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Abstract— Recent advancements in transistor technology, such
as the 35 nm InP HEMT, allow for the development of mono-
lithic microwave integrated circuit (MMIC) low noise ampli-
fiers (LNAs) with performance properties that challenge the
hegemony of SIS mixers as leading radio astronomy detectors
at frequencies as high as 116 GHz. In particular, for the Ata-
cama Large Millimeter and Submillimeter Array (ALMA), this
technical advancement allows the combination of two previously
defined bands, 2 (67–90 GHz) and 3 (84–116 GHz), into a single
ultra-broadband 2+3 (67–116 GHz) receiver. With this purpose,
we present the design, implementation, and characterization of
LNAs suitable for operation in this new ALMA band 2+3, and
also a different set of LNAs for ALMA band 2. The best LNAs
reported here show a noise temperature less than 250 K from
72 to 104 GHz at room temperature, and less than 28 K from
70 to 110 GHz at cryogenic ambient temperature of 20 K. To the
best knowledge of the authors, this is the lowest wideband noise
ever published in the 70–110 GHz frequency range, typically
designated as W -band.

Index Terms— Atacama Large Millimeter and Submillimeter
Array (ALMA), band 2+3, broadband, cryogenic, low
noise amplifier (LNA), monolithic microwave integrated
circuit (MMIC), 35 nm InP, W-band, WR-10.
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I. INTRODUCTION

T
HE Atacama Large Millimeter and Submillimeter

Array (ALMA) [1] is the largest astronomical project

currently in existence. It is located in the Atacama Desert of

Chile, in an area where the elevation, 5000 m, and atmospheric

dryness create excellent conditions for performing astronomi-

cal observations in the millimeter and submillimeter frequency

ranges. The telescope consists of 66 antennas, 54 with dishes

of 12 m diameter and 12 with dishes of 7 m diameter, which

are furnished with state-of-the-art front-end receivers in ten

frequency bands, ranging from 31 to 950 GHz. Of particular

interest for this paper are bands 2 and 3, whose technical

specifications are listed in Table I.

ALMA employs HEMT low noise amplifiers (LNAs) as

core detecting technology from 31 to 90 GHz, and SIS

mixers from 84 GHz to the telescope’s upper observation limit

of 950 GHz. However, with the most recent advancements in

transistor fabrication technologies, particularly relating to InP

HEMTs, it is possible to develop LNAs with excellent noise

and wideband performance at frequencies as high as 116 GHz

and beyond. This technical leap offers the prospect of com-

bining bands 2 and 3 into a single ultra-broadband LNA-based

receiver cartridge with a reduced cooling requirement of 20 K,

instead of 4 K as required by SIS mixers. Furthermore,

merging these two ALMA bands allows the inclusion of

another receiver for a new frequency band, increasing the

observational capability of the telescope.

This paper demonstrates the first LNAs suitable for opera-

tion in the 67–116 GHz frequency range with a noise temper-

ature lower than the receiver specification shown in Table I.

Moreover, the LNAs presented here are also suitable for

future radio astronomy projects with broadband receivers in

the W -band frequency range, such as the ngVLA [2] or

LLAMA [3], and other non-astronomical applications such as

automotive radars or millimeter wave imagers, which are of

increasing demand in modern society [4].

II. MMIC DESIGNS

This section presents two MMIC designs, one for band 2

and the other for band 2+3, which were developed using

the state-of-the-art 35 nm gate length InP HEMT process

of NGC [5]. This technology features a cutoff frequency

greater than 400 GHz and a maximum transconductance (gm)

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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TABLE I

ALMA BANDS 2 AND 3 SPECIFICATIONS

greater than 2200 mS/mm at a drain–source voltage (Vd)

of 1 V. The LNA chips were fabricated onto a 50 µm

thick InP substrate with through-substrate vias for grounding,

20 and 100 �/sq thin-film resistors, and 0.3 nF/mm2 metal-

insulator-metal capacitors. The transistors were passivated

with a thin silicon nitride layer. Both MMIC designs consist

of two transistor stages in common-source topology with

the possibility of independent drain and gate biasing, and

utilize 2-finger transistors whose total size (number of fingers

× finger width) is 60 µm per stage. The MMIC design

process was performed with individual simulation of the

different matching networks using the electromagnetic (EM)

simulator momentum, a tool included with the Keysight

ADS package [6].

Figs. 1 and 2 show a simplified schematic of the MMICs, a

microscopic photograph of the fabricated devices, and their

simulated cryogenic performance, for the band 2 and 2+3

designs, respectively. The size of the fabricated chips was

1300 × 900 µm for both design types.

