
J. Appl. Phys. 121, 194901 (2017); https://doi.org/10.1063/1.4983459 121, 194901

© 2017 Author(s).

Broadband locally resonant band gaps in
periodic beam structures with embedded
acoustic black holes
Cite as: J. Appl. Phys. 121, 194901 (2017); https://doi.org/10.1063/1.4983459
Submitted: 25 January 2017 . Accepted: 02 May 2017 . Published Online: 16 May 2017

Liling Tang, and Li Cheng 

ARTICLES YOU MAY BE INTERESTED IN

 Vibration damping using a spiral acoustic black hole
The Journal of the Acoustical Society of America 141, 1437 (2017); https://
doi.org/10.1121/1.4976687

 Ultrawide band gaps in beams with double-leaf acoustic black hole indentations
The Journal of the Acoustical Society of America 142, 2802 (2017); https://
doi.org/10.1121/1.5009582

Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic
black holes
The Journal of the Acoustical Society of America 137, 447 (2015); https://
doi.org/10.1121/1.4904501

https://images.scitation.org/redirect.spark?MID=176720&plid=1087013&setID=379065&channelID=0&CID=358625&banID=519848093&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=ad80d4e33fdfc0af2d4ab2d42a5a7ea86f258e7e&location=
https://doi.org/10.1063/1.4983459
https://doi.org/10.1063/1.4983459
https://aip.scitation.org/author/Tang%2C+Liling
https://aip.scitation.org/author/Cheng%2C+Li
http://orcid.org/0000-0001-6110-8099
https://doi.org/10.1063/1.4983459
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4983459
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4983459&domain=aip.scitation.org&date_stamp=2017-05-16
https://aip.scitation.org/doi/10.1121/1.4976687
https://doi.org/10.1121/1.4976687
https://doi.org/10.1121/1.4976687
https://aip.scitation.org/doi/10.1121/1.5009582
https://doi.org/10.1121/1.5009582
https://doi.org/10.1121/1.5009582
https://aip.scitation.org/doi/10.1121/1.4904501
https://aip.scitation.org/doi/10.1121/1.4904501
https://doi.org/10.1121/1.4904501
https://doi.org/10.1121/1.4904501


Broadband locally resonant band gaps in periodic beam structures
with embedded acoustic black holes

Liling Tang and Li Chenga)

Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon,
Hong Kong

(Received 25 January 2017; accepted 2 May 2017; published online 16 May 2017)

The Acoustic Black Hole (ABH) effect can be used to effectively reduce structural vibrations by

trapping flexural waves in a thin-walled structure with a power-law thickness variation. In the pre-

sent study, we used a wavelet-decomposed energy method to investigate an Euler-Bernoulli beam

embedded with multiple ABHs. Broadband transmission attenuation bands at relatively low fre-

quencies are observed in a beam containing only a few ABH elements. To explain the underlying

phenomena, an infinite structure with periodic ABH elements is analyzed. Numerical results show

that the periodic boundary conditions in terms of displacement and rotational slope of a unit cell,

based on the finite model, are sufficient to describe the band structures, without requiring full treat-

ment of the entire infinite structure. This provides an efficient and flexible means to predict, and

eventually optimize, the band structure based on a single element. Meanwhile, the ABH-induced

locally resonant band gaps coincide with the attenuation bands observed in the finite beams.

Because of the unique ABH feature, the proposed beam requires only a small number of elements

to obtain broad attenuation bands, which offers great potential for vibrational isolation applications

and wave filter designs in beam structures. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4983459]

