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Resolution analysis for imaging in the presence of noise is presented. A simple definition of resolution that

takes into account the effect of noise is introduced and is shown to depend also on factors such as the signal-
to-noise ratio and the false-alarm rate. The striking effect of aperture-independent superresolution in imaging
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with broadband signals is demonstrated. © 2007 Optical Society of America
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1. INTRODUCTION

Consider the imaging of an object with a thin lens of
(z,,2;) geometry satisfying the lens equation z;1+z;1=f‘1,
where z, and z; are the respective distances from the ob-
ject plane and image plane to the thin lens and f is the
focal length of the lens. In the Fresnel diffraction theory,
the image field with the object field ¥,(x) is given by

eik(zo"'zi)
e(ik’/2zl-)\x|2

Y(x)=
®) —)\zzozi

Xf e—(ik/zi)xx' f e—(ik/zo)x’-x"\ljo(xu)dxudxr ,
A

with N the wavelength and %2 the wavenumber, from
which one can derive Abbé’s and Rayleigh’s theories of
resolution. This formula is equivalent to G*x[I,TG*V,],
where * stands for convolution, G is the Green function
(see below), the indicator function I, stands for truncation
by the aperture A, and T is the quadratic phase factor
exp{-ik|x[2/(2/)}.) What the lens does is to turn the di-
verging front into a converging front through the effect of
the quadratic phase factor; see Fig. 1.

Another way of turning a divergent wave into a conver-
gent wave is by using a time-reversal or phase-conjugate
mirror (PCM)% see Fig. 2. A PCM replaces the incident
complex wave field with its time-reversed replica and
therefore reverses the direction of propagation. Conse-
quently the phase-conjugated field can be considered as
an antidistorted field, and when it retraces its path
through the phase-distorting medium, the distortion is
undone and refocusing on the source occurs. Mathemati-
cally the process can be expressed as G*[TAG**\I'Z],
where * stands for conjugation. In this case, the image
plane coincides with the object plane.
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Both imaging processes can be written in the general
form G*[I,U(G*V,)], where U is some unitary operator
representing the functionality of the imaging system: In
the case of a thin convex lens, U is the multiplication by
T; in the case of PCM, U is the phase conjugation. Both
can be interpreted as coherent measurement at the lens/
PCM followed by repropagation in the free space, which
can be carried out in the physical space or the computa-
tional space. The latter perspective is particularly useful,
as it permits extension of the resolution theory for optical
imaging to radio-wave imaging with an antenna array.

Ambiguity is, however, present in the conventional
definitions of imaging resolution. In the classical, more
pessimistic Rayleigh criterion, the resolution is taken to
be the radius of the first Airy disk (0% intensity level),
while in the more optimistic Sparrow criterion, the reso-
lution is taken to be roughly the radius of the 50% inten-
sity level, corresponding to the minimum separation for
which the midpoint intensity is not higher than that at
the equal source points. Indeed, any criterion in between
is an equally legitimate notion of resolution, and all are to
a certain extent a measure of the size of the main lobe of
the point-spread function of the imaging system. On the
other hand, if noise is absent and postprocessing of the
detected image is allowed, one can in principle achieve ar-
bitrarily fine resolution from the point-spread function of
the imaging system. This is known as superresolution.®2
Indeed, the frequency components of an input image of fi-
nite extent that have not been transmitted through the
band-limited imaging system may still be recovered by
the technique of analytic continuation or other postpro-
cessing methods. However, it is well known that this
problem is ill-posed; i.e., small noise present in the data
results in large error in the estimation. Thus resolution is
limited ultimately by channel uncertainty such as impre-
cise measurement, due to noise, and imperfect knowledge
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Fig. 1. Imaging with a lens.
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Fig. 2. Imaging with a phase-conjugate mirror (PCM).

of the imaging system. As a result the signal-to-noise ra-
tio (SNR) in image formation should be a fundamental
factor in the objective notions of resolution.'?

More recently, the effect of noise on resolution has been
revisited by Shahram and Milanfar, who constructed a
maximum-likelihood estimator for the distance between
two point sources and demonstrated numerically that
resolution below the diffraction limit is attainable for suf-
ficiently large SNR! (see also references therein). The
maximum-likelihood estimator is, however, difficult to ob-
tain in general (such as for imaging with a broad band-
width). Also, a precise definition of resolution taking into
account SNR was not given.