III. MMICs CHARACTERIZATION

The fabricated wafers contained 13 MMICs of each design.

Packaging and testing LNAs is a costly and time-consuming

process, and for these reasons, the MMICs could not be

picked blindly for packaging [7]. In order to select and

package only the best chips, they were first tested in the

cryogenic probe station at Caltech’s Cahill Radio Astronomy

Laboratory (CRAL), which was configured to perform noise

measurements in the 74–116 GHz frequency range at an ambi-

ent temperature of 20 K, as detailed in [8]. Utilization of this

instrument allowed us to perform a relative comparison of the

different fabricated MMICs, and determine which ones had the

best noise performance. It must be emphasized that the tests

performed with this instrument did not provide absolute noise

temperature measurements because the contribution of the

lossy input probe was not calibrated, resulting in a systematic

overestimate of the absolute noise temperature.

Cryogenic probing tests were performed for 10 MMICs

of each design type, with the transistors biased at a current

density (drain current divided gate width) of 67 mA/mm.

Fig. 3 shows a microscopic photograph of the process for

probing a band 2 MMIC. The results of the tests are shown

in Figs. 4 and 5 for band 2 and 2+3 MMICs, respectively.

The yield of the band 2 and 2+3 MMIC designs can

be estimated as 60% and 70%, respectively, at cryogenic

temperature, based on the number of chips that did / did not

turn on during the tests: 6/4 in the case of the band 2 design,

and 7/3 in the case of the band 2+3 one. This is a result of

both the fabrication process and the design parameters.

Fig. 1. MMIC design for ALMA band 2 (67 to 90 GHz). (a) Simplified
schematic. (b) Microscopic photograph of a fabricated MMIC. (c) Simulated
S-parameters at 20 K ambient temperature (simulated S12 is better than 34 dB
from 67 to 90 GHz). (d) Simulated noise at 20 K ambient temperature plotted
against ALMA specifications for receiver noise.

IV. LNAs ASSEMBLY

The best MMICs were selected and packaged in WR-10

blocks similar to that shown in Fig. 6, which were specifically
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Fig. 2. MMIC design for ALMA band 2+3 (67 to 116 GHz). (a) Simplified
schematic. (b) Microscopic photograph of a fabricated MMIC. (c) Simulated
S-parameters at 20 K ambient temperature (simulated S12 is better than 30 dB
from 67 to 116 GHz). (d) Simulated noise at 20 K ambient temperature plotted
against ALMA specifications for receiver noise.

designed to cover the frequency range from 67 to 116 GHz.

The WR-10 blocks were made of brass and gold plated

with 5 µm gold over 5 µm nickel. Manufacture was in the

Fig. 3. Cryogenic probing of a band 2 MMIC.

Fig. 4. Measured noise temperature of the band 2 MMICs tested in the
cryogenic probe station. Not corrected for input probe contribution. Each
trace corresponds to a different MMIC. Tests included four chips that did
not turn on. Transistors were biased with a current density of 67 mA/mm.

Fig. 5. Measured noise temperature of the band 2+3 MMICs tested in the
cryogenic probe station. Not corrected for input probe contribution. Each trace
corresponds to a different MMIC. Tests included three chips that did not turn
on. Transistors were biased with a current density of 67 mA/mm.

mechanical workshops of the University of Manchester and

the Rutherford Appleton Laboratory (RAL). The package was

3-D modeled with Autodesk Inventor [9], and EM simulated

with Ansoft HFSS [10]. Table II gives the relationship of the

MMICs packaged in each WR-10 block.

In order to couple the EM fields propagating along the

waveguide channels to the microstrip lines at the input
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Fig. 6. Photograph of a WR-10 LNA block.

TABLE II

PACKAGING OF THE MMICs IN WR-10 BLOCKS

Fig. 7. Interior of a WR-10 LNA block.

and output of the MMICs, some E-plane waveguide-to-

microstrip probes were specifically designed to operate in the

67–116 GHz frequency range, and manufactured. The fabri-

cated probes can be seen in Fig. 7, which shows a photograph

of one of the LNA blocks with the cover removed. Fig. 8 shows

the simulated reflection coefficient of the probes from the

MMIC side plotted against the simulated optimum reflection

coefficient (Ŵopt) of the MMICs. The design of the probes was

done with the EM simulator Ansoft HFSS, and fabrication

material was 3 mil thick quartz substrate with 3 µm gold

on both sides. Quartz is regarded as a suitable material for

this application due to its low dielectric constant (εr ) of 3.8.