I. INTRODUCTION

The Acoustic Black Hole (ABH) phenomenon has been

attracting increasing attention in recent years as a promising

method to passively control vibrations1–7 by manipulating

bending wave propagation in a thin-walled structure with

a thickness tailored according to a power-law variation h xð Þ
¼ exm (m� 2).1,8 In the ideal scenario, the phase and group

velocities of the bending waves gradually reduce to zero as

the thickness diminishes,8 resulting in zero wave reflection

at the tip of the tapered area. In practice, however, a trun-

cated tip thickness always exists. However, the inevitable

wave reflections and compressed high amplitude waves near

the tip can be effectively absorbed by applying a small

amount of damping materials.1,2

Intensive ABH research has covered various aspects of

both 1D and 2D structures in recent years. The effectiveness

of using a single ABH element for attenuating bending vibra-

tions has been demonstrated in various theoretical and exper-

imental studies. Semi-infinite 1-D structures have been

extensively investigated using models such as the geometri-

cal acoustic approach1,9 and the impedance method.10 These

studies reveal insight into the dominant wave propagation

phenomena, such as the reduction in the reflection coefficient

of flexural waves when the frequency increases. For 1-D

structures of finite size, the ABH effect has also been

observed both theoretically11 and experimentally,5,12 except

for cases where energy localization takes place, which results

in loss of the ABH effect.13 Meanwhile, the use of different

thickness profiles was also exploited for both 1D14–16 and

2D configurations.17

The major flaw of a single ABH element is that, although

ABH effects start to appear above a certain frequency when

local ABH dynamics are cut-on (referred to as the cut-on phe-

nomenon19), systematic broadband ABH effects can only be

achieved above a much higher frequency, referred to as the

characteristic frequency (to be defined later in the paper)

when the incoming wavelength becomes equal or less than

the geometrical characteristic dimension of the ABH element.

Embedding multiple ABHs can, to some extent, improve the

low frequency performance without increasing the ABH

dimension,18 with applications extended for sound radiation.19

Existing studies on multiple ABHs18–21 are mostly based on

experiment and the Finite Element Method. These studies

show the ABH effect on wave propagation characteristics.

However, the possible accumulated ABH effect and wave fil-

ter effect induced by multiple ABHs were not chosen to be

the main focus of the discussions.

The advent of acoustic metamaterials, exemplified by

the Phononic Crystals (PCs), gives new impetus to revisit the

above issue. As one of the most attractive physical properties

of the PCs, band gaps22–25 can be generated, mainly through

two physical mechanisms: Bragg scattering or local resonan-

ces.26–30 The former leads to broad band gaps at subwave-

length scales compared with the lattice constant to ensure

destructive interferences. Therefore, to attenuate low fre-

quency and long wavelength waves, the unit cell needs to be

prohibitively large. Meanwhile, a large number of elements

are needed to achieve broad band gaps. These limitations

can be overcome using locally resonant band gaps by attach-

ing local resonators, but the gaps are usually narrow. These
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two types of band gaps are difficult to conciliate. In addition,

the demanding fabrication process and numerous interfaces

required by conventional PCs also hamper the practical appli-

cations of the PCs. An interesting question is whether broad

band gaps could be achieved at low frequencies through ABH

effects by using a small number of ABH elements without

attaching additional elements and creating multiple interfaces.

If achievable, how can simulation and design serve to predict

this behavior. This constitutes the main motivation of the pre-

sent work. To the best of our knowledge, there is only one

paper dealing with an infinite 2D ABH lattice.31 The inspiring

work clearly shows the dispersion properties of the structure

without absolute band gaps, due to the multiple and complex

wave travel paths. It is therefore interesting to revisit this

issue in 1D configuration.

In this paper, we first investigate an Euler-Bernoulli beam

containing multiple ABHs using a wavelet-decomposed energy

method11,13,14 in part II. Analyses are performed in terms of

vibrational energy distributions and transmissions. Then, to

illustrate and explain the physical phenomena arising from

multiple ABHs, the wavelet-decomposed energy model is

expanded to deal with an infinite periodic structure with ABHs

in part III. The model is verified and the comparison between

infinite and finite structures is made thereafter. Meanwhile, the

ABH parameters are analyzed to achieve broader band gaps.

