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This paper discusses the properties of an estimator of the memory
parameter of a stationary long-memory time-series originally proposed by
Robinson. As opposed to ‘‘narrow-band’’ estimators of the memory parame-

Žter such as the Geweke and Porter-Hudak or the Gaussian semiparamet-
.ric estimators which use only the periodogram ordinates belonging to an

interval which degenerates to zero as the sample size n increases, this
estimator builds a model of the spectral density of the process over all the
frequency range, hence the name, ‘‘broadband.’’ This is achieved by esti-

Ž .mating the ‘‘short-memory’’ component of the spectral density, f * x �
� i x � 2 d Ž . Ž .1 � e f x , where d � �1�2, 1�2 is the memory parameter and
Ž .f x is the spectral density, by means of a truncated Fourier series

estimator of log f *. Assuming Gaussianity and additional conditions on
the regularity of f * which seem mild, we obtain expressions for the
asymptotic bias and variance of the long-memory parameter estimator as
a function of the truncation order. Under additional assumptions, we show
that this estimator is consistent and asymptotically normal. If the true
spectral density is sufficiently smooth outside the origin, this broadband
estimator outperforms existing semiparametric estimators, attaining an

Ž Ž . .asymptotic mean-square error O log n �n .

� 41. Introduction. Let X , t � 0, � 1, . . . , be a covariance stationaryt
process with spectral density

� i x ��2 df x � 1 � e f * x ,Ž . Ž .
where f * is a 2�-periodic positive continuous function.

Ž .The parameter d controls the behavior and possibly, the singularity of
the spectral density in a neighborhood of the zero frequency, whereas f *

� 4controls the short-memory behavior. When 0 � d � 1�2, the process X ist
said to be ‘‘long-range dependent.’’ When �1�2 � d � 0, the spectral density
at zero frequency is zero, but the process is still invertible; such a situation
occurs, for example, when modeling the first differences of a process which is
nonstationary but less so than a unit root process. The case d � 0 and f *
sufficiently smooth corresponds to the usual ‘‘weak dependence’’ situation.
The importance of such models in virtually all fields of statistical applications

� Ž .has been demonstrated in numerous situations see Robinson 1994 or Beran
Ž .�1994 .
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In the parametric approach, a finite-dimensional parametric model is
Ž .assumed to hold for f *. A key example is the ARFIMA p, d, q model

� Ž .�Granger and Joyeux 1980 in which f * is assumed to be rational. Another
Ž . � Ž . Ž .�example is the FEXP p model Robinson 1994 , Beran 1993 , where log f *

is a finite order trigonometric polynomial. The parameters of f, including d,
may then be estimated using, for example, Gaussian maximum likelihood
� Ž .� � Ž .see Dahlhaus 1989 or the Whittle likelihood see Fox and Taqqu 1986 ,

Ž .�Giraitis and Surgailis 1990 . These estimators have been shown to be
Ž .asymptotically normal under appropriate conditions with the usual rate of

'convergence n , where n is the sample size, provided that the parametric
model is correctly specified. However, it has now been well documented that
the estimator may be inconsistent if the model is misspecified. This drawback
calls for semiparametric estimation of d. The short-memory component f * is
allowed to belong to a wider class of functions, which is specified either by the
behavior at the zero-frequency or by a given regularity over the whole
frequency range. The former provides motivation for local methods while the
latter calls for global methods.

The local methods aim at constructing estimators of d that are consistent
Žwithout any restrictions on f * away from zero frequency apart from integra-

Ž � .bility on �� ,� a consequence of covariance stationarity . Examples of such
local estimators include the so-called GPH estimator introduced by Geweke

Ž . � Ž .and Porter-Hudak 1983 see also Robinson 1995a and Hurvich, Deo and
Ž .�Brodsky 1998 , or the Gaussian semiparametric estimate suggested by

Ž . � Ž .�Kunsch 1986 see Robinson 1995b . Local methods are based on a subset of¨
� �periodogram ordinates m , M depending on the sample size n. The uppern n

bound of this interval M tends to infinity more slowly than n, so that then
Ž �proportion of the frequency band �� , �� involved in the estimation degen-

Ž .erates relatively slowly to zero as n increases. For these reasons, local
estimators are also referred in the literature as ‘‘narrow band.’’ The choice of
the trimming numbers m and M is crucial since it determines the bias, then n

�variance and, in general, asymptotic distribution of the estimator see Robin-
Ž . Ž .�son 1995a, b and Hurvich, Deo and Brodsky 1998 . From a theoretical

standpoint, the major drawback of narrow band methods is that, as shown by
Ž . Ž .Giraitis, Robinson and Samarov 1997 and Hurvich, Deo and Brodsky 1998 ,

the typical rate of convergence of the narrow band estimators of the LRD
parameter d is limited to n2�5, whatever the regularity of f * is. The rate n2�5

Ž . Ž . Ž 2 .is achieved when f * x � f * 0 � O x in a neighborhood of the origin. This
rate can only be improved by the unnatural assumption that f * has several
vanishing derivatives at zero.

The global or broadband method presented in this paper aims to construct
an estimator of f over all the frequency range. This is done by computing a
nonparametric estimator of the short-memory component f *. Perhaps sur-

�prisingly, this kind of approach suggested and informally discussed by
Ž . �Robinson 1994 in his survey on LRD has not yet been thoroughly investi-

gated. There are many ways to construct a nonparametric estimator of f *. In
this contribution, we use a truncated Fourier expansion-type estimator of the
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log-spectral density. The method works as follows: under appropriate regular-
ity conditions, the logarithm of the short-memory component, l* � log f *

� 'Ž .may be expanded on the cosine basis l* � Ý � h , where h x � 1� 2�j�0 j j 0'Ž . Ž .and h x � cos jx � � . This expansion has, in general, an infinite numberj
Ž .of nonzero coefficients. A nonparametric estimator of f * x is obtained by

estimating only a finite number of Fourier coefficients. Heuristically, projec-
tion type estimators exploit the fact that the Fourier coefficients of a function
go to zero at a rate linked to the regularity of the function. Hence, provided
that l* is smooth enough, a finite number of coefficients gives a reasonable
approximation of the function. Truncated Fourier expansion has its root in

� Ž .nonparametric smoothing and curve estimation see Hart 1997 and the
�references therein .

ŽThere are several ways to estimate these finitely many coefficients e.g.,
.approximate Gaussian likelihood . We study here the simplest to implement,

namely the linear regression of the log-periodogram ordinates on log frequen-
cies. The advantage of this method over local methods is that we take the
regularity assumption in its full force; the rate of convergence of the estima-
tor is related to the regularity of the spectral density outside the origin, that
is, the regularity of f *. In particular, if the coefficients of the Fourier

Ž . Ž k .expansion of log f * x go to zero at an exponential rate, that is, � � O � ,k'with 0 � � � 1, then the rate n�log n is achievable. This property is ofŽ .
interest since analyticity of log f * holds for many models, including invertible
ARIMA models, and thus the estimator presented here is nearly as efficient
Ž .in terms of rate of convergence as an estimator based on a parametric

Ž .model, but avoids the pitfalls inconsistency resulting from the use of a
misspecified parametric model.

Our estimator is defined and our main results are presented in Section 2.
The proofs are based on a theorem which describes the dependence structure
of the log-periodogram ordinates over all the Fourier frequencies: a decompo-
sition of the log-periodogram ordinates is introduced, which, together with a
moment inequality, allows obtaining a central limit theorem and other
related results. This result is of independent interest and is presented in
Section 3.