Fig. 8. Smith chart plots of simulated: input reflection coefficient of the
waveguide-to-microstrip probes from the MMIC side in the 67–116 GHz range
(black line with rectangles), Ŵopt of the band 2 MMIC design (blue line with
circles) in the 67–90 GHz range, and Ŵopt of the band 2+3 MMIC design
(red line with triangles) in the 67–116 GHz range.

Fig. 9. Off-chip bias protection circuit.

In addition, it is transparent and so allows for an easy

alignment of the probes and removal of the excess epoxy in

the waveguide channel.

Biasing of the transistors in the MMIC was done through

a 9-pin micro-D connector embedded in the WR-10 blocks.

LNAs are devices that operate at low voltages and are suscepti-

ble to damage from electrostatic discharge and improper bias-

ing, as well as being sensitive to low-level interference [11].

For this reason, a protection circuit was included in the form

of a PCB and some bondable decoupling capacitors close to

the MMIC. The schematic of this circuit is shown in Fig. 9.

V. LNAs CHARACTERIZATION

The LNAs were characterized at room temperature for

S-parameters and noise, and at cryogenic ambient temperature

of 20 K for noise. Tests were done at the CRAL. The

S-parameters were tested with a Rohde and Schwarz ZVA 24

Vector Network Analyzer, and ZVA-Z110 WR-10 converter

head extensions. Noise characterization of the LNAs was per-

formed by application of the Y-factor method, according to the
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Fig. 10. Test setup for noise characterization at room temperature (295 K)
and cryogenic temperature (20 K). DUT is the device (LNA) under test.
X2 and X4 multipliers were turned ON/OFF with a LabVIEW vi interface, and
only one was active at a time. The subharmonic mixer is the part WR10SHM
from Virginia diodes.

Fig. 11. Interior of the Dewar with setup for characterizing two LNA blocks.

test bench diagram shown in Fig. 10, and applying a correction

to subtract the noise contribution of the back-end. For the

room temperature measurements, the DUT LNA was attached

to a rectangular horn, and the Y-factor method was applied

with external 290 K “hot” and 77 K “cold” loads. For the

noise characterization of the LNAs at cryogenic temperature,

the DUT and the back-end LNA were inserted into a 20 K

closed cycle cryostat, whose interior is shown in Fig. 11.

In this case, the input of the DUT was attached to a variable

temperature vane, configured to present “hot” and “cold” loads

of 75 K and 25 K, respectively, at the input of the LNA.

The results from these tests are presented in Fig. 12 for the

ALMA band 2 LNAs and in Fig. 13 for the ALMA band 2+3

LNAs. The estimated random uncertainty of the cryogenic

noise measurements is ±1.6 K (σ ), based on the scatter of the

IF power measurements and the uncertainty of the temperature

sensor in the vane. This is consistent with the peak-to-peak

scatter of ±1.9 K across the 75–105 GHz band for B23a

(the device with the most uniform performance across this

band). In addition, we estimate a potential systematic offset

of up to ±2.7 K based on the accuracy of the power sensor and

Fig. 12. Characterization of two WR-10 LNA blocks for ALMA band 2.
Blocks are designated as B2a and B2b. Transistors were biased with a
current density of 167 mA/mm for the room temperature measurements and
75 mA/mm for the cryogenic measurements. (a) Measured S-parameters at
ambient temperature of 295 K. (b) Measured noise temperature at ambient
temperature of 295 K. (c) Measured noise temperature at ambient temperature
of 20 K plotted against specifications for ALMA receiver noise and simulated
noise assuming 0.3 dB package loss prior to the MMIC.

the power/temperature loss in the waveguide section between

the vane and the DUT.

It was experimentally determined that the best performance

was obtained biasing the band 2 LNAs with a current density

of 167 mA/mm at room temperature and 75 mA/mm at

cryogenic temperature, and the band 2+3 LNAs with a current

density of 200 mA/mm at room temperature and 67mA/mm
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Fig. 13. Characterization of five WR-10 blocks for ALMA band 2+3. Blocks
are designated as B23a, B23b, B23c, B23d, and B23e. Transistors were biased
with a current density of 200 mA/mm for the room temperature measurements
and 67 mA/mm for the cryogenic measurements. (a) Measured S-parameters
at ambient temperature of 295 K. (b) Measured noise temperature at ambient
temperature of 295 K. (c) Measured noise temperature at ambient temperature
of 20 K plotted against ALMA specifications for receiver noise and simulated
noise assuming 0.3 dB package loss prior to the MMIC. Samples with no color
filling below 70 GHz were measured with a WR12 mixer (WR12SHM) instead
of a WR10 one as described in Fig. 10. We believe the spike at 109 GHz
in the cryogenic noise temperature of B23e may be due to an error in the
measurement system.

at cryogenic temperature. With these biasing conditions the

power consumption at cryogenic temperature is 10 mW in

the case of the band 2 LNAs, and 6 mW in the case of the

band 2+3 LNAs.