We believe that a simple definition of resolution as a
performance yardstick for the imaging systems of the
kinds discussed above (direct imaging, instead of image
reconstruction) in the presence of noise will be useful, and
in this work we present such a definition and pursue
some of its consequences. Roughly speaking, the new (to
our knowledge) notion of resolution takes the form of the
deterioration of the detection probability, given the false-
alarm rate and SNR, and therefore depends on the noise
ensemble as well as wavelength and aperture.

Just as in the conventional notions of resolution, the
notions of resolution introduced in the present work con-
tain arbitrariness. But the qualitative features of these
asymptotic results are definitely unambiguous. Using the
proposed definition of resolution, we analyze the
resolution-enhancement effect with broadband signals. A
most striking effect of broadband imaging is that the re-
sulting resolution can be aperture independent, which is
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somewhat counterintuitive but physically sensible; see
Section 3.

The rest of the paper is organized as follows: In Subsec-
tion 2.A we introduce the setup of the problem with an ar-
ray of transducers and an imbedded point source. Next, in
Subsection 2.B we construct an imaging function and as-
sociated detection rule in the case with Gaussian mea-
surement noise. The lateral and range resolution derive
from the detection rule and are identified and analyzed in
Subsections 2.C, 2.D, and 2.E. In Subsection 2.F we ex-
tend the analysis to two-point resolution. In Subsection
2.G we present a simulated example. We apply the new
definition of resolution to imaging with multiple frequen-
cies in Section 3 and then conclude in Section 4.

2. IMAGING OF POINT SOURCE

We work primarily with the discrete setup, which is most
convenient for our approach. The discrete setup is natural
in array imaging with radio waves. In imaging with lens
and PCM, we consider the situation of extracting an im-
age on the image plane by, e.g., a CCD camera which out-
puts a discrete array of data through the pixels. Conse-
quently, we adopt largely the language of array imaging
with the direct imaging systems described in Section 1 in
mind.

In particular, we draw on the PCM imaging system for
analogy, and we construct an imaging function, Z(x),
which corresponds to time reversing (phase conjugating)
and backpropagating the received signals in the computa-
tional domain. Applying the techniques of hypothesis test-
ing in statistics, we then derive a strategy for deciding the
presence/absence of a point source based on the imaging
function. The new notion of resolution is based on the out-
come of the test.

A. Array Imaging

The experimental setup with an active array is shown in
Fig. 3. The medium is located in the half-space z>0 and
the transmitters array at the surface z=0. We consider an
array of N X N receivers. The measurements at the N? re-
ceivers for a point source at x, are denoted G(X,). This
vector of observations is sometimes also referred to as the
illumination vector. We consider the case with scalar
waves. The time-harmonic version of the problem is then
characterized by the reduced wave equation with a con-
stant index of refraction in the situation when the back-

DETECTORS

SOURCE

X2 X1

z
Fig. 3. Experimental setup with a passive transducer array
that we consider in this paper. A source emits a signal that is re-
corded at the array. The two-dimensional array is located in the
plane z=0. The cross-range space coordinates are labeled x; and
Xo.
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ground medium is homogeneous. If we let G be the free-
space Green’s function associated with the reduced wave
equation, then we can express the illumination vector
when there is no measurement noise as

G(;Ks) = {G0(§S7§L)}f\i21 )

where x=(x,z)=(x;,%9,2) and the free-space Green’s func-
tion is given by

oikIX1=%o|
Go(%4,X5) =

— s = (1)
4% - Xy

with k=w/cy the wavenumber for ¢ the wave speed and
the temporal frequency. In the next section we discuss the
case when we have additive measurement noise and use
the noisy illumination vector to detect the source.

B. Optimal Detection
We consider the additive white Gaussian noise (AWGN)
as present in either the intermediate stage of “coherent”
measurement by the antenna array/lens/PCM or the final
stage of image formation as explained in Section 1. AWGN
is perhaps the simplest model representing measurement
and ambient noise as well as model imperfections. As the
difference between the two scenarios of introducing noise
is a unitary propagation (the convolution with the free-
space Green function), the final noise statistic is still the
same (namely, additive white Gaussian) and therefore
makes no difference to our analysis.

Therefore we assume the following model of noisy ob-
servations:

Y= 1G(x,) + oW,

for the real source strength parameter being 7>0 and W
a complex, circularly symmetric standard Gaussian ran-
dom vector: W=(W,+iW,) with W, and W, having identi-
cally independently distributed (i.i.d.) entries distributed
according to the standard normal distribution. We seek to
infer from these measurements the presence/absence of a
point source and the range of uncertainty of its location.
As in the standard statistical hypothesis testing,15 we
postulate two hypotheses and derive a decision rule for
deciding between them based on the imaging function:

The null hypothesis Hy: The point source is absent.