II. FINITE STRUCTURES WITH MULTIPLE ABHs

A. Theoretical model

A wavelet-decomposed and energy-based model11 is

used to investigate a structure of finite size with multiple

ABHs, as shown in Fig. 1. The tapered ABH parts can be

covered by thin damping layers. The thickness profile takes

the form h xð Þ ¼ exm þ h0, as shown in Fig. 1(b). Artificial

translational and rotational springs, of distributed stiffness K

and Q, can be adjusted to achieve various boundary condi-

tions. The damping of both the beam and the damping layer

is taken into account within the complex Young’s modulus

E, i.e., E¼E (1þ ig), where g is the damping loss factor, to

be assigned different values for the beam and the damping

layer. Based on the Euler-Bernoulli beam theory, the dis-

placement field of the beam and the damping layer is

expressed as u;wf g ¼ �z @w@x ;w x; tð Þ
n o

. Taking the wave-

length fluctuation along the beam into account, Mexican Hat

Wavelets (MHW) ui;s xð Þ32,33 are chosen to expand the flex-

ural displacement w as11

w x; tð Þ ¼
X

m

i¼0

X

s

ai;s tð Þui;s xð Þ (1)

with ui;s xð Þ ¼ 2
ffiffi

3
p p

�1
42i=2 1� 2ix� sð Þ2

h i

e�
2ix�sð Þ2

2 .

The Lagrangian of the system is expressed as

L ¼ Ek � Ep þW; (2)

where Ek denotes the kinetic energy of the system; Ep is the

potential energy; and W is the work done by the excitation

force. They can be obtained, respectively, by

Ek ¼
1

2

ð

q
@w

@t

� �2

dV; (3)

Ep ¼
1

2

ð

EI xð Þ @2w

@x2

� �2

dxþ 1

2
Kw xb4; tð Þ2

þ 1

2
Q

@w xb4; tð Þ
@x

� �2

; (4)

W ¼ f tð Þw xf ; tð Þ: (5)

Using Lagrange’s equations d
dt

@L
@ _a i;s tð Þ

� �

� @L
@ai;s tð Þ ¼ 0 and sim-

plifying the equations in the harmonic regime, one can get

the vibration response by solving the following matrix

equation:

K� x2
M½ �A ¼ F; (6)

where K and M are, respectively, the stiffness matrix and

mass matrix; A and F are the vectors of the response and the

excitation force, respectively. Setting the force vector in Eq.

(6) to zero leads to the following eigenvalue equation:

M
�1
KA ¼ x2

A; (7)

which yields the natural frequencies and the corresponding

mode shapes.

B. Illustration of Multiple ABH effects

As a numerical example, consider three free-free beams

containing one, two, and three identical ABH elements, respec-

tively. An entirely uniform beam, having the same thickness

hb and the same total length as the beam with three ABHs, is

also included as a reference. The material and geometrical

parameters are tabulated in Table I. A unit excitation force is

applied at the free end of the beam, while the receiving point is

placed at the other free end.

FIG. 1. Sketch of (a) an Euler-Bernoulli beam with multiple ABHs and (b)

the thickness profile.

TABLE I. Material and geometrical parameters.

Beam Damping layers

Material parameters Eb ¼ 210 GPa Ed ¼ 5 GPa

qb ¼ 7800 kg/m3 qd ¼ 950 kg/m3

gb ¼ 0.001 gd ¼ 0.1

Geometrical parameters hb ¼ 0.32 cm h0 ¼ 0.02 cm

lABH ¼ 2 cm a ¼8 cm
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Figure 2(a) compares the vibration transmission of the

three ABH beams with that of the reference beam without

damping layers. The vibration transmission is defined as

20 log wout

win
, in which win is the input displacement at the exci-

tation point and wout is the output displacement at the receiv-

ing point. The vibration transmission of the beams with

ABHs is significantly reduced in four broad frequency bands,

150–850Hz, 2.1–8.8 kHz, 10.4–14.8 kHz, and 18.3–21.6 kHz,

which can loosely be referred to as “attenuation bands”