2. Semiparametric estimation of the fractional differencing coef-
� �ficient. Let m be a fixed integer, and for all n, let n � 2m n�2m andm

� �K � n�2m . Define the discrete Fourier transform and the periodogram ofn
Ž .X , . . . , X as1 n

nm
�1�2 2i t x � �� x � 2� n X e I x � � x .Ž . Ž . Ž . Ž .Ýn m t n n

t�1

For notational simplicity, we drop the last few data. However, this is asymp-
totically irrelevant since n �n � 1. We evaluate the discrete Fourier trans-m
form and the periodogram at the Fourier frequencies x � 2� s�n , 1 � s �s m
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nm Ž . � 4n �2. Since Ý exp itx � 0 for 1 � i � n , the mean of X need not bem t�1 i m t
Ž .estimated. Following the procedure proposed by Robinson 1995a , the fre-

quency axis is divided into nonoverlapping segments of size m, and the
periodogram is averaged over each segment. For k � 1, . . . , K , denote J �n n
� Ž . 4m k � 1 � 1, . . . , mk and

Y � log exp �� m I x ,Ž . Ž .Ž . Ýn , k n iž /
i�Jk

Ž . Ž . Ž .where � denotes the digamma function, that is, � m � �	 m �� m , where
� Ž .�� denotes the Gamma function see Johnson and Kotz 1970 . It is well

known that if 
 2 denotes a random variable distributed as a central2 m
Ž Ž 2 .. Ž . Ž .chi-square with 2m degrees of freedom, then E log 
 � log 2 � � m2 m

Ž Ž 2 .. Ž . Ž . Ž .and var log 
 � � 	 m . For instance, � 1 � �� Euler’s constant and2 m
Ž . 2� 	 1 � � �6.

ˆ Ž .Let d be the least square estimator of d when only p � 1 Fourierp, n
coefficients are estimated,

2K pn

ˆ2.1 d � arg min Y � dg y � � h y ,Ž . Ž . Ž .Ý Ýp , n n , k k j j kž /d , � , . . . , � k�1 j�00 p

Ž . Ž . � i x �where y � 2k � 1 ��2 K and g x � �2 log 1 � e . Note that there isk n
ˆ � �no restriction on d, and d might be outside � 1�2, 1�2 .p, n

We now precisely state our assumptions.

� 4ASSUMPTION 1. The process X is Gaussian.t

� 4ASSUMPTION 2. The spectral density f of X satisfiest

� i x ��2 df x � 1 � e f * x ,Ž . Ž .

� � � 4where �1�2 � d � 1�2, and f * is positive and differentiable on �� ,� 	 0
and there exists a finite constant C* such that

� �� � � 4� x � �� ,� 	 0 , f *	 x � C*� x .Ž .

ASSUMPTION 3. There exists a real  � 0 and a finite real L such that

�
� � � �2.2 � � j � � L.Ž . Ý0 j

j�1

Mean square error and consistency of the estimator of d. Denote � �j
� 2 �' Ž . Ž .2 � �j, j 
 1 and � � Ý � . Then g x � Ý � h x .p j�p�1 j j�1 j j
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PROPOSITION 1. Under Assumptions 1, 2 and 3,
2�4� m� 	 m Ý � �Ž .2 Ž .j�p�1 j jˆ2.3 E d � d � � � � ,Ž . ž /p , n p , n2n� �p p

where there exists a constant C such that for all 1 � p � K ,n

� � �1 � 3 6 �1� � Cpn p log n � p log n n .Ž . Ž .Ž .p , n

Ž .As usual, the mean square error MSE is composed of a bias term and a
variance term. Under Assumption 3, the bias term is bounded by

�
�1 �'2.4 � � � � L�2 � p .Ž . Ž .Ýp j j

j�p�1

Thus, the bias term goes to zero as the truncation number p goes to infinity.
It should be stressed that the bias term is not necessarily a monotone

Žnonincreasing function of the truncation order p contrary to the ‘‘traditional’’
.theory of truncated Fourier series estimation .

The variance term is proportional to ��1 which is monotonically increasingp
ˆŽ .and asymptotically equivalent to p�4� . Thanks to 2.4 , d is thus ap, n

consistent estimator of d as soon as p � p is chosen in such a way thatn
Ž � 3Ž . 6Ž . �1 .p � �, p �n � 0 and p log n � p log n n � 0. Under Assump-n n n n

tion 2, the best bound we can get for the MSE is of order n�2 �Ž2 �1., which is
obtained by choosing p proportional to n1�Ž2 �1.. In practice, this meansn
that the rate of convergence of the estimator increases with the rate of decay

Žto zero of the Fourier coefficients of the ‘‘short-memory’’ component or
equivalently, with the regularity of this function. If the coefficients � de-j
crease exponentially fast to zero, more precisely if for some r � 0,

�
r j � �2.5 e � � L,Ž . Ý j

j�0

� �1 Ž .�and if we take p � r log n , thenn

2ˆlim n�log n E d � d � m� 	 m �r .Ž . Ž .Ž . ž /p , nnn��

1�Ž2 �1. � �1 Ž .�Note that, when either p � n or p � r log n , the remaindern n
term � is negligible compared with both the first and the second term onp, n

Ž .the right-hand side of 2.3 and thus does not affect the mean squared error.
On the other hand, the fastest rate of convergence which can be achieved

Ž �4�5. � Ž .�for the GPH estimator is O n see Hurvich, Deo and Brodsky 1998 .
The reason for this relatively slow rate is that, although the short-memory
component is extremely smooth, it does not in general satisfy the condition

� Ž . Ž .f * 0 � 0. Indeed, if the process is, say, ARFIMA p, d, q , then the Fourier
� Ž .coefficients � decays exponentially, but f * 0 is most often nonzero so thatj

the ‘‘broadband’’ method outperforms the ‘‘local’’ methods even with an
optimal choice of the tuning constants.
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Though the discussion above may serve as guideline for the choice of the
truncation number, in any practical situation, p must be estimated from then

�data. Two approaches are usually considered. The classical one already
Ž .� �suggested in Robinson 1994 is based on Mallow’s C criterion see HartL

Ž .�1997 . Properties of this criterion are developed in a companion paper
� Ž .�Moulines and Soulier 1998 . The other approach is based on the so-called
adaptive estimation theory, which has been investigated by Giraitis, Robin-

Ž .son and Samarov 1998 for the GPH estimator. This approach for the
estimator developed in this contribution is currently under study.

Central limit theory. The mean square consistency results above can be
extended by the following central limit theorem.

� 4THEOREM 1. Let p be an increasing sequence of integers such thatn

2.6 lim p3 log2 n n�2 � 0, lim n log2 n p�1�2 � 0.Ž . Ž . Ž .n n
n�� n��

If Assumption 2 holds and if Assumption 3 holds with  � 1�4, then
ˆŽ .n�p d � d is asymptotically normal,' n p , nn

n
d̂ � d � NN 0, m� 	 m ,Ž .Ž .ž /p , n dn( pn

2�1 ˆlim np E d � d � m� 	 m .Ž .Ž .n n
n��

The proof is given in Appendix C.

Ž . 2Ž . �1�2REMARKS. a The condition lim n log n p � 0 implies that then�� n
squared bias term is asymptotically negligible relative to the variance term.

3 2Ž . �2The condition lim p log n n � 0 is a technicality involved in then�� n
proof of asymptotic normality.

Ž . � � � Ž .b If p � n , the assumptions of Theorem 1 hold for 1� 1 � 2 � � �n
2�3. The restriction  � 1�4 ensures that the assumptions on p are notn
exclusive. We do not know if this assumption is really necessary.

Ž . Ž .c Since m� 	 m decreases to one as m tends to infinity, m should be
chosen as large as possible. On the other hand, for finite sample size, too
large m will increase the bias. In practice, a choice of m � 4 reduces the
asymptotic variance from � 2�6 � 1.6449 to 1.1354.