VI. DISCUSSION OF RESULTS

In the previous section, the results of the LNA characteri-

zation were presented. From Fig. 12, it can be observed that

the LNAs for ALMA band 2 (B2a and B2b) have very similar

performance up to 82 GHz. However, the noise performance

of B2b is superior in the 82–90 GHz range. As previously

described, these LNAs for ALMA band 2 were designed to

operate from 67 to 90 GHz. In this band, B2b has a room

temperature gain of 16.5 ± 1.5 dB, and noise temperature

between 225 and 430 K at room temperature and between

23 and 50 K at a cryogenic temperature of 20 K. Moreover, it is

interesting to point out that B2b also has good performance

from 90 to 100 GHz, featuring a cryogenic noise temperature

of less than 30 K.

Concerning the LNAs for ALMA band 2+3, Fig. 13 shows

that B23d and B23e achieve a noise temperature less than

250 K from 72 to 104 GHz at room temperature, and B23a

and B23e show a cryogenic noise temperature less than 28 K

from 70 to 110 GHz. We believe these results show the lowest

broadband noise temperature so far reported for LNAs oper-

ating at W -band, and this is supported by a comparison with

other state-of-the-art works from the literature in Table III.

Table IV is also provided to compare the noise performance

of the LNAs with the specifications for receiver noise in

five frequency bands of interest for ALMA. As described

in Section I, these specifications are for maximum noise

over 80% of the RF bandwidth, and maximum noise at any

RF frequency. The frequency bands of study include the

previously described bands 2, 3, and 2+3, and two alternative

ones that we propose and designate as “extended band 2”

(68 to 100 GHz) and “reduced band 2+3” (68 to 114 GHz).

The noise specifications for these two alternative bands are not

an official ALMA specification, and were calculated as a pro-

rated average between the specifications for bands 2 and 3, as

Spec(K) =
BWB2(GHz) · SpecB2(K)

BWTOTAL(GHz)

+
BWB3(GHz) · SpecB3(K)

BWTOTAL(GHz)
(1)

where BW and Spec are the bandwidth and noise specification

of the corresponding frequency band.

It can be observed that although the band 2 LNAs have a

noise performance comparable to other state-of-the-art devices

in the same frequency range, they do not fully meet the ALMA

specifications. This is due to their noise performance in the

lower end of the band, from 67 to 73 GHz, which is higher

than expected from the simulations.

We demonstrate on the other hand that the ALMA band 2+3

design presents a noise temperature lower than the ALMA

receiver specifications for band 2, and significantly exceeds the

specifications for band 3. This is best exemplified through the

LNAs B23a, B23b, and B23e, which have a noise temperature

less than 31 K over 80% of the bandwidth from 67 to 116 GHz,

and less than 54 K at any RF frequency in the same range.

The performance of these band 2+3 LNAs proves that it is

possible to develop ultra-low noise W -band amplifiers with a

relative bandwidth as high as 54%, and opens the door to a

new generation of ultra-wideband radio astronomy receivers.
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TABLE III

COMPARISON WITH STATE-OF-THE-ART LNAs FROM THE LITERATURE

TABLE IV

CRYOGENIC NOISE PERFORMANCE OF THE LNAs VERSUS ALMA SPECIFICATIONS

This provides considerable benefit to future radio astronomy

where wide-bandwidth observations will be required [22].

VII. CONCLUSION

In this paper, we presented the design and implementation

of two cryogenic LNA designs suitable for operation in the

frequency ranges of ALMA band 2 (67 to 90 GHz), and

a new combined band 2+3 (67 to 116 GHz). We showed the

characterization results of two fully assembled WR-10 LNAs

for band 2 and five for band 2+3. Some of these LNAs showed

a noise temperature less than 250 K from 72 to 104 GHz at

room temperature, and less than 28 K across all of W -band

(70 to 110 GHz) at cryogenic ambient temperature of 20 K.

After performing a comparison with other state-of-the-art

works from the literature, we demonstrated that these LNAs

establish a new record for broadband noise in W -band.
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