(Comparisons of these attenuation bands with the “band

gaps” used in infinite structures will be performed at a later

stage). Meanwhile, transmission reduces quite significantly

as the number of ABHs increases. The minimum transmis-

sion reaches nearly �60 dB when three ABH elements are

present. This observation suggests that, compared with the

uniform beam, ABH elements act as efficient vibration iso-

lators at specific frequencies even in the absence of the

damping layers. The transmission curves are compared

again in Fig. 2(b) for samples with damping layers applied

over the ABH sections and the corresponding regions of the

uniform reference beam. The damping layers show little

influence on the attenuation bands in terms of both fre-

quency distribution and attenuation intensity. However,

energy concentration in the ABH section from the ABH

effect leads to significantly reduced transmission of the

beam with ABHs at the resonant frequencies, in agreement

with the common understanding on the conventional ABH

structures. As expected, this reduction is also increased with

the number of ABH elements.

The displacement distribution at 5.8 kHz (roughly the

trough of the second attenuation band) is compared in Fig. 3

for different beams with damping layers to examine what

happens inside the attenuation bands. As can be seen, for the

uniform reference beam, the vibration is fairly balanced

along the entire beam span; with only one ABH element, the

vibration is mainly concentrated on the ABH part, while the

vibration energy is attenuated to some extent at the receiving

point of the uniform part. With additional ABH elements,

the wave is further attenuated when passing through each

ABH, resulting in negligible vibration towards the end of the

uniform region for the beam with three ABH elements.

Focusing now on the beam with three ABHs with damp-

ing layers, its energy and displacement distribution along the

beam span is further illustrated in Fig. 4. Fig. 4(a) shows the

energy ratio C(C ¼ 10 log
hV2iABH
hV2iUnif

) between each ABH part

and the uniform part in terms of the averaged quadratic

velocity with A1 denoting the ABH part closest to the force

input. It can be seen that the energy is mainly trapped in the

first ABH portion, adjacent to the force excitation, while less

and less energy propagates to the subsequent ABH elements

within the attenuation bands, as shown in Fig. 2. At other fre-

quencies, however, the energy distribution among different

ABHs is fairly balanced among different portions of the

beam. This phenomenon can be substantiated by the dis-

placement distribution at two representative frequencies as

shown in Fig. 4(b). At 5.8 kHz in the second attenuation

band with the lowest transmission (as also shown in Fig. 3),

the vibration level is significantly suppressed after the wave

passes through the first ABH, part A1, and the remaining

vibration is almost negligible, especially for the last uniform

part past the third ABH element, A3. However, at 25 kHz

FIG. 2. Comparisons of vibration transmission involving beams with one, two, and three ABHs and the uniform reference beam: (a) with no damping layers

applied and (b) with damping layers applied for hd ¼ 0.02 cm.

FIG. 3. Displacement distribution at 5.8 kHz for different beams with A1

denoting the ABH part closest to the point excitation.
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beyond the fourth attenuation bands, the wave is compressed

within the three ABH regions with the vibration amplitude

greatly amplified compared with that of the remaining uni-

form part. Clearly, the vibration of the uniform part is

reduced because of the ABH effect, but the displacement

level within each ABH area remains comparable.

In conclusion, numerical simulations show the existence

of the attenuation bands, within which significant wave

attenuation can be achieved using a small number of ABH

elements. Apparently they appear at relatively low frequen-

cies, typically before a so-called “characteristic frequency

fc” which can be defined as fc ¼ phb
l2ABH

ffiffiffiffiffiffiffi

Eb

12qb

q

. Above this fre-

quency, the incoming wavelength starts to be equal to or less

than the geometrical characteristic dimension of the ABH

element,14,19 which is 16731Hz in the present case. This fre-

quency range can be loosely called mid-to-high frequencies.

Contrary to the structure with a single ABH element where

waves are systematically attenuated only after the character-

istic frequency,14 the structure with multiple ABHs brings

new perspective to the wave attenuation.

III. INFINITE PERIODIC STRUCTURE MODEL

To better explain the physical phenomena observed

from the above analyses with multiple ABHs, the wavelet-

decomposed energy method is expanded to investigate an

infinite lattice with periodic ABH cells, as shown in Fig. 5.