3. Asymptotics of log-periodogram ordinates. As mentioned in the
introduction, the local methods involve a trimming number for very low
frequencies. The problem with the very low frequency periodogram ordinates
is that their asymptotic behavior departs strongly from that under weak

Ž � �.dependence i.e., when f is regular over the whole interval �� ,� , where
they can be approximated by independent exponentially distributed variables

Ž . Ž .with mean f 0 �2. It was first shown by Kunsch 1986 and then exhaus-¨
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Ž . Ž .tively investigated by Hurvich and Beltrao 1993 and Robinson 1995a that
the periodogram ordinates computed at Fourier frequencies are asymptoti-
cally biased and correlated. Since one of our aims is to eliminate these
trimming numbers, we need first to develop a theory for the periodogram
ordinates which allows all the Fourier frequencies to be taken into account.
We only consider the log-periodogram in this paper, but the next theorem is

Ž 2Ž ..valid for any function H of the periodogram such that E H Y � � and
Ž Ž ..E H Y � 0 where the distribution of Y is central chi-square with 2m

degrees of freedom. It is quite natural, when dealing with periodogram
ordinates to use the method of moments to derive central limit theorems,
since the dependence structure of the periodogram ordinates cannot be easily

Ž .described except in the case of Gaussian white noise . Thus what we need is
a bound for moments of products of log-periodogram ordinates and we use

Ž .this bound Theorem 2 to derive a criterion for a central limit theorem
Ž .Theorem 3 .

THEOREM 2. Under Assumption 2,

3.1 � 1 � k � K , Y � log f y � � � r ,Ž . Ž .Ž .n n , k k n , k n , k

Ž 2 .. Ž Ž 2 ..for each 1 � k � K , � is distributed as log 
 � E log 
 , wheren n, k 2 m 2 m

 2 is distributed as a central chi-square with 2m degrees of freedom.2 m

There exist constants c � � and C � �, such that, for all n 
 2m and ford d
all 1 � k � j � K ,n

� �3.2 r � c log 1 � k �k , w. p. 1,Ž . Ž .n , k d

� � 2 �2 � d � 2 � d ��23.3 cov � , � � C log j k j .Ž . Ž . Ž .n , k n , j d

Ž .Let u be a positive integer, and let r , . . . , r be a u-tuple of positive integers1 u
among which exactly s are equal to 1, and let r � r � ��� �r . Then there1 u
exist a constant c � � and an integer K depending only on r and not on nr r

Ž .such that, for all u-tuple k , . . . , k of pairwise distinct integers, if1 u
min k � K , then1� i� n i r

u
sri3.4 E � � c log K �K .Ž . Ž .Ž .Ł n , k r r riž /i�1

Ž . Ž .REMARKS. a Theorem 1 means that the noise term in 3.1 can be
Ž . Ž . Ž ..approximated by � with E � � 0 and var � � � 	 m .n, k n, k n, k

Ž .b Note that this theorem is not in contradiction with the result of
Ž .Hurvich and Beltrao 1993 , who proved that the log-periodogram ordinates

for fixed k are asymptotically neither independent nor equidistributed. For
any fixed k and j, the remainder term r in Theorem 2 cannot be neglectedn, k

Ž .and cov � , � does not tend to zero as n tends to infinity. But we willn, k n, j
show that for any bounded sequence of reals h , the following bounds holdn, k
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Ž � � �.with h � max h ,n 1� k � K n, kn

� � � � � 23.5 h r � O h log n ,Ž . Ž .Ž .Ý n , k n , k h
1�k�K n

2� 3� � � � � �3.6 h h cov � , � � O h log n .Ž . Ž . Ž . Ž .Ž .Ý n , k n , j n , k n , j n
1�k�j�K n

Ž . �c . Recent related results consider tapered periodogram ordinates Velasco
Ž .� Ž .1999 . Tapering reduces the covariance that appears in 3.3 . For our
purpose, this reduction would make the proof only marginally simpler. Using

Ž .a cosine bell taper operating on three adjacent frequencies would remove
3Ž . Ž .the log n term in 3.6 , which is not really significant in our computations.

The proof is given in Appendix A.
� 4We now state a central limit theorem for weighted sums of variables �n, k

which is used in the following sections to prove central limit theorems for
log-periodogram ordinates. It is proved in Appendix B.

Ž . Ž .THEOREM 3. Let v and w be two nondecreasing sequences ofn n
 0 n n
 0
Ž .integers such that 0 � v � w � K . Let  be a triangularn n n n, k v � k � wn n

array of nonidentically vanishing real numbers. Define
w wn n

2 2S �  � , s �  ,Ý Ýn n , k n , k n n , k
k�v k�vn n

wn

� � � �a �  , b � max  .Ýn n , k n n , k
v �k�wn nk�vn

Assume that:

Ž .i lim b �s � 0,n�� n n
Ž . Ž .ii lim a log n �s v � 0. Then,n�� n n n

s�1S � NN 0, � 	 m .Ž .Ž .n n d

Ž .REMARKS. a For a triangular array of i.i.d. square integrable variables
Ž � . Ž .� , condition i implies the Lindeberg condition that ensuresn, k v � k � wn n �1 w n � Ž .asymptotic normality of s Ý  � . Condition ii is a technicalityn k�v n, k n, k

� 4needed to compensate for the dependence of the variables � .n, k v � k � wn n
Ž . Ž . Ž .b Conditions i and ii imply that v must tend to infinity.n
Ž .c The proof of Theorem 3 is based on the method of moments. This is

quite natural since the variables � have moments of all order, and moren, k
profoundly, because the deeper dependence structure of the triangular array
� cannot be easily described.n, k

Ž .d These two theorems are of independent interest and may be applied to
any problem involving spectral estimation for long-range dependent Gaussian
process such as nonlinear log-periodogram regression for parameter estima-
tion or estimation of nonlinear functionals of the spectral density related to
estimation or hypothesis testing.
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4. Concluding remarks and open questions. In Giraitis, Robinson
Ž .and Samarov 1997 , it is shown that the optimal rate for memory parameter

estimators in semiparametric long-memory models with degree of ‘‘local
smoothness’’  is n� �Ž2 �1. and that the GPH estimator with maximum
frequency M � n2�Ž2 �1. is rate optimal. More precisely, these authorsn
consider the following class of spectral densities:

�2 d� �FF � , C , K , � � f : f x � C x 1 � � x , 0 � C � C ,Ž . Ž . Ž .�0 0 0

�� � � ��1�2 � d � 1�2 � � , � x � K x , x � �� ,� ,Ž . 40

Ž .where C , K and � � 0, 1 are independent of � , and they show that there0 0
exists a positive constant c such that

��Ž2��1. ˆ� �lim inf inf sup P n d � d 
 c � 0,Ž .f n
n dn Ž .f�FF � , C , K0 0

where inf is taken over all estimators of d and P stands for the distributionf
of a covariance stationary process with spectral density f.

Ž .As discussed in Giraitis, Robinson and Samarov 1997 , the parameter � is
related to the local-to-zero smoothness � of the short-memory component f *
of the spectral density, which could be defined as follows. For 0 � � � 1,
Ž . Ž .f * x has smoothness � if f * x satisfies a Lipschitz condition of degree �

Ž . Ž . � �around 0. For � � 1, f * x has smoothness � if f * x is s � � times
differentiable at zero, and the sth derivative satisfies a Lipshitz condition of

� Ž .degree � � s around x � 0. Then  � � for � � 2 noting that f * x is an
�even function , whereas  � � for � � 2, with  � � if the first s derivatives

Ž .of f * x at x � 0 are all zero. In general therefore, for � � 2, we have  � 2
only. This is the case, for example, with fractionally integrated autoregressive
moving average processes. Thus, even for a class of spectral densities with a
very smooth short-range component, the rate of convergence of the local
regression estimator is bounded by 2�5.