The alternate hypothesis Hy: The point source is
present.

Let a be the false-alarm rate defined as

a=Placcept H4|H, true], (2)
and 1-p the detection power or probability of detection:
1 - B=Placcept H;|H; true], (3)

with P representing probability. Given the data Y, the de-
cision rule for accepting H, or not can be derived from the
Neyman-Pearson lemma, which asserts that for a pre-
scribed false-alarm rate «, the most powerful test corre-
sponds to accepting H; for the likelihood ratio of H; to H,
exceeding a threshold 7', determined by a.

First, we choose as the test statistic the imaging func-
tional
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I(%) = R GX)|GE)|lk, (4)

where R denotes the real part. The imaging functional is
constructed by using the matched filter, which optimizes
the SNR.'® The choice of location % is completely arbitrary
as long as it lies in the computational domain and the dif-
ference between x and the source location X, is the mis-
match of the “matched” filter, which will be used to define
the notion of one-point resolution below. The complex in-
ner product Y'-G(X) can be interpreted as time reversing
and reemitting the receptive field Y into the computation
domain with the Green’s function; thus the coinage time-
reversal detection, which is particularly appropriate in
the case of broadband signals (see Section 3).

Now observe that under the null hypothesis Z(x)
~ MO0, 0?), while under the alternate hypothesis

(%) ~ Mu(X),0?), w® =G %) GX]GE)|5,

with M u, 02) denoting the normal distribution with mean
n and standard deviation o. As mentioned, the Neyman—
Pearson lemma corresponds to accepting H; for the like-
lihood ratio exceeding a specific threshold 7. Here, the
likelihood ratio is the ratio of the two probability densities
of the imaging function Z that corresponds to H; and Ha,
respectively, and when evaluated at the observation Z(x).
Using the expression for the normal density, we find that
the likelihood ratio is given by

A(X) = C exp(A[Y" - GX)]|GX)|3 n(X) 072,

where C is a constant depending only on G.

By the Neyman—Pearson lemma, the decision rule of
accepting H; iff Z(X) >T maximizes the probability of de-
tection for a given false-alarm rate « with the threshold T

T=0011-a), (5)

where @ is the (Gauss) error function. Indeed, since the
imaging functional is Gaussian with standard deviation o
under H, this definition of 7" means that the probability
of accepting H; given that H, is true is « as specified in
Eq. (2).

C. One-Point Resolution

We now discuss the notion of one-point resolution, or un-
certainty of location, as another performance criterion.
This is introduced as the mismatch of the “matched” filter,
resulting in a certain prescribed degree of performance
deterioration.

First, let us derive a duality relation between the false-
alarm rate a and the miss probability 8. For simplicity of
notation we consider the point source located at X,
=(0,L). If the source is present, the imaging functional is
Gaussian with mean u(x) and standard deviation o. From
this we find the power of the test, 1-8(X), to be

1-B(%)=1->(T - u(X))/a), (6)
which can be expressed in terms of the SNR
BAIR)]  p®)?

SNR®) = G @]~ o

, (7)

and Eq. (5) as
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1-8x)=1 -cp(cb-l(l —a)- @)
g

= ®(SNR®) - 71(1 - ),

where we used the relation ®(x)=1-®(-x). We thus ar-
rive at the following performance duality relations:

1-a=®({SNR®) - d71(1 - B(%))), (8)
1-B(%) = ®(ySNRX) - @71 - a)). 9)

Note that u(x) and SNR(x) achieve the maximum at x
=%, with

SNR(%,) = ?N?%/(c4mL)?. (10)

Thus the detection power 1-3(X) also achieves the maxi-
mum at x=X,. Figure 4 shows the maximal detection
power 1-3(x,) as a function of false-alarm rate « at vari-
ous levels of SNR. We see a trade-off between detection
power and false-alarm rate. Figure 5 shows the detection
power 1-8(x) as a function of the relative offset param-
eter |%|[A/(\L) for «=0.05 and AL/A%2=10 and SNR(0)
=2,4,6,8,10. For large offsets the detection power ap-
proaches «, since then the point source has little effect on
the measurements. For a small offset a large SNR gives a
higher detection power, as this corresponds to a relatively
small additive noise in the measurements. We have used
the paraxial approximation (13) for plotting Fig. 5, and
here \ is wavelength, A is the aperture of the mirror, and
NL/A is the Rayleigh cross-range resolution.