The flexural displacement w is again expanded using

Mexican Hat Wavelets as in Eq. (1). The Lagrangian of the

system is written as the sum of Lagrangians of every unit

cell

L ¼
X

þ1

n¼�1
Ln ¼

X

þ1

n¼�1
Enk � Enp; (8)

where Enk and Enp are, respectively, the kinetic energy and

the potential energy of the nth unit-cell, expressed as

Enk ¼
1

2

ð

q
@wn xð Þ

@t

� �2

dV; Enp ¼
1

2

ð

EI xð Þ @2wn xð Þ
@x2

� �2

dx:

(9)

Considering periodic boundary conditions, the displace-

ment and its second derivative between the nth and the

(nþ 1)th unit-cells should satisfy the following relationship

wnþ1 xþ að Þ ¼ ejkawn xð Þ; (10)

w00
nþ1 xþ að Þ ¼ ejkaw00

n xð Þ; (11)

where k is the wave vector and a is the lattice constant.

By substituting Eqs. (10) and (11) into Eq. (9), the rela-

tionship Lnþ1 ¼ e2jkaLn is obtained. Similarly, the Lagrangian

of any (nþ q)th unit-cell is obtained by Lnþq ¼ e2qjkaLn with

q being any integer. Thus, Eq. (8) can be rewritten as

L ¼
X

þ1

n¼�1
Ln ¼ Ln

X

þ1

q¼�1
e2qjka: (12)

Therefore, the extremalization of the Hamiltonian function

of the entire infinite system can mathematically be expressed in

terms of the Lagrangians of one unit-cell as follows

d

dt

@Ln
@ _ai;s tð Þ

� �

� @Ln
@ai;s tð Þ

¼ 0: (13)

In other words, solving the Lagrange’s equations of one-unit

cell leads to the result for the whole system. Meanwhile, this

set of Lagrange’s equations has a very similar form as the

one established in part II for one ABH element. The only

difference is that this single unit-cell is boundary free with

artificial spring stiffnesses K and Q being set to zero, and

FIG. 4. (a) Energy ratio between the ABH part and the uniform part, with A1 denoting the ABH part closest to the excitation point, and (b) displacement distri-

bution at 5.8 and 25 kHz. The shadow areas denote the three ABH regions.

FIG. 5. Sketch of an infinite Euler-Bernoulli beam with periodic ABH cells

with a lattice constant a.
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satisfies the periodic boundary conditions in terms of dis-

placement, rotation angle, bending moment, and shear force

as follows:

wn að Þ ¼ ejkawn 0ð Þ; (14)

w0
n að Þ ¼ ejkaw0

n 0ð Þ; (15)

w00
n að Þ ¼ ejkaw00

n 0ð Þ; (16)

w000
n að Þ ¼ �ejkaw000

n 0ð Þ: (17)

The displacement w can be rewritten as w x; tð Þ
¼Pm

i¼0

P

s ai;s tð Þui;s xð Þ ¼
Pn

i¼1 aiui xð Þ. Taking the peri-

odic boundary condition Eq. (14) into account, one can get

X

n

i¼1

ui að Þ � ejkaui 0ð Þ
� �

ai ¼ 0; (18)

an ¼
X

n�1

i¼1

kiai; (19)

with kmi ¼ Am
i

Am
n
and Am

i ¼ um
i að Þ � ejkaum

i 0ð Þ. Here, the super-

script m denotes the derivative order. The displacement can

then be re-expressed as

w x; tð Þ ¼
X

n�1

i¼1

ui xð Þ � kiun xð Þ½ �ai: (20)

Considering additional periodic boundary condition Eq.

(15), we can get an�1 and the displacement similarly as

an�1 ¼
X

n�2

i¼1

k0i � ki

�k0n�1 þ kn�1

 !

ai; (21)

w x; tð Þ ¼
X

n�2

i¼1

ui xð Þ þ k0i � ki

�k0n�1 þ kn�1

un�1 xð Þ
(

þ k0i � ki

k0n�1 � kn�1

kn�1 � ki

" #

un xð Þ
)

ai: (22)

With further consideration of the other two periodic

boundary conditions, Eqs. (16) and (17), the displacement

can be accordingly rewritten as detailed in the Appendix.