We are currently generalizing the minimax result of Giraitis, Robinson
Ž .and Samarov 1997 to the following classes of spectral densities. For r � 1,

 � 1 and 0 � L � �, define

�
�2 di x� �SS  , L, � � f : f x � 1 � e exp � h x ,Ž . Ž . Ž .Ý j j½ 5½

j�0

�
� � � � � �d � 1�2 � � , � � j � � L ,Ý0 j 5

j�1

�
�2 di x� �AA r , L, � � f : f x � 1 � e exp � h x ,Ž . Ž . Ž .Ý j j½ 5½

j�0

� � 2 j 2d � 1�2 � � , � r � L .Ý j 5
j
0
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For these classes, the following lower bounds hold. There exists a constant
c	 � 0 such that

�Ž2 �1. ˆ� �lim inf inf sup P n d � d 
 c	 � 0,Ž .f n
n d̂ Ž .f�SS  , LL , �n

ˆ� �'lim inf inf sup P n�log n d � d 
 c	 � 0.Ž .ž /f n
n d̂ Ž .f�AA r , L , �n

This proves that the broadband estimator presented in this paper is rate
optimal in the Sobolev and analytic classes. It also shows that the ‘‘narrow
band’’ estimators are not rate-optimal in the Sobolev classes of regularity
 � 2, and are of course never rate optimal in the analytic class. An adaptive

Ž .version of this estimator also under investigation would be highly desirable
and would even compete with parametric estimators, because of the problem
of misspecification, as already mentioned.

APPENDIX A

Ž . Ž .�1�2 nm it xProof of Theorem 2. Recall that w x � 2� n Ý X e andn m t�1 t
Ž . � Ž . � 2I x � � x . The choice of frequencies x makes the correction for then n s

nm Ž .unknown mean � unnecessary because Ý exp itx � 0 for 0 � s � n . Itt�1 s m
Ž .is thus assumed in the sequel that E X � 0. Definet

�1�22n �1 n �1m m

� � E X cos tx X cos tx ,Ž . Ž .Ý Ýn , s t s t sž /t�0 t�0

�1�22n �1 n �1m m

� � E X sin tx X sin tx ,Ž . Ž .Ý Ýn , s t s t sž /t�0 t�0

21 1a � E I x , b � ic � E � x , � � b �a .Ž . Ž .Ž . Ž .n , s n s n , s n , s n s n , s n , s n , s2 2

With these notations, we get

I x �a � � 2 � � 2 1 � � � 2 � � 2 � � 2 � � 2 ,Ž . Ž . Ž . Ž .Ž .n s n , s n , s n , s n , s n , s n , s n , s n , s

Y � log I x � � mŽ . Ž .Ýn , k n iž /
i�Jk

� log a � 2 � � 2 � � mŽ .Ž .Ý n , i n , i n , iž /
i�Jk

Ý a � � 2 � � 2Ž .i� J n , i n , i n , i n , ik� log 1 � 2 2ž /Ý a � � �Ž .i� J n , i n , i n , ik
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� log � 2 � � 2 � log 2 � � m � log f yŽ . Ž . Ž .Ž .Ž .Ý n , i n , i kž /
i�Jk

Ý 2 a � f y �f y � 2 � � 2Ž . Ž .Ž .Ž . Ž .i� J n , i k k n , i n , ik� log 1 � 2 2ž /Ý � � �Ž .i� J n , i n , ik

Ý a � � 2 � � 2Ž .i� J n , i n , i n , i n , ik� log 1 � .2 2ž /Ý a � � �Ž .i� J n , i n , i n , ik

�Consider now the 2m-dimensional Gaussian vector � � � ,n, k n, mŽk�1.�1
�� , . . . , � , � and let � be its covariance matrix. � isn, mŽk�1.�1 n, m k n, m k n, k n, k

invertible for all n, so we can define a standard 2m-dimensional Gaussian
vector W � ��1�2� . Define also � � � � I . We can now writen, k n, k n, k n, k n, k 2 m

W T � Wn , k n , k n , k2 2 Tlog � � � � log W W � log 1 � .Ž . Ž .Ý n , i n , i n , k n , k Tž / ž /W Wn , k n , ki�Jk

Ž Ž ..We finally have Y � � � log f y � r withn, k n, k k n, k

A.1 � � log W T W � log 2 � � m ,Ž . Ž . Ž .Ž .n , k n , k n , k

Ý a � � 2 � � 2Ž .i� J n , i n , i n , i n , ikA.2 r � log 1 �Ž . n , k 2 2ž /Ý a � � �Ž .i� J n , i n , i n , ik

Ý 2 a � f y �f y � 2 � � 2Ž . Ž .Ž .Ž . Ž .i� J n , i k k n , i n , ikA.3 �log 1 �Ž . 2 2ž /Ý � � �Ž .i� J n , i n , ik

W T � Wn , k n , k n , k
A.4 �log 1 � .Ž . Tž /W Wn , k n , k

Ž .A.1 shows that � has the claimed distribution. From this point, the proofn, k
of Theorem 2 has two components. We will need the following:

Ž .1. Technical lemmas that prove that r satisfies 3.2 and that describe then, k
Ž .covariance structure of the jointly Gaussian vectors W ;n, k 1� k � K n

2. A general inequality for moments of functions of jointly Gaussian vectors
Ž . Ž .that will be used to derive 3.3 and 3.4 from the covariance structure of

Ž .W .n, k 1� k � K n

Ž . Ž . Ž .Note that the remainder terms A.2 , A.3 and A.4 all are of the form
Ž .log 1 � � . In order to derive uniform bounds for these terms, we mustn, k

Žprove the required bound for � and that � is uniformly bounded wrtn, k n, k
. Ž .both n and k away from �1. Thus 3.2 will follow straightforwardly from

the following lemmas.

LEMMA 1. There exists a finite constant c such that for all n 
 2m and all1
1 � k � K ,n

� �A.5 � i � J , � � c log 1 � k �k .Ž . Ž .k n , i 1

� �Moreover, � is uniformly bounded away from 1.n, i
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LEMMA 2. There exists a finite constant c such that for all n 
 2m and all3
1 � k � K ,n

2 a � f yŽ .n , i k
� i � J , � c log 1 � k �k .Ž .k 3f yŽ .k

Ž .Moreover, 2 a �f y is positive and uniformly bounded away from 0 for alln, i k
i � J .k

LEMMA 3. The smallest eigenvalue of � is uniformly bounded awayn, k
from �1 and there exists a finite constant c such that for all n 
 2m and all2
1 � k � K , the spectral radius � satisfies the following bound:n n, k

� � c log 1 � k �k .Ž .n , k 2

Ž .The covariance structure of the jointly Gaussian vectors W isn, k 1� k � K n

exhibited in the following lemma.

LEMMA 4. For n 
 2m and 1 � k � j � K , let � denote the supre-n n, k , j
Ž T .mum of the absolute value of the entries of E W W . Then there exists an, k n, j

finite constant c such that for all n 
 2m and 1 � k � j � K ,4 n

� � c log j k�� d � j � d ��1 .Ž .n , k , j 4

Lemmas 1�4 are proved in Appendix D. We now state a theorem that gives
the bounds for moments of products of functions of jointly Gaussian vectors

Ž . Ž . Ž . Ž m Ž 2that we need to prove 3.3 and 3.4 . Let � x , . . . , x � log Ý x �1 2 m i�1 2 i�1
2 .. Ž . Ž . Ž .x � log 2 � � m , then � � � W . We define the Hermite rank of a2 i n, k n, k

Ž .function � as in Arcones 1994 . Let X be a �-dimensional standard Gauss-
Ž 2Ž ..ian vector. If E � X � �, the Hermite rank of � is the smallest integer

Ž .� for which there exists a polynomial P X of degree � such that
Ž Ž . Ž ..E P X � X 	 0. Let u, q be positive integers. Let X , . . . , X be jointly1 u

Gaussian and marginally q-dimensional standard Gaussian vectors. Denote
Ž .T � Ž . �X � X , . . . , X and �* � max E X X . Consideri i, 1 i, q 1� i	 i	� u, 1� j, j	� q i, j i	, j	

real-valued functions � with Hermite rank � , 1 � i � u.i i

THEOREM 4. Let s and � be positive integers. Assume that at least s
Ž . Ž .among the functions � have Hermite rank � 
 � . If �* � 1 � � � qu � 1i i