D. Cross-Range Resolution

Let us consider the imaging functional Z(x) at x—(x,L)
with the offset x=(x;,x9) and ask the following question:
How far off axis must the test point X be moved in order to

1

R SNR=1/2

o= — — —SNR=1
SNR=2

- SNR=3
—+—SNR=4

0.9

0.8

07K |

04F - g
03k = 4

0.2F - 4

L L L L L L L L L
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
o

Fig. 4. (Color online) Detection power as function of « for
VSNR(0) €{1/2,1,2,3,4}. For a small value of a, corresponding
to a small false-alarm rate, the test also has a relatively small
power 1- . This follows since for small « the test must be con-
servative and conclude that the point source is present only for
relatively large values of the imaging functional; see Egs. (5) and
(6). For a fixed false-alarm rate, the power increases with the
SNR, since this corresponds to an increase in the signal received
from the source relative to the noise.
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Fig. 5. (Color online) Detection power as function of offset and
SNR. Here \ is wavelength, L is distance to target, and A is the
aperture of the mirror. As the offset increases, corresponding to
increased error in the cross-range specification, the probability of
detecting the source decreases.

increase the probability of failed detection over the mini-
mal By=p(X,) by a specific factor f>1?

That is, fBy=pB(p.), where p, is the cross-range resolu-
tion p, for the given factor f>1 and B(p,) is the probability
of failed detection with the offset p.. The number of this
criterion is, however, generally more than one, and we de-
fine the resolution to be the largest root. The cross-range
resolution can be interpreted as the uncertainty of the
source location due to the presence of noise and the sen-
sitivity of the detection scheme characterized by f.

The factor f>1 is somewhat arbitrary. A reasonable
choice is such that /8, is exactly the midpoint between the
minimum Sy, at the target location, and the maximum at
infinity. At infinity, SNR is zero and hence B(«) is 1-«a by
Eq. (9). With this choice,

1 1-«a
=—+ .
4 2 2B
Other choices of f are fine as long as they satisfy the fol-
lowing constraint:

(11

1-«

1<f= (12)

Bo

From Eq. (11) and (12) we see that for a fixed false-
alarm rate, f must decrease as SNR decreases since 3,
would increase in this case. In fact, this notion of resolu-
tion can be thought of as a generalized Sparrow resolu-
tion in the presence of noise in the sense that with /=2,
the miss probability at the midpoint of two incoherent
point sources separated by p, is roughly equal to that at
either source point.

For simplicity we now consider the paraxial approxima-
tion of the Green’s function (1)

ol 00 (p,0,)) ~ ——expl it 1+ L
0lX1,X92,U),(p,V, 47TLeXp 12 oL s
(13)

provided that
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p<L, A<L. (14)
It then follows from Eqgs. (4) and (7) that

T N
\HSNR(;)) ~— R e—ikPZ/(ZL)E eikxjp/L , (15)
47Lo

J=1

where the square-array elements x;;=(x;,x;) are assumed
to be equally spaced with x;=-A/2...x5=A/2. We further
assume the number of elements is sufficiently large so

that
p/N <R,, (16)

where R, =\L/A, N\=27/Fk, is Abbe’s (or Rayleigh’s) cross-
range resolution. Then, using Eq. (15),

2 Al2
—— T mp \N )
VSNR(p) = ————cos| — | — e—lkyp/Ldy
o(4xL) AL

Al up
— [\ (7
= SNR(0)cos <L )sine R_c . (17)
Recall that
VSNR(p,) = (1 - ) + (1 - fBy), (18)
VSNR(0) = @71(1 - @) + D7(1 - By), (19)

and we deduce the equation determining the cross-range
resolution

[SNR(p,) ( Wp?) ( #pc> 1
————— =cos sinc = ., (20)
SNR(0) AL R.) F(a,By)

O l1-a)+ D1 - B
PN 1-a)+ P (1-1By)

with

F(a, Bo) = (21)

We define the resolution gain by g.=R./p,. Condition (16)
then becomes g,>1/N. Since the resolution is defined as
the largest root of Eq. (20), the cos factor in Eq. (20) can
be neglected.