Submitting the displacement expression into Eq. (13), one

can get a matrix equation similar to Eq. (7) in the harmonic

regime. For each given value of wave vector k, the corre-

sponding eigen-frequencies can be determined from the

matrix equation. This allows us to obtain the dispersion

curves of the lattice, from which band characteristics of the

structure can be revealed.

IV. COMPARISONS BETWEEN THE INFINITE AND
FINITE PERIODIC STRUCTURES

A. Model verification and mechanism exploration

Using the same material and ABH parameters as before,

infinite periodic structures are investigated hereafter to

explain the physical phenomena previously observed on the

finite structures with multiple ABHs.

In Fig. 6, we compare the dispersion curves obtained

using the present model under different periodic boundary

conditions with those from the FEM results using COMSOL

Multiphysics. For the FEM, one 2-D unit-cell is developed

with a sufficient mesh and the Floquet periodic boundary

condition is imposed at the edges of the unit-cell. A reduced

frequency fR, defined as fR ¼ fa=c, is also introduced as a ref-
erence, with c being the wave velocity of the uniform beam

(with a length of a). As can be seen, the results from the pre-

sent model with two periodic boundary conditions, displace-

ment w and rotation angle w0, match very well with the

results from the FEM especially in the mid-low frequency

range. The differences at the high frequencies are mainly

attributable to neglect of the shear and torsional effect in the

present method. Note that using the additional periodic

boundary conditions of w00 and w000 brings barely noticeable

changes to the results. This indicates that the two periodic

boundary conditions on the displacement and rotation angle

are sufficient to describe the structural periodicity as well as

the band structures. Meanwhile, five band gaps are shown to

exist below 30 kHz. The first three are relatively flat, show-

ing typical characteristics of locally resonant band gaps. The

bandwidth versus the central frequency of the band, i.e.,
fR upper�fR lower

fR upperþfR lowerð Þ=2, is used to describe the relative bandwidth.

The relative bandwidths of the first three band gaps are 1.38,

1.21, and 0.35, respectively, which are very broad compared

with the conventional locally resonant bandwidths.

The observed phenomenon can be explained by the the-

ory elaborated in Mead.34 In symmetric structures, all cou-

pling coordinates between any two neighboring unit-cells

can be divided into two types: the first type (type I coordi-

nate) has the same sign and magnitudes, whereas the second

(type II coordinate) has opposite signs and equal magnitudes

for a symmetric vibration mode. It was theoretically proven

that the bounding frequencies of the passbands can be identi-

fied with the natural frequencies of a single periodic element

with two classes of boundary conditions – type I coordinate

locked and type II free, or oppositely, type I free and type II

locked. Specifically, the displacement and the rotational

FIG. 6. Dispersion curves. Comparison between the results from the present

infinite periodic model with different periodic boundary conditions and from

the FEM. fR ¼ fa=c is the reduced frequency with c being the wave velocity

of the uniform beam having length a.
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slope belong to I and II coordinates, respectively. Therefore,

in the present case, the aforementioned periodic boundary

condition in terms of displacement and rotational slope can

fully determine the band structures. When predicting the

band gaps using one periodic element, this corresponds to

simply supported or sliding-sliding boundary conditions,

which can be achieved by setting K or Q to zero.

The above analyses can be further validated by compar-

ing the mode shapes between the bounding frequencies of

the band gaps (labeled in Fig. 6) and the resonant frequencies

of a single element, as shown in Fig. 7. The mode shapes, as

well as the resonant frequencies (not shown here), from the

single element match perfectly with those of the infinite

beam. We highlight that, with the help of the previously

developed finite model, one can obtain band structure infor-

mation by only analyzing a single element rather than the

entire infinite periodic structure. This greatly saves calcula-

tion time and provides a simple way to predict, and eventu-

ally optimize, band structures based on a single element.

