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Abstract
Measurements of the dielectric (or impedance) properties of cells can be
used as a general characterization and diagnostic tool. In this paper, we
describe a novel impedance spectroscopy technique for the analysis of
single biological cells in suspension. The technique uses maximum length
sequences (MLS) for periodic excitation signal in a microfluidic impedance
cytometer. The method allows multi-frequency single cell impedance
measurements to be made in a short time period (ms). Spectral information
is obtained in the frequency domain by applying a fast M-sequence
transform (FMT) and fast Fourier transform (FFT) to the time domain
response. Theoretically, the impedance is determined from the transfer
function of the system when the MLS is a current excitation. The order of
the MLS and sampling rate of A/D conversion are two factors that
determine the bandwidth and spectral accuracy of the technique.
Experimentally, the applicability of the technique is demonstrated by
characterizing the impedance spectrum of red blood cells (RBCs) in a
microfluidic cytometer. The impedance is measured within 1 ms at
512 discrete frequencies, evenly distributed in the range from 976.56 Hz to
500 kHz. The measured spectrum shows good agreement with simulations.

Keywords: impedance spectroscopy, single cell analysis, maximum length
sequences, microfluidic cytometer

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dielectric spectroscopy has been used to characterize

heterogeneous biological systems since Höber’s earliest

electrical conductivity measurements on erythrocytes in 1910s

[1–3]. During the last century dielectric spectroscopy became

an important tool in the study of the passive properties of

biological cells and tissues, and was widely used by scientists

such as Fricke [4–6] and Curtis [7], Cole [8–10] and Cole

[11, 12], Schwan [13, 14] and Foster [15], Pethig [16],

Zimmermann [17], Hanai [18] and Asami [19]. Generally,

the dielectric analysis of single cells has been performed

using ac electrokinetic methods such as dielectrophoresis

(DEP) [20–22], travelling wave dielectrophoresis (twDEP)

[23, 24] and electrorotation (ROT) [25, 26]. Analysis of

cell suspensions is performed using electrical impedance

spectroscopic (EIS) methods [27–30], including time domain

dielectric spectroscopy (TDDS) [31].
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Figure 1. (a) Structure of the digital shift registers, in series with feedback coefficients, used to recurrently generate the maximum length
sequences (MLS). (b) A typical analogue bipolar MLS in the time domain.

In recent years, microfluidic cytometers [32–36] have

been developed that use impedance spectroscopy as a fast

and label-free technique to characterize the impedance

properties of single particles. Thin planar microelectrodes

are fabricated inside a microchannel, along which the cells

flow. The electrodes are energized by an ac voltage at one

or more discrete frequencies and the impedance of the cell

is determined from the current response of the system. In

order to maximize the sensitivity, a differential impedance

measurement is implemented, with the current amplified by

a trans-impedance amplifier. Lock-in amplifiers are used to

demodulate the signals at each discrete frequency. Details

of the system have been published previously [32, 34–36].

However, a major drawback of the discrete frequency

ac impedance measurement system is that the number of

measurement frequencies is limited because the measured

signal at every discrete frequency requires to be demodulated

by one corresponding lock-in amplifier.

To overcome this problem, we propose a new technique

which uses maximum length sequence (MLS) analysis to

characterize the transfer function of the system and thereby

extract the impedance or the dielectric properties of single

cells over a wide frequency band in a short time window.

MLS is a pseudo random binary sequence (PRBS) and has a

white-noise-like power spectrum with the energy uniformly

spread over a wide frequency range, enabling high speed

multi-frequency measurements. It has been widely used in

the field of audio engineering and architectural acoustics.

Davies [37] in 1966 introduced MLS as a method that could

measure the impulse response of a linear time invariant (LTI)

system, and since then a number of papers have described the

computational algorithms [38–44] and practical applications

[45–48]. The use of MLS in research fields other than acoustics

has been gradually recognized only in recent years [49–54].

However, there is little activity in its use for impedance

spectroscopy other than the early paper of Schneider [50] who

first proposed that the MLS could be used to characterize the

bio-impedance of long bone fractures, but detailed theoretical

analysis or experimental data was not presented. In this

paper, we review the basic principles of the MLS measurement

technique and the instrumentation of the measurement system.

Based on previous work [55], we develop a theoretical model

for the impedance spectrum of a single-shelled dielectric
object (a cell) in suspension, which is obtained by using MLS
technique and the analysis is performed both in the time and
frequency domains. Finally, we experimentally prove that the
MLS technique can be used to characterize the impedance
spectrum of red blood cells (RBCs) using a microfabricated
impedance cytometer.

2. Principle of MLS

As a PRBS, the MLS signal is generated by an n-stage digital
shift register with feedback coefficient control, conforming to
the linear recurrence:

an =

(

n
∑

i=1

ciai

)

mod (2). (1)

As shown in figure 1(a), each newly generated element
comes from register an, which is dependent on the states
of all the registers and the feedback coefficients. At each
time unit, the elements in each register are shifted one to the
right. The sum is calculated with modulus 2 or exclusive-OR
operation. The feedback coefficients ci are described by a
primitive polynomial:

f (x) = 1 +

n
∑

i=1

cix
i . (2)

With a given initial state of the shift registers (except all zeros),
equations (1) and (2) allow a specific MLS to be generated.
In the practical measurements, the 1 and 0 states are often
mapped onto −1 and +1 levels, respectively, producing a
bipolar sequence symmetrical about zero. A typical bipolar
MLS is shown in figure 1(b). The duration of every element
in one MLS is represented by Tp and the whole period of one
sequence is given by T = L × Tp. Here, L is the length of one
MLS given by L = 2n

− 1, with n denoting the order of the
sequence and also the number of digital shift registers.