Figure 6 shows the cross-range resolution gain g, as a
function of SNR and for «=0.001, 0.005, 0.01, 0.02, 0.05.
For each value of « in the plot, the lower cutoff in the SNR
value corresponds to constraint (12). The resolution gain
increases with SNR and is always greater than one. For a
fixed SNR, the resolution gain increases with the false-
alarm rate, which reflects the trade-off between detection
power and false-alarm rate seen in Fig. 4. Figure 7 shows
the cross-range resolution gain g, as a function of the de-
tection power 1-pB, with f=2 and for «=0.001, 0.005,
0.01, 0.02, 0.05. The resolution gain increases with the de-
tection probability. For a fixed detection probability, the
resolution gain decreases with the false-alarm rate since
this corresponds to a decreased SNR.

To understand how SNR affects the detection resolu-
tion, let us derive an asymptotic formula for the cross-
range resolution as SNR(xX,) tends to infinity. In this re-
gime, By— 0 and
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1 ‘D_l(l—fﬁo)N L Inf

= 1, (22)
F @ (1-py) In B,
following from the asymptotic
1-d@) ~ et > 1.

t \/ZT

Comparing the Taylor expansions of sinc(mp,/R,) and the
right-hand side of Eq. (22), we obtain

L [12Inf L [24Inj
Pe” 2k N ~Inpg, Ak N SNR(0)
and, equivalently,
SNR(0)
8~ T/ SIr (23)

We see that the resolution gain increases like the square
root of SNR, and therefore superresolution (i.e., g.>1)

14 T T T T T T T

c

RESOLUTION GAIN g

4 6 8 10 12 14 16 18 20
SNR indB

Fig. 6. (Color online) Cross-range resolution gain g. as function
of SNR(0) and « with f=2.
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Fig. 7. (Color online) Cross-range resolution gain g. as function
of the detection power 1-f, and a with f=2.
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Fig. 8. (Color online) Range resolution gain g, as a function of
SNR(0) and a with f=2.

can be achieved with sufficiently high SNR for any given
f>1.

E. Range Resolution
The notion of resolution can be extended to the offset
along the axis between the array and the source point.
Analogous to the cross-range resolution, the range resolu-
tion p, is determined by the equation fB(0)=pg(p,), with
some prescribed f>1.

Using Egs. (7) and (13) in the paraxial regime, we have

N
[SNR(p,) =i% o-iko, E e_ikp,[<x§+x,2n)/2L2] )
SNR(0) N? Il

In the absence of noise the Rayleigh criterion for range
resolution is R,=MAL%/A2. The range resolution gain g,
=R,/p, is determined by the following analog of Eq. (20):

SNR(pr) R 1/2 . 2
\/ m =~ cos(kR,/g,) f_m cos(mx=/gr)

1
" Fla,Bo)

(24)

The asymptotic for the range resolution gain g, at high
SNR can now be derived as before:

SNR(0)
g~ for SNR(0) — oo
801Inf

Figure 8 shows the range resolution gain as function of
SNR and the false-alarm rate for «=0.001, 0.005, 0.01,
0.02, 0.05. In contrast to the cross-range resolution, the
range resolution gain may go below one as SNR de-
creases. This is an important observation, which also il-
lustrates how incorporating the notion of noise provides
additional perspectives on classical resolution measures.
In the range direction, single-frequency imaging gives
poor resolution, and in fact with strong noise even the
pessimistic Rayleigh criterion for resolution may be too
optimistic. In Section 3 we shall see that this picture
changes in the broadband case.
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F. Two-Point Resolution
In this section, we analyze the resolution of two incoher-
ent point sources in the presence of noise. In the absence
of noise, the classical Sparrow criterion says that two
point sources of equal intensity cannot be resolved if and
only if the midpoint intensity does not dip. This criterion
is no longer appropriate in the presence of noise since the
noise may significantly enhance the midpoint intensity
above the intensity at the locations of the sources at the
separation of the Sparrow criterion.

Let us consider the following signal model for two inco-
herent point sources of identical intensity:

Y= de"iqul + eimQGg) + U'W,

where 6 is the random phase uniformly distributed in
[-1/2,1/2] and G, G4 are the illumination vectors from
the first and second source points, respectively:

- > 2 . - 2
Gl = {GO(Xslrxi)}zI'\ilr G2 = {GO(staxi)}ﬁly

for X, , X, the location of the two sources. We assume
that the noise W and the random phase variable 6 are in-
dependent. We further assume that the two point sources
are located at X, =(-p,0,L), X,,=(p,0,L) for the discus-
sion of cross-range resolution and isl=(0,0,L—p), ;(32
=(0,0,L+p) for the discussion of range resolution. For
simplicity of presentation, we again restrict ourselves to
the paraxial approximation.