Ž .for some � � 0, then there exists a constant c � , q, s, � � � such that
u u

1�22 s� �2A.6 E � X � c � , q , s, � E � X �* .Ž . Ž . Ž . Ž .Ž .Ž .Ł Łi i i iž /i�1 i�1

This theorem can be proved by reformulating in a multidimensional set-
Ž . Žting Lemmas 3.1, 3.2 and 3.4 in Taqqu 1977 . An alternative and more

. Ž .straightforward proof can be found in Soulier 1998 . For u � 2, it is Lemma
Ž .1 of Arcones 1994 . In our context, we can apply Theorem 4 with q � 2m and

0Ž Ž ..� � 2. Indeed, � is an even function and E � X , . . . , X � 0, so the1 2 m
Hermite rank of � is 2.
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APPENDIX B

Proof of Theorem 3. The proof is based on the method of moments. Let
r 
 2 be an integer. The r th moment of s�1 SS may be expanded asn n

r r ! 1
�r r 	B.1 s E S � A r , . . . , rŽ . Ž .Ž . Ý Ýn n n 1 ur ! ��� r ! u!1 uu�1

with
u u

�r � r ri iA r , . . . , r � s  � ,Ž . Ý Ł Łn 1 u n n , k n , ki iž /i�1 i�1

Ž .where Ý	 extends over all u-tuples of positive integers r , . . . , r , such that1 u
Ž .r � ��� �r � r, and Ý� extends over the u-tuples k , . . . , k of pairwise1 u 1 u

Ž .distinct integers in the range 1 � k � K . To prove that B.1 converges toi n
the r th moment of the normal distribution with mean zero and variance � 2,
it is enough to show that

� r , if r � ��� � r � 2,1 ulim A r , . . . , r �Ž .n 1 u ½n�� 0, otherwise.

Ž .Let r , . . . , r be a u-tuple of strictly positive integers satisfying r � ��� �r1 u 1 u
Ž .� r. Denote by s the number of elements in r , . . . , r equal to 1. If s � 01 u

Ž .and u � r�2, Holder inequality and assumption i yield¨
r�2 uA r , . . . , r � � b �s � o 1 ,Ž . Ž . Ž .n 1 u r n n

Ž � � r . Ž .with � � E � . Consider now s � 0. In Theorem 2 3.4 implies thatr n, k

n
sr�r si� �A r , . . . , r � � s  a log n �v .Ž . Ž .Ž .Ł Ýn 1 u r n n , k n niž /� 4i ; r 
2 k �1i i

By definition of b and s , we have for any i such that r 
 2,n n i

n
r r �2 2i i� � � b s .Ý n , k n ni

k �1i

Since s is the number of indices i such that r � 1, we always have 2u � s � r,i
and the number of indices i 
 2 is u � s and Ý r � r � s, so assump-�i; r 
 24 ii

Ž . Ž .tions i and ii imply
n

u�sr 2 r�s�2Žu�s.i� � � s b ,Ž .Ł Ý n , k n ni
� 4i ; r 
2 k �1i i

sr�2 u�sA r , . . . , r � � b �s a log n �v s � o 1 .Ž . Ž . Ž . Ž .Ž .n 1 u r n n n n n

Since it is impossible that both s � 0 and u � r�2, there only remains to
consider the case s � 0 and u � r�2, which implies that r is even and

2 Ž .r � ��� � r � 2. Denote Z � � � � 	 m . Z is a function of1 u n, k n, k n, k
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Ž . Ž .U , V of Hermite rank at least 1 since E Z � 0. We can writen, k n, k n, k

r�2 r�2
2 2E � � E Z � �Ł Ł Ž .n , k n , ki iž / ž /i�1 i�1

� � r � � r�2 � I � E Z ,Ý Ł n , kž /i
i�I� 4 � �I 1, . . . , r�2 , I 
2

� �where I denotes the number of elements of I. The summation starts at
� � Ž .I � 2 since E Z � 0 for all 1 � k � K . Applying Theorem 4, we getn, k n

r�2 r�2
u�2rE Z � � � � log n �v � o 1 ,Ž . Ž .Ž .Ž .Ł Ýn , k r niž /i�1 u�2

r�2
�r r 2A 2, . . . , 2 � s � �  � o 1 .Ž . Ž .Ý Łn n n , k i

i�1

Finally, since Ý� Łu  2 extends over all u � r�2-tuples of pairwisei�1 n, k i
Ž K n 2 .r�2distinct integers in the range 1 � k � K , it differs from Ý  byi n k�1 n, k

2 2 Ž .Ý  ���  , the sum extending over the k , . . . , k with at least onen, k n, k 1 ui u
Ž .repeated index. Assumption i yields

r�2Kr�2 n
2�r 2 2s �  �  � O b �s � o 1 .Ž . Ž .Ž .Ý Ł Ýn n , k n , k n ni ž /i�1 k�1

Ž . r Ž .So A 2, . . . , 2 � � � o 1 . This concludes the proof of Theorem 3. �n

APPENDIX C

Proof of Proposition 1 and Theorem 1. The functions h form anj
2Ž� �.orthonormal basis of L �� ,� and they also have the following orthogo-

nality property:
Kn2�

C.1 � 0 � j, j	 � K , h y h y � � .Ž . Ž . Ž .Ýn j k j	 k j , j	Kn k�1

�1 K n Ž . Ž . pLet � � 2�K Ý g y h y , g � g � Ý � h and � �˜ ˜ ˜ ˜j n k�1 k j k p, n j�0 j j p, n
�1 K n 2 Ž .2�K Ý g y . Our estimator of d can then be written˜n k�1 p, n k

Kn2�
d̂ � g y Y .Ž .˜Ýp , n p , n k n , kK �̃n n , p k�1

Ž . Ž .Using the decomposition 3.1 and the orthogonality property C.1 we get
K Kn n

ˆK � �2� d � d �  � �  r˜' Ý Ýž /n p , n p , n n , k n , k n , k n , k
k�1 k�1

C.2Ž .
Kn

��  l y .Ž .Ý n , k p k
k�1
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� �Ž .with  � 2�K � g y and l � Ý � h . By construction,˜ ˜'n, k n n , p p, n k p j�p�1 j j

ÝK n  2 � � .k�1 n, k
We will need the following bounds that can be found in Lemma 1 in

Ž . Ž 2 Ž 2 Ž .. .Moulines and Soulier 1998 . Define w � min K � p log n , K and letn n n n
v be any sequence of integers such that v � w ,n n n

1�2� �C.3 max  � C p�K log n ,Ž . Ž . Ž .n , k n
1�k�K n

3�2� �C.4 � w � k � K ,  � C p �n log n ,Ž . Ž . Ž .n n n , k n
wn

1�2� �C.5  � O n�p log n .Ž . Ž . Ž .Ž .Ý n , k
k�vn

Ž .We must first evaluate the two bias terms. Equation 2.2 implies the
following bounds:

� �
� 2 �2� �C.6 � � o p , � � o p .Ž . Ž . Ž .Ý Ýj j

j�p�1 j�p�1

Ž . Ž . Ž .Applying 3.2 , C.6 and C.3 , we get that there exists a deterministic
constant C � � such that

2 K n
1�2 3 r � C p�K log n , w.p.1,Ž . Ž .Ý n , k n , k n

k�1

2 K n
� 1�2 �1�2� l y � CK log n p .Ž . Ž .Ý n , k p k n

k�1

Ž .Altogether, since E � � 0 for all k and n, we getn, k

1�2 3 1�2 �1�2�ˆK � E d � d � C p�K log n � K log n pŽ . Ž . Ž .˜' Ž .ž /n p , n p , n n n

� o 1 ,Ž .
under the assumptions of Theorem 1.