The MLS technique is based on calculating the cross-
correlation function between the input MLS signal and the
output response of a system, giving the periodic impulse
response (PIR) of the system [42]. The normalized impulse
response of the system is given by [43]

h =

1

L + 1
MY (3)
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where vectors h and Y are the vectors of L elements
corresponding to the impulse response and the output response
of the system, respectively. M is the right-shifted MLS
matrix of dimension L × L, containing the circular delayed
versions of the sequence, which can be factorized by

M = PLHPS (4)

where PL and PS are the permutation matrices of dimensions
of L × (L + 1) and (L + 1) × L, respectively. The matrix
H is the Sylvester-type Hadamard matrix of dimension of
(L + 1) × (L + 1). Equation (4) provides an efficient and
fast way to derive the cross-correlation function between the
MLS excitation signal and the output response of the system.
In the literature, this is called the fast M-sequence transform
(FMT) [38]. It is based on the fast Hadamard transform (FHT),
which is more efficient than the fast Fourier transform (FFT),
consisting of only additions and subtractions. From signal
processing theory [56], the impulse response of the system
in the time domain is equivalent to the transfer function of
the system in the frequency domain. Therefore, the Fourier
transform of the impulse response (obtained using MLS) gives
the transfer function of the system.

A schematic diagram of the MLS measurement system is
illustrated in figure 2(a). The digital MLS signal is generated
by custom-designed software, programmed in MATLABTM

(Mathworks, Inc., USA). After D/A conversion, the analogue
bipolar MLS is applied to a linear time invariant (LTI) system.
After low-pass filtering (LPF), the response of the system in
the continuous time domain is sampled into digital form by
an A/D converter. The clock rate of the MLS generator is
the same as the A/D sampling rate. The sampled response is
converted into the impulse response using the FMT. Finally, the
FFT gives the transfer function of the system in the frequency
domain.

3. Theoretical analysis

The theoretical analysis is used to derive the impedance
spectrum of the system shown in figure 2(b), following
excitation by an MLS signal. The equivalent electrical circuit
of a single cell in suspension is also shown in figure 2(b)
and illustrates the link between the impedance and the transfer
function of the system. In this simple analysis, the effect
of the electrical double layer is not included; for a full
equivalent circuit model see [30]. The geometrical and
dielectric parameters of the cell are shown in figure 2(c). Since
MLS is a time-varying signal, the output response of the system
under MLS excitation is a time-dependent signal. Therefore,
the first step in the theoretical analysis is to determine the
response of the system in the time domain. FMT and FFT
are then used to obtain the spectrum in the frequency domain.
The analysis is based on the following assumptions:

(a) In order to directly associate the impedance with the
transfer function of the system, the excitation MLS signal
is assumed to be a current, rather than voltage (figure 2(b)).
Therefore, the transfer function is directly the impedance
of the system given by

Hsys(s) =

Vsys(s)

IMLS(s)
= Z̃mix(s) (5)

where Hsys(s) and Z̃mix(s)are the transfer function and
the equivalent complex impedance of the model system,

(a)

(b)

(c)

Figure 2. (a) Typical MLS measurement system set-up showing the
MLS generation and processing software and the data flow path.
(b) Diagram of the impedance cytometer with a single (static) cell in
the centre, approximating a linear time invariant (LTI) system. The
equivalent circuit model for a cell in suspension is also shown. Rm

and Cm are the resistance and capacitance of the suspending
medium, Cmem is the capacitance of the cell membrane and Ri is the
resistance of the cytoplasm. The two electrodes have width w,
length l and the height of the channel is h. (c) The single-shelled
cell model with the dielectric parameters of the different layers.
ε and σ refer to the permittivity and conductivity, respectively.

respectively. IMLS(s) is the MLS current excitation

signal. Vsys(s) is the voltage output response of the model

system. All four terms are expressed in the frequency

domain (s-domain, s = jω and j2 = −1, ω is the angular

frequency).

(b) The MLS technique is generally used to characterize a

linear time invariant (LTI) system. Therefore, we assume

that the cell is stationary during the time of measurement.

In a practical system cells flow across the measurement
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electrodes one by one. This assumption is only valid if

the transit time of the cell across the electrodes is much

shorter than the period of the MLS. For example, using a

1 MHz sampling rate with a 10th-order MLS, the period

of the MLS is approximately 1 ms. For more than ten

sequences to be applied to a cell, it must cross a 20 µm

wide electrode with a velocity of less than 2 µm ms−1

(or 2 mm s−1).

(c) The cell is located in the centre of the electric fields,

midway between the two parallel facing electrodes as

shown in figure 2(b). In this region, the electric field

distribution is quasi-homogeneous [58], thus minimizing

the influence of any fringing field on the impedance.

Maxwell’s mixture equation can be used to describe the

dielectric behaviour of the particle in suspension.

3.1. Time domain analysis

For dilute suspensions (low volume fraction) of particles, the

dielectric properties are well described by Maxwell’s mixture

equation. In a previous paper, we developed an analytical

method to transform Maxwell’s mixture equation from the

frequency domain to the time domain using the Laplace

transform [55]. Following this method, the expression for

the complex conductivity