We consider an imaging function of the same form
as before I(f()=9R[Y‘-G(i)]||G(f()||§1, which has mean
with  respect to the noise W:#R[e!™G] G(X)
+e1'™G}-G(%)]| G(X)|;'. Following the classical Sparrow
resolution criterion in the noiseless case, we consider the
imaging function Z(X() at the midpoint X,=(0,0,L) of the
two point sources as well as at the source points x
We write Gy=G(0,0,L).

We consider the cross-range resolution. In the paraxial
approximation, the imaging function at the midpoint

N

817 XSZ'

N, p? P
I(%) = RZ cos(mé)cos N3 sinc R_c + oR[W' - Gyl

X[ Goll* (25)

has the mean

R N, wp? mp
EZ(xq) = E}—E(p), Fo(p) = cos )\_L sinc R_ .
(26)

The imaging function at the source points f{si, 1=1,2,

N,
T(,) = —cos(mO)(1+ F.(20) + oRIW'- GG 5!

has the mean

. N
RZ(x;) = m(l +F(2p), i=1,2.

Note that the random variable x=cos(76) has the Cheby-
shev density
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2
h(x) = ——,
’7T\s’1 - x2

x € (0,1),

with the mean 2/7 and the variance (72-8)/(272). Thus
the fluctuation of I(isi), i=0,1,2 has the probability den-
sity function (pdf) ¢ given by the convolution of the
Gaussian and the centered Chebyshev pdf’s after proper
normalization.

In the noiseless case the classical Sparrow resolution p,
can be reformulated as IEI(iO):]EI(iSi), 1=1,2, 1.e.,

1+ F(2p) =2F(p).

In the presence of noise, we need to consider fluctuation
and noise as well as the mean.

For the noisy case we need to consider the signal-to-
fluctuation ratio (SFR) at the test points X, isi, i=1,2,
defined as

[EZ(%,)I? 4/
SFR(%,) = - —.
7 Var(I(%,)) 1/2-4/n”+(SNR(X,))™

In the relatively noisy case with

SNR < ~17.3, (27)

-8

we have SFR~4 X SNR/#2. Under such conditions, the
measurement noise dominates over the incoherent fluc-
tuation of the source, and we may assume the distribution
of the imaging functional is Gaussian. Here we are decid-
ing between two alternatives:

The null hypothesis H;: The source is one point of
strength 27 at zero offset.

The alternate hypothesis Hy: The source is two points
of equal strength 7.

We use the imaging function as the basis for our deci-
sion. Under H; we have Z(X() ~ N(u1, o), while under Hs,
I(%o) ~ Mz, 0) with

N.

M1= ﬁv (28)
N,

Mo = %]_—c(p)' (29)

Let a be the probability of accepting Hy while H; is cor-
rect and B be the probability of accepting H; while Hy is
correct. Note that « is independent of p but B is clearly a
function of p. Since 7>0, ;=0 and for a given «, the de-
cision rule is to accept Hy when Z goes below a certain
threshold and vice versa. The threshold is determined by

T=p+ 00 Y a),

which is independent of p. This is important as the detec-
tion rule can then be used even when the parameter p is
unknown.

The detection probability for a two-point source is then
given by
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(T—Mz(P)) ( o :“1_:“2(9))
1- flp) =0 —— | =0 &N (a) 4 ———
g ag

or equivalently

@711 ) = o)+ L2

According to the Neyman—Pearson lemma, the detector is
the most powerful in the sense that it produces the high-
est detection probability for all values of the unknown pa-
rameter p and a given false-alarm rate.

We may define the detection resolution as the offset
that gives a 50% (or any value between B, and 99%)
chance of detecting the presence of two source points, that
is, B(p,)=1/2. This then gives

uo(pe) = py + 0@ Ha), (30)
which we write in the form

( P, ) ( ’7Tpc> o® () 7> (a)
cos sinc =1+ =1+ —.
AL R, Nr/(7*L) 4,/SNR(0)

(31)

As commented before, the cos factor in the above equa-
tion can be dropped and the resolution gain g.=R,./p, can
be determined from the equation

) (77) . 7 (a) -
sinc g: = +rm ( )

Figure 9 shows the resolution gain as a function of the
SNR, that is, ySNR(0) for «=0.001, 0.005, 0.01, 0.02,
0.05. For a fixed SNR the resolution gain again increases
with the false-alarm rate.

