red), and
Centaurs (blue points).

Fig. 8. Polarization phase angle dependence of Jupiter Trojans (filled
circles), D-type asteroids (open circles), and P-type asteroids (crosses).
The fits by a Lumme & Muinonen function are shown for the F-type
(dashed line), P-type (solid line), and C,G type (dotted line) asteroids.

Figure 8 shows the mean polarization-phase curves for the
P-, F-, G- and C-type asteroids, and demonstrates that the data
for the P-type asteroids and D-type Trojans are practically in-
distinguishable. Compared to the F-type asteroids, polarization
minima of Trojans occur at a larger phase-angle, which suggests
that their inversion phase-angles are also larger. Fornasier et al.
(2006) obtained a polarimetric measurements of the D-type ob-
ject (944) Hidalgo at a large phase angle, and (944) Hidalgo has
an unusual orbit with a semi-major axis of 5.74 au and eccentric-
ity of 0.66. This object reaches 1.94 au in perihelion, giving an
opportunity to observe it in much larger phase-angle range than
for other D types. The polarization measurement at α = 26.8◦
lies exactly at the fitted phase curve for P-type asteroids and
confirms a similarity of polarization properties of D- and P-type
asteroids within the accuracy of polarimetric measurements.
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4. Conclusions

We performed a pilot study of the polarization properties of
Jupiter Trojan asteroids and have obtained measurements for
six objects belonging to the L4 population. Comparing our
targets, we found that they show similar but not identical
polarization properties, in particular that there are at least two
distinct polarimetric behaviours. Trojans (588) Achilles and
(1583) Antilochus show a shallower polarization curve than
the remaining four Trojans (3548) Eurybates, (4543) Phoinix,
(6545) (1998 TR6), and (21601 (1998 X089). The C-type Trojan
(3548) Eurybates shows the deepest minimum of polarization.
D-type Trojans (1583) Antilochous, (6545) (1998 TR6) and
(21601) (1998 X089) all have a minimum around −1.2%, but
overall their polarimetric behaviour does not appear very dif-
ferent from that of (3548) Eurybates. Considering all objects to-
gether, we found that the minimum of the polarization is reached
at a phase angle ∼10◦ and is in the range of −1.3% to −1.0%.
This polarimetric behaviour is different from that of Centaurs,
which seem to show polarization minima at much smaller phase
angles and are very similar to low-albedo main-belt asteroids.
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Appendix A: Additional figures

Fig. A.1. Aperture polarimetry: PQ and NQ parameters as function of the aperture for the various observing series. PQ parameters, represented
by blue empty circles, are offset to the values corresponding to the aperture adopted for the measurement and reported in Table 1. This point is
hightlighted with solid circles and dotted lines. NQ parameters, represented by red empty circles, are offset by −0.5% for display purpose. Again,
the adopted values are highlighted with solid symbols and dotted lines. Each panel of this figure is similar to the left panel of Fig.1 and is explained
in more detail in Sect. 2.2.
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Fig. A.2. Aperture polarimetry: PU and NU parameters as function of the aperture for the various observing series. PU parameters, represented
by blue empty circles, are offset to the value corresponding to the aperture adopted for the measurement and reported in Table 1. This point is
hightlighted with solid circles and dotted lines. NQ parameters are represented by red empty circles, and are offset by −0.5% for display purpose.
Again, the adopted values are highlighted with solid symbols and dotted lines. Each panel of this figure is similar to the right panel of Fig.1 and is
explained in more detail in Sect. 2.2.
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Fig. A.3. Photometric measurements. The blue solid circles represent the photometry measured in the acquisition images, and the red empty
circles represent the photometry measured from the polarimetric images. The green lines show the final value adopted for the time series (dotted
green line represent an upper limit). In each panel, between parenthesis we report the ESO QC1 classification of the night (U = unknown, N = non
stable, S = stable) followed by the sky conditions as we estimate after inspection of the LOSSAM plots available (c = clear, t = thin to thick). The
LOSSAM archive is available online through the ESO website. This figure is discussed in Sect. 2.3.
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