Looking back at the mode shapes of the unit-cell, vibration

mainly concentrates on the ABH part with reduced wave-

lengths, as shown in Fig. 7. The ABH effect promotes wave

accumulation with decreasing structural thickness and, con-

sequently, the wave amplitude is amplified. Ideally, if the

thickness of the ABH approaches zero, no wave will be

reflected back, such that an ABH element could be an ideal

local resonator containing multiple localized frequencies for

the full frequency band. The inevitable truncation thickness

however generates wave reflections, albeit weak in practice,

partly impairing local resonance effects. When the ABH part

dominates the vibration of the unit-cell while the uniform

part is weakly activated, locally resonant modes and band

gaps appear, exemplified by the first and third modes and

band gaps shown in Figs. 7 and 6. Conventional methods to

achieve locally resonant band gaps use single-degree-of-free-

dom spring mass resonators, which are only effective near

their resonant frequencies within a relatively narrow band

gap. In the present case, however, the ABH part acts as a

continuous local resonator with multiple degrees of freedom,

thus generating multiple broad locally resonant band gaps.

The local resonance is gradually weakened when the uniform

part is activated with increasing frequency, as shown in the

mode shape of band gap 4 in Fig. 7.

To demonstrate the correlation between the behavior of

the finite structure and that of the infinite periodic structure,

the dispersion curves of the infinite periodic beam and the

vibration transmission of the finite beam with three ABHs

are re-plotted and compared in Fig. 8. The distribution of the

transmission attenuation bands is in good agreement with

the band gaps. Moreover, only three ABH elements are

needed to create attenuation bands, as a result of the domi-

nant role played by the local resonant mechanism of the

FIG. 7. Mode shape comparisons between the bounding frequencies of the band gaps and the resonant frequencies of a single element: the upper row relates to

the upper bounding frequencies, while the lower row is the lower bounding frequencies of each band gap.

FIG. 8. (a) Dispersion curves of the

infinite periodic beam; (b) transmission

of finite beam with three ABH

elements.
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ABH elements. Contrary to Bragg scattering, which strongly

depends on the periodicity of the elements, the locally reso-

nant effect relies on the locally resonant characteristics of

the unit-cells more than the periodicity.24 Consequently, the

attenuation bands obtained here are also due to the locally

resonant characteristics of the unit cells rather than the peri-

odicity of the elements in the beam structures.

B. Parametric analyses

In this section, we investigate effects of the geometrical

parameters of the ABH taper, such as the power index m and

the truncation thickness h0, on the band gaps.

Fig. 9 illustrates the first four band gaps for different

power indices m. As one can see, increasing m would decrease

the lower and upper boundary of band gaps overall.

Meanwhile, in most cases, the bandwidth at low frequencies

also increases with larger m. The passband also becomes nar-

rower with increasing m, which leads to flatter band gaps on

the dispersion curves and better local resonant characteristics.

This can be understood in light of the positive effect of m on

the ABH effect. It is relevant to note that, with an excessively

large m, the smoothness criteria would no longer be satis-

fied,8,35 and would possibly generate wave scattering, impair-

ing the ABH effect. As a result, the local resonance effect may

also be weakened and so would the locally resonant band gaps.

Fig. 10 illustrates how the truncation thickness h0 affects

the band gaps. Nearly every band gap becomes wider as h0
decreases, along with a significant reduction in the pass-

bands. This can be directly attributed to the enhanced ABH

effect. If further decreases in the truncation thickness h0
are allowed, even broader band gaps can theoretically be

achieved, although the extremely thin thickness is most

likely prohibited by manufacturing difficulties and ensuing

structural strength problems.