Considering the regime where |®~1(«)| < SNR(0) and
expanding the left-hand side of the equation in the Taylor
series, we obtain

55 T T T T T

+ =001
*  0=.05

IS
o
T

TWO POINT RESOLUTION GAIN g
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T

[
o
T
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8 9 10

3 L L I L |
4 5 6

7
SNR indB

Fig. 9. (Color online) Two-point cross-range resolution gain g,.
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27 SNR(0)"4

8=\ 3 D ()2 (33)
The two-point resolution gain depends on SNR in a way
different from the one-point resolution gain [Eq. (23)];
with uncertainty about two rather than one location, the
relative enhancement in resolution as a function of SNR
becomes weaker. The validity of Eq. (33) is constrained by
Eq. (27). In the high-SNR limit, the random phase differ-
ence dominates the SFR (=7) and is the ultimate limita-
tion to two-point resolution with the measurement noise
playing no role.

We finish this section by briefly commenting on the
two-point range resolution. The null and alternative hy-
potheses are as above, now with X, =(0,0,L-p) and x,,
=(0,0,L+p). We can then repeat the analysis presented
above in the cross-range resolution case. The only modifi-
cation in our analysis arises in the computation of uy in
Eq. (29) and corresponds to

1/2 2
Felp) = Fi(p) =COS(kp)< f COS(WxZP/Rr)dx> .

-1/2

Thus, in view of the calculation leading to Eq. (24), the
range resolution is now determined by the following modi-
fication of Eq. (32):

12 2
(f cos(mcz/g,)dx) =1+
“12

with g,=R,/p. Thus the two-point resolution scales with
the Rayleigh range resolution R,.

Considering the regime where |[®~(a)| <SNR(0) and
expanding again in Taylor series, we obtain the asymptot-

1CS
[ 7 SNR(0)"4
~ A\ 34
& 20 |d~ (o) |2 (34

G. Ilustration of One-Point Resolution
In this section we consider a simple example using the de-
tection rule

7P (a)
4\/SNR(0)

Ix) >T (35)

to create an image. The point source is located at the ori-
gin, and we use the parameters: L=100, A=10, =100,
o=1, N=12, k=2, and «=0.05. Note that in this case
SNR=~4. For the simulation we use the exact Green’s
function, rather than its parabolic approximation, and the
Monte Carlo method. The performance as a function of
relative offset is shown in Fig. 10. Comparing Figs. 10
and 5, we find a slightly better performance in Fig. 10
than in the theoretical prediction in Fig. 5 by using the
paraxial approximation. With the same parameters as in
Fig. 10, Fig. 11 depicts the profile of the detection prob-
ability as a function of both range and cross-range offsets.
The scales are in the units of the Rayleigh cross-range
and range resolutions.
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Fig. 10. (Color online) Simulated detection probability as func-
tion of cross-range offset.
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Fig. 11. (Color online) Simulated detection probability.

3. BROADBAND IMAGING

Performance of imaging and detection in the presence of
noise may be strongly enhanced by using signals at mul-
tiple frequencies. First, the multiple frequencies provide
travel-time information and improve the range resolution
in particular. Second, the different frequencies may be
weakly correlated and therefore provide independent in-
formation about the target. Let us analyze the perfor-
mance of multifrequency imaging using the new defini-
tion of resolution.

We assume the following model of noisy measurement

at wavenumber &;:
Y(kj) = TG(kJ) + lej’ .] € {15 ’W}’

with W; a complex (independ) Gaussian noise vector. We
consider the imaging functional

I(x) = 2 R(Y (k)" GE:R)IGE: K. (36)
J
The most powerful test for a given false-alarm rate « cor-

responds to rejecting H, iff Z(x) >T with the threshold
T=0®1(1-a) as before.
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For simplicity we assume that the discrete wavenum-
bers are evenly spaced in the interval {E—-Ak/2,k+Ak/2}
with the spacing sk=A%k/(W-1). Note first that the detec-
tion power achieves the maximum 1-p, at the location

X=X

1- By=(yW SNR(x,) - ®71(1- a)),

with the same SNR(X;) as in Eq. (10). Therefore, the mul-
tiple frequencies enhance the detection performance via
higher SNR.