We must now prove a central limit theorem for ÝK n  � . In view ofk�1 n, k n, k
Ž vn .2Theorem 3, we define two sequences v � w such that E Ý  � �n n k�1 n, k n, k

Ž . Ž K n .2 Ž . Ž . Ž .o 1 , E Ý  � � o 1 and such that Assumptions i and ii ofk�w n, k n, kn

Theorem 3 hold.
Ž 4Ž . .1�2Let v be an increasing sequence of integers such that n log n �p �n n

Ž . Ž 2Ž ..o v and v � o n�p log n . These assumptions are nonexclusive. Apply-n n n
Ž . Ž .ing C.3 and Theorem 2 and C.4 , we get

2vn
2E  � � O v log n p�n � o 1 ,Ž . Ž .Ž .Ý n , k n , k nž /

k�1

2Kn
3 2 2E  � � O p log n �n � o 1 .Ž . Ž .Ž .Ý n , k n , k nž /k�wn
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Ž .With the notation of Theorem 3, using C.5 , we get
1�2 2a log n �v � O n�p log n �v � o 1 ,Ž . Ž . Ž . Ž .Ž .n n n

Ž .by assumption on v . Finally, Lemma 1 in Moulines and Soulier 1998 alson
yields that lim p � � 4� , and Theorem 1 is proved. �˜n�� n p , nn

Ž .The proof of Proposition 1 uses the decomposition of the error C.2 , and
Ž . Ž . Ž . Ž .the bounds 3.2 , 3.3 and C.3 � C.6 . Technical details can be found in

Ž .Moulines and Soulier 1998 , Appendix A1 and A2.

APPENDIX D

Technical lemmas. The proofs of these lemmas are based on the tech-
Ž .niques presented in Robinson 1995a These proofs are carried out in the

frequency domain and rely upon truncation arguments to find uniform bounds
of convolution integrals involving the spectral density and the Dirichlet

Ž .kernel. We preface these proofs by recalling some useful results for H x , then
Ž .nonsymmetric Dirichlet kernel,

n x sin nx�2Ž .
i t xH x � e � exp i n � 1Ž . Ž .Ýn ž /2 sin x�2Ž .t�1

It is easily seen that, for �� � x, y � � , we have
�1

E � x � y � f t H x � t H y � t dt ,Ž . Ž . Ž . Ž . Ž .Ž . Hn n n n2� n ��

�1 y � x y � x
� f � t � f � tH ž / ž /ž /2� n 2 20

D.1Ž .

x � y x � y

H � t H � t dt .n nž / ž /2 2

Let 0 �  � 2� ; the following results are repeatedly used in the sequel:

D.2 H x � c  �x , 0 � x �  ,Ž . Ž . Ž .n H

x
D.3 L x � H t dt � d 1 � log 1 � nx , 0 � x � � ,Ž . Ž . Ž . Ž .Ž .Hn n H

�x

� �1H t � z H t � z dt � c z � u L z � u ,Ž . Ž . Ž . Ž .H n n � nD.4Ž . u

0 � z � u � � � 2� ,
�

D.5 H x � t H y � t dt � 2�H x � y .Ž . Ž . Ž . Ž .H n n n
��

� �LEMMA 5. Let z 	 w be two real numbers in 0,� such that 0 � z � w �
Ž . � � � �� . Let g w; t be a function defined on 0,� 
 0,� ; assume that:

Ž . Ž . Ž .i For all 0 � w � � , the function t � g w; t is differentiable on 0,� 	
� 4w and admits left and right derivative at 0 and � ;
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Ž .ii There exist constants c � � and c � �, such that, for all 0 � t, w � �g g 	
we have

�2 d �2 d� � � �D.6 g w ; t � c t � w � t � w ,Ž . Ž . Ž .g

�1�2 d� � � � 4D.7 g w ; t � c t � w , t � 0,� 	 w ,Ž . Ž . Ž .t g 	

� Ž . Ž .where g w; t is the differential of g w; t w.r.t t. Then, there exists at
constant c � � such that

�

g w ; t � g w ; z � z ; t dtŽ . Ž . Ž .Ž .H n
0

�2 d�2 d� �z � w � z � wŽ .
� c L z � w ,Ž .nz � wŽ .

D.8Ž .

Ž . Ž . Ž .where � z; t � H t � z H t � z .n n n

PROOF. We prove Lemma 5 only in the case d � 0. The case d � 0 is dealt
with using the same techniques.

Ž .CASE 1 0 � z � w � � . Note that since z � w � � , z � w implies that
z � ��2. The proof consists in splitting the integral in several parts and
showing that each part is uniformly bounded by

�1 �2 d�2 d� �� w ; z � z � w z � w � z � w L w � z .Ž . Ž . Ž . Ž .Ž .n n

Ž Ž . . ŽŽ . ŽŽ . .We decompose the integral on 0, w � z �2 , w � z �2, min 3w � z �2,� ,
Ž ŽŽ . . . � Ž Ž . �min 3w � z �2,� ,� . For the first part the integral on 0, w � z �2 , we

Ž . Ž .need to distinguish between close and distant z and w. Equations D.2 , D3
Ž .and D7 imply that, for all 0 � w � � ,

�sup g w ; t � g w ; z H t � z � c � sup g w ; tŽ . Ž . Ž . Ž . Ž .n H t
Ž . Ž .0�t� w�z �2 0�t� w�z �2

�1�2 d� c w � z ,Ž .
Ž . Ž .w�z �2 w�z

H t � z dt � H u du � L w � z .Ž . Ž . Ž .H Hn n n
0 z

These relations together imply

Ž .w�z �2
g w ; t � g w ; z � z ; t dtŽ . Ž . Ž .H n

0

Ž .w�z �2�1�2 d �1�2 d� c w � z H t � z dt � c w � z L w � z .Ž . Ž . Ž . Ž .H n n
0

Ž . Ž .When 2 z � w distant z, w , we have 1�3 w � z � w � z and the factor
Ž .�1�2 d 1�2 dŽ .�1�2 dw � z in the previous expression is bounded by 3 w � z .
Thus, there exists c � �, such that for all 0 � w � � and all z such that
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2 z � w, we have
Ž .w�z �2

g w ; t � g w ; z � z ; t dt � c� w ; z .Ž . Ž . Ž . Ž .H n n
0

Ž . Ž . Ž .Equations D.2 , D.3 and D.6 imply
Ž .w�z �2�1sup H t � z � c � z and H t � z dt � L w ,Ž . Ž . Ž . Ž .Hn H n n

0Ž .0�t� w�z �2

�2 d �2 d� � �sup g w ; t � g w ; z � 5c w � z � w � z .Ž . Ž . Ž . Ž .Ž . . Ž .g
Ž .0�t� w�z �2

It follows that
Ž .w�z �2

g w ; t � g w ; z � z ; t dtŽ . Ž . Ž .H n
0

�2 d �2 d�1� cz w � z � w � z L w .Ž . Ž . Ž .Ž . n

Ž . Ž . �1 Ž .�1For z � w � 2 z close z, w , we have w � z � 3z and z � 3 w � z .
The previous relation implies that, for all 0 � w � � and 0 � z � w � 2 z,
there exists a constant c � � such that

Ž .w�z �2
g w ; t � g w ; z � z ; t dt � c� w ; z .Ž . Ž . Ž . Ž .H n n

0

The remaining terms are easier to work out because there is no need to
Ž . Ž .distinguish between close and distant z, w. Note that, by D.4 and D.6 ,

�

g w ; z � z ; t dt � 2c c � w ; z .Ž . Ž . Ž .H n � g n
Ž .z�w �2

Ž . ŽŽ . ŽŽ . .. � Ž . �On the interval I w; z � w � z �2, min 3w � z �2,� , we have g w; t
� ��2 d� 2c t � w and we bound the integral as follows:g

ŽŽ . .min 3w�z �2, �
g w ; t � t ; z dtŽ . Ž .H n

Ž .w�z �2

Ž .3w�z �2 �2 d� �� 2c sup � z ; t t � w dt .Ž . Hg n
Ž .w�z �2Ž .t�I w ; z

The desired bound then follows from the relations
�1 �12D.9 sup � z ; t � 4c 3��2 w � z w � z ,Ž . Ž . Ž . Ž . Ž .n H