As an example, consider infinite periodic and finite peri-

odic beams, both containing identical ABH elements with

m¼ 2 and h0¼0.005 cm. The dispersion curves of the infinite

beam and the transmission of the finite beams with different

ABH elements are compared in Fig. 11. For the infinite beam,

extremely broad band gaps can be observed, covering nearly

the entire frequency band below 20 kHz with only a few nar-

row passbands. For the finite beams, the corresponding atten-

uation bands are also observed. It is interesting to note that

transmission attenuation gaps start to appear with only one

ABH element because of the locally resonant effect. With

three periodic elements, the transmission can be as low as

�120dB, leading to a significant broadband and low fre-

quency vibration attenuation by using only a few elements

without any add-on resonators or creating geometrical or

material discontinuous like conventional lattices. It is relevant

FIG. 9. Effect of the power index m on the band gaps: the solid symbols

denote the lower boundaries of the band gaps, the open symbols denote the

upper boundaries, and the solid line between symbols indicates the

bandwidth.

FIG. 10. Effect of the truncation thickness h0 on the band gaps: the solid

symbols denote the lower boundaries of band gaps, the open symbols denote

the upper boundaries, and the solid line between symbols indicates the band-

width, while the blank means the passband.

FIG. 11. (a) Dispersion curves of an

infinite periodic beam, and (b) the cor-

responding transmission of finite

beams with different ABH elements

for m¼ 2 and h0 ¼ 0.005.
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to mention that this happens because of the sequential wave

travel path across the ABH cells in 1-D beam structures.

V. CONCLUSIONS

In this paper, an Euler-Bernoulli beam containing multi-

ple ABHs is studied based on a wavelet-decomposed energy

method. Broadband attenuation bands and wave suppression

phenomena are observed at relatively low frequencies below

the so-called characteristic frequency. To explain the underly-

ing physical phenomena, the wavelet-decomposed energy

model is further extended to investigate infinite structures with

ABH unit cells. The periodic boundary conditions in terms of

displacement and rotational slope are shown to be sufficient to

describe the structural periodicity and the corresponding band

structures numerically and analytically. Using this model, the

frequency bounds of the band gaps can be predicted solely

based on the resonant frequencies of a single cell with simply

supported or sliding-sliding boundary conditions. Therefore,

the band structures can be easily obtained using the proposed

finite model without calculating the dispersion curves of the

corresponding infinite structures. Numerical results show that

the observed attenuation bands correspond to the band gaps of

the corresponding infinite structures with the same ABH ele-

ments. Analyses on eigenmodes show that the band gaps can

be attributed to the local resonances of the ABH elements as a

result of the ABH effect. Therefore, increasing the taper power

index m within the smoothness criteria, or reducing the trunca-

tion thickness h0 within the allowable practical range, would

help generate broader and lower-frequency band gaps. For 1D

structures of finite size, a significant wave attenuation phe-

nomenon occurs because of the enhanced locally resonant

effect of multiple ABH cells. Because of the unique wave

propagation feature of the 1D structures, waves pass through

each ABH cell, collectively forming a more efficient broad-

band absorber as long as the ABH cell is cut-on to be effec-

tive, even at a relatively low frequency.

As for the structure itself, this work proposes a new type

of beam structure to achieve broad attenuation bands in the

relatively low frequency region. Contrary to the conventional

resonant lattices, only a very few ABH elements are needed

with no additional resonator attachment or multiple geomet-

ric or material discontinuities. These appealing features may

offer great potential for applications such as vibration isola-

tors and wave filter designs in beam structures.

As a final remark, because of the remarkable flexibility

and unique features offered by wavelets, the proposed

wavelet-decomposed energy model is conducive to solving

problems with rapid space-varying wavelengths or structures

with severe geometric or material inhomogeneity, exempli-

fied by structures embedded with ABH elements. Benefiting

from the energy-based and modular feature of the method,

the proposed wavelet-decomposed energy method allows

flexible handling of other embedded elements required in

various vibration control or energy harvesting applications.
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APPENDIX: DISPLACEMENT EXPRESSION UNDER PERIODIC BOUNDARY CONDITIONS

Considering the additional boundary condition Eq. (16), we can get
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X

n�3
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w x; tð Þ ¼
X
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where kki ¼
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:

With the additional boundary condition Eq. (17), the displacement can be repressed by

an�3 ¼
X

n�4

i¼1

biai
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w x; tð Þ ¼
X
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