A. Cross-Range Resolution

As before, we analyze the multifrequency cross-range
resolution in the paraxial approximation. The offset de-
pendent SNR in Eq. (15) now becomes

N
SNR(p) = 2 {R( —lkjpz/(2L)2 eiijw/L) )

a\'W4TrLJ 1 =1

The cross-range resolution psy, in the multifrequency case
is determined by the equation

1 SNR(p)
F(a,8,) V SNR(0)

gl

Jlll

p - 2px;
2L

1 _ eiWoky,
- ITI; | e-ikw! s e—zﬁkyl):| (37)
with
p* - 2px,
Yi= —2 L

To understand explicitly how multiple frequencies can
enhance resolution, we analyze two particular regimes.
First, let us consider the narrowband regime:

Ak(p?+ pA)L <1, (38)

which turns out to be equivalent to the conventional defi-
nition Ak <k. Under the narrowband condition, we obtain
from Eq. (37) that

SNR(p) 12 | k(p*-2px)
~—2 cos
SNR(0) Ni5 oL
k,o2 kAp
=~ cos| — |sinc| — |.
2L 2L

In other words, the narrowband case is approximately the
same as the one-frequency case.

Consider next the broadband case &~ Ak, or equiva-
lently

AkpYL =0(1),

with a small aperture A<p. This implies that y,
~p?/(2L). Then as 6k —0 and W— o, we obtain from Eq.
(37) that
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1 2L
F(a,B0) p*Ak

wp? p’AR _ 27
=cos| — |sinc , A=—,
AL 4L k

which leads to the multifrequency cross-range resolution
determined by

1 VYA p\?
=cos| 27— sinc| 7 s
Fla o) x \ 2ol oL

(39)

m[ie—i(p2/2L)(k'+Ak/2) _i e-i(p2/2L>(E—Ak/2>]

with the modulation wavelength Ag=27/Ak. Therefore,
p=0(\gL) and can be arbitrarily small in the high-SNR
limit. Note that this result is independent of the aperture
A. Thus, we have compensated a small aperture with
bandwidth so that the cross-range resolution is on the
scale of the Fresnel length \s’)\,j of the modulation.

B. Range Resolution
Again we consider the paraxial regime with A <L so that

1 [SNR(p,)
F(a,8,) N SNR(0)
2 e p,e-zkjp,(xlz+x?n>/2L2)
WNZ (] 1ilm=1

1 w
~—®| X et |,

which determines the range resolution p,. Equivalently

we have
1 277)\Bpr Py
=cos| — sinc| — |, (40)
F(a,Bo) A\p Ap

for A\g=2m/Ak. Therefore, p,=0O(\g) and can be reduced
indefinitely in the high-SNR limit. This result is again in-
dependent of the aperture.

C. Two-Point Resolution

We can easily generalize the two-point resolution analysis
of Subsection 2.F to the multifrequency case. The deriva-
tion of the gain is completely analogous modulo two re-
placements, as we describe next. The only modifications
in the analysis arise in the computation of u; and ug in
Eqgs. (28) and (29); the modifications arise since the imag-
ing function now is given by Eq. (36) with W>1. We con-
sider the relatively noisy broadband case with small ap-
erture A<p, as discussed above for the single-frequency
case. The computation leading to Eqs. (39) and (40) then
show that the generalization to the multifrequency case
follows from the replacements: (i) 7— V’WT, reflecting an
enhanced SNR; (ii) F.(p)—>F,r(p) and F.(p)—>F,(p) for
cross-range and range resolution, respectively, where
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( e[ p )P p\?
Ferlp)=cos| 27— —— sinc| 7| —— ,
o N\ V20sL V2NsL
)\B Pr . Pr
Fr1(p)=cos| 2m—=| — | |sinc| 7| — | |;
’ N \Ap Ap

see Eqgs. (39) and (40).

4. CONCLUSIONS

We have presented the performance analysis for direct
imaging in the presence of noise by introducing a simple
notion of resolution. We have analyzed one-point and two-
point resolution in the framework of statistical hypothesis
testing.

For a fixed false-alarm rate, the resolution gain in-
creases with SNR and bandwidth. In the case with high
SNR or large bandwidth, the resolution is typically much
better than the Abbé (or Rayleigh) resolution. We have
demonstrated a striking effect of broadband imaging,
namely, aperture-independent superresolution.

We plan to extend our approach to the case of broad-
band imaging in a random medium, which amounts to
multiplicative noise.
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