Ž .t�I w ; z

Ž .3w�z �2 �1 1�2 d�2 d 2 d� �D.10 t � w dt � 2 1 � 2 d w � z .Ž . Ž . Ž .H
Ž .w�z �2

Ž . Ž . Ž .When 3w � z �2 
 � the last term is zero. When 3w � z �2 � � , D.6
� Ž . � Ž Ž . . Ž .�2 d Ž .implies that g w; t � g w; 3w � z �2 � 2c w � z . By D.4 we haveg

� ��2 dg w ; t � z ; t dt � 2c w � z � z ; t dtŽ . Ž . Ž . Ž .H Hn g n
Ž . Ž .3w�z �2 3w�z �2

�2 d �1� c w � z w � z L w � z .Ž . Ž . Ž .n
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Ž .CASE 2 0 � w � z � � , with ��2 � � � � . The derivations are much
Ž .as before, and are thus presented in an abbreviated form. By D.2 , we

� Ž . � Ž . Ž . Ž .have H 2 z � c 2� � 2 z . Since w � z � 2 z, this implies: H 2 z �n H n
Ž .Ž .�1c 2� w � z andH

�1 �2 d �2 dg w ; z H 2 z � c 2� c w � z z � w � z � w .Ž . Ž . Ž . Ž . Ž . Ž .Ž .n H g

We split the integral in three parts, according to the following partition
Ž . Ž Ž . . ŽŽ . ŽŽ . .of the interval 0, � : 0, w � z �2 , w � z �2, min 3z � w �2, � ,

Ž ŽŽ . . . Ž Ž . ..min 3z � w �2,� ,� . On the interval 0, w � z �2 , we have
�1D.11 H t � z � 2c � � � w � z ,Ž . Ž . Ž . Ž .n H

�1D.12 H t � z � c � z � t ,Ž . Ž . Ž . Ž .n H

zŽ .w�z �2
D.13 H t � z dt � H u du � L z .Ž . Ž . Ž . Ž .H Hn n n

0 �z

� Ž . � � ��2 d Ž .Note that we have g w; t � 2c w � t , which together with D.11g
implies

Ž .w�z �2
�g w ; t � t ; z dtŽ . Ž .H n

0

Ž .w�z �2�1 �1�2 d� �� 4c � � � c � c w � z w � t z � t dtŽ . Ž . Ž . Ž .HH H g
0

��1 �2 d �2 d �1� �� 4c � � � c � c w � z z � w v � 1 v dv.Ž . Ž . Ž . Ž . HH H g
1�2

Ž . ŽŽ . ŽŽ . ..On the interval I w; z � z � w �2, min 3z � w �2,� , we have
�2 d �2 dsup g w ; t � 4c z � w � z � w .Ž . Ž . Ž .Ž .g

Ž .t�I w ; z

Ž .which, with D.4 implies
ŽŽ . .min 3 z�w �2, �

g w ; t � t ; z dtŽ . Ž .H n
Ž .z�w �2

�

� sup g w ; t � t ; z dt � c� w ; z .Ž . Ž . Ž .H n n
Ž .z�w �2Ž .t�I w ; z

� Ž .For d � 0, we have it is assumed that 3z � w �2 � � ; the conclusion is
�otherwise trivial

�2 dsup g w ; t � g w ; 3z � w �2 � 4c z � wŽ . Ž . Ž ..Ž . g
Ž .3 z�w �2�t��

Ž .and we conclude the proof by applying D.4 ,
�

g w ; t � z ; t dtŽ . Ž .H n
Ž .3 z�w �2

��2 d �2 d �1� c z � w � z ; t dt � c z � w z � w L z � w .Ž . Ž . Ž . Ž . Ž .H n n
w
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Ž .CASE 3 0 � w � z and z � � � ��2 . We must consider this case sepa-
� Ž . �rately because if z is allowed to be arbitrarily close to � , H t � z cannotn

� �be uniformly bounded on 0,� . Since z � w � � , we have w � � � � and
Ž . Ž .z � w � 2� � � . Let  be such that � � � �  � � . By D.6 and D.7 , the

Ž . � Ž . � �functions g w; t and g w; t are uniformly bounded on ,� , that is, theret
exists c � �, such that for all w � � � � and all  � t � � , we have

�g w ; t � c and g w ; t � c .Ž . Ž . t 

Ž . Ž . � �Similarly, H z � t and H t � z are uniformly bounded on 0,  ,n n

� �H z � t � c , H z � t � c , 0 � qt �  , � � z � � .Ž . Ž .n  n 

Note that the choice of � and  is arbitrary. For instance, we can take
Ž .� � 3��4 and  � ��2. We split the integral at . On the interval 0,  , we

have

 
g w ; t � g w ; z � z ; t dt � c g w ; t dt �  g w ; z .Ž . Ž . Ž . Ž . Ž .H Hn

0 0

Ž .The integral on the right-hand side is uniformly bounded by D.6 . On the
Ž .interval ,� , we have

�

g w ; t � g w ; z � z ; t dtŽ . Ž . Ž .H n


�
�� c � sup g w ; t H t � z dt .Ž . Ž . Ž .HH t n

�t��

Ž .Since � � z 
 � and � � z � w � 2� � � , these last bounds imply D.8 .
Ž . Ž . Ž .We now apply the preceding result to g w; t � f w � t � f w � t . It is
Ž .easily checked that, under Assumption 2, g w; t satisfies the assumptions

Ž . Ž .D.6 and D.7 of the preceding lemma.

LEMMA 6. There exist finite constants c and c such that, for all n 
 1,1 2
and all 0 � s � n �2,m

log sŽ . �2 d �2 d2 a � f x � c x , a 
 c x .Ž .n , s s 1 s n , s 2 ss

Ž Ž .. Ž Ž . Ž .. Ž .PROOF. Note that, E I x � E � x � �x . By D.1 , we haven n n

�1
E I x � g x ; t � 0; t dt .Ž . Ž . Ž .Ž . Hn n2� n 0

Ž . Ž . Ž .Equations D.8 , D.3 and D.5 imply that, for x � 0 and 1 � k � n�2,

�1 �1�2 dE I x � f x � cn x L x ,Ž . Ž . Ž .Ž .n n

�1 �2 dE I x � f x � ck log k x .Ž . Ž . Ž .Ž .n k k k
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�2 d Ž . �2 dUnder Assumption 2, c x � f x � c x . Thus1 2

��1a � 2� n � 0; t f x � t dtŽ . Ž . Ž .Hn , k n k
0

2 x �3k�1
 2� n � 0; t f x � t dtŽ . Ž . Ž .H n k
0

�
�2 d �2 d 2 d
 cx 1 � � 0; t dt 
 cx 1 � 3�4 2k � 1 
 c� 4 x .Ž . Ž .Ž . Ž .Hk n k kž /2 x �3k

�

LEMMA 7. There exists a constant c � �, such that, for all n 
 1 and all
0 � s � n �2,m

log s log sŽ . Ž .�2 d �2 d� � � �b � c x , c � c x .n , s s n , s ss s

Ž . Ž .PROOF. For 0 � x � � , D.1 and D.8 imply that

�12E � x � g 0; t � x ; t dt ,Ž . Ž . Ž .Ž . Hn n� n 0

2 �1 �1 �1�2 dE � x � n f x H 2 x � cn x L x .Ž . Ž . Ž . Ž .Ž .n n n

� Ž . Ž . �The proof is concluded by noting that f x H 2 x � 0 for 0 � k � n�2. �k n k

LEMMA 8. There exists some 0 � � � 1, such that for all 0 � s � n �2,m

� �2 a �f x � � , � � �1 � � , 1 � � .Ž .n , s s n , s

PROOF. Lemmas 6 and 7 imply that there exists an integer K such that0
� �for all k 
 K and all n 
 2k, � � 1�2. Moreover, Hurvich and Beltrao0 n, k

Ž .1993 have shown that, for any fixed k � 0,

�
2f * 0 sin k� � uŽ . Ž .

2 d �2 dlim n a � u du,Hn , k 2�n�� �� k� � uŽ .
�f * 0 sin k� � u sin k� � uŽ . Ž . Ž .

2 d �2 dlim n b � � u du,Hn , k � k� � u k� � un�� Ž . Ž .��

lim n2 dc � 0.n , k
n��

� 4This implies that, for each k � 0, and all n 
 0, the sequence � has an, k n
 k
� � �finite limit � ; this limit lies in the interval �1 � 2� , �1 � 2� for somek

0 � � � 1. So for k � K , there exists an integer N such that for all n 
 N ,0 0 0
� � � �� � �1 � � , 1 � � . Note that for all k and n 
 2k, b � a andn, k n, k n, k

� �c � a , so there exists 0 � � 	 � 1 such that for all k � K and n � N ,n, k n, k 0 0
� �� � �1 � � 	, 1 � � 	 . This concludes the proof of Lemma 8. �n, k
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LEMMA 9. Assume Assumption 2. Then there exists a constant � � �d
such that for all 1 � s � t � n �2,m

E � � � E � � � E � � � E � �Ž . Ž . Ž . Ž .n , s n , t n , s n , t n , s n , t n , s n , t

� � log t s�� d � t � d ��1 .Ž .d

Ž .PROOF. Let 0 � s � t � n�2. The terms E � � may be directly evalu-n, s n, t
Ž Ž . Ž ..ated as functions of E � �x � �x ,n s n t

cov � , � � E � x � x � � �x � xŽ . Ž . Ž . Ž . Ž .Žn , s n , t n s n t n s n t

�� x � �x � � �x � �xŽ . Ž . Ž . Ž . .n s n t n s n t

�1

 4 a a 1 � � 1 � �' Ž . Ž .n , s n , t n , s n , t

cov � , � � E � x � x � � x � �xŽ . Ž . Ž . Ž . Ž .Žn , s n , t n s n t n s n t

�� �x � x � � �x � �xŽ . Ž . Ž . Ž . .n s n t n s n t

�1

 4 i a a 1 � � 1 � � .' Ž . Ž .n , s n , t n , s n , t

Ž Ž . Ž ..So it is clear that we need only give bounds for E � x � �x , 0 � s �n s n t
Ž .t � n�2. By D.1 , we have

�1
E � x � x � g x � x �2; u � x � x �2; u du,Ž . Ž . Ž . Ž .Ž . Ž . Ž .Hn s n t t s n t s2� n 0

�1
E � x � �x � g x � x �2; u � x � x �2; u du.Ž . Ž . Ž . Ž .Ž . Ž . Ž .Hn s n t t s t s2� n 0

Ž . Ž .Note also that H x � x � H x � x � 0. Applying Lemma 5,n t s n t s

�1 �1 �2 d �2 dE � x � x � cn x x � x L x ,Ž . Ž . Ž .Ž . Ž .n s n t t s t n t

�1 �1 �2 d �2 dE � x � �x � cn x x � x L x .Ž . Ž . Ž .Ž . Ž .n s n t t s t n t

By Lemmas 6 and 8, we have

�d �da a 1 � � 1 � � 
 cx x .' Ž . Ž .n , s n , t n , s n , t s t

Dividing these bounds, we obtain
�� d � � d ��1cov � , � � cs t log t .Ž . Ž .n , s n , t

The other terms are treated similarly, and this concludes the proof of Lem-
ma 9. �

We can now prove Lemmas 1�4. Lemmas 6 and 7 yield the following
bounds:

� �D.14 max � � c log s �s,Ž . Ž .n , s
n
2 s

D.15 max 2 a �f x � 1 � c log s �s.Ž . Ž . Ž .n , s s
n
2 s
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Ž .Lemma 1 is now a consequence of D.14 and Lemma 8: for all 1 � k � Kn
and all i � J ,k

� � � �� � b �a � c log 1 � i �i � c log 1 � mk � 1 � m k � 1Ž . Ž . Ž .Ž .n , i n , k n , k

� c	 log 1 � k �k .Ž .
Lemma 2 is also a straightforward consequence of Lemmas 6 and 8. Indeed,
we can write

2 a � f y 2 a � f x f x f x � f yŽ . Ž . Ž . Ž . Ž .n , i k n , i i i i k� � ,
f y f x f y f yŽ . Ž . Ž . Ž .k i k k

Ž .and Lemma 6 and assumption A1 imply that for all 1 � k � K and alln
i � J ,k

2 a � f y log 1 � kŽ . Ž .n , i k � c .
f y kŽ .k

Ž . Ž Ž ..Ž Ž . Ž .Finally, since 2 a �f y � 2 a �f x f x �f y , Assumption 2 andn, i k n, i i i k
Ž .Lemma 8 imply that 2 a �f y is uniformly bounded away from 0. Thisn, i k

concludes the proof of Lemma 2. �

Ž .Define � � cov � , � . It is easily seen thatn, s n, s n, s

2'� � c �a 1 � � ,n , s n , s n , s n , s

so the following inequality is a straightforward consequence of Lemmas 6, 7
and 8. There exists a finite constant c such that for all 1 � k � K and alln
� J ,k

� �D.16 � � c log 1 � k �k .Ž . Ž .n , i

Moreover, � is uniformly bounded away from 1.n, i
Ž .We can now prove Lemma 3. Equation D.16 and Lemma 9 imply that the

Ž .off-diagonal terms of � are all of order log 1 � k �k, uniformly wrt n;n, k
Ž .thus the spectral radius � of � is of order log 1 � k �k, uniformly wrtn, k n, k

n. We must now prove that the smallest eigenvalue of � is uniformlyn, k
bounded away from �1. First note that there exists an integer K such that0
for all k 
 K and all n 
 2mk, � � 1�2. Consider now k � K . Since0 n, k 0
� � � � I , it is equivalent to prove that the smallest eigenvalue ofn, k n, k 2 m

Ž . � � ��2 d Ž . Ž .� is bounded away from 0. Define �, � � H u � u � u du. Letn, k d ��

sin k� � u sin k� � uŽ . Ž .�s u � � ,Ž .k k� � u k� � u
sin k� � u sin k� � uŽ . Ž .�s u � �Ž .k k� � u k� � u

Ž . �Ž . Ž � �.1�2 Ž . �Ž . Ž � �.1�2and let � u � s u � s , s and  u � s u � s , s . Note thatk k k k d k k k k d
Ž . Ž . Ž .� , � �  ,  � 1 and � ,  � 0. As in the proof of Lemma 8, it isk k d k k d k k d
easily seen that lim � � ��, where �� is the Gram�Schmidt matrixn�� n, k k k

Ž .related to the functions � and  , m k � 1 � 1 � t � mk and the scalart t
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Ž . Ž .product �, � . Since the functions � and  , m k � 1 � 1 � t � mk ared t t
linearly independent, �� is invertible, which implies that its smallest eigen-k
value is positive. Thus there exists a real � � 0 and an integer n such that0
for all n 
 n and all k � K , the smallest eigenvalue of � is greater than0 0 n, k
� . For each n � n and k � k , � is invertible so the smallest eigenvalue0 0 n, k
of each � , n � n , k � k is greater than some � 	 � 0. This finally con-n, k 0 0
cludes the proof of Lemma 3. �

To conclude the proof of Lemma 4, note that for 1 � k � j � K ,n
Ž T . �1�2Ž Ž T . �1�2E W W � � E � � � . Lemma 9 implies that the entries ofn, k n, j n, k n, k n, j n, j
Ž T . Ž . �� d � � d ��1E � � are of order log j k j and since the smallest eigenvalue ofn, k n, j

� is uniformly bounded away from zero, the spectral radius of ��1�2 isn, k n, k
Ž T .uniformly bounded, so that the entries of E W W are also of ordern, k n, j

Ž . �� d � � d ��1log j k j . This concludes the proof of Lemma 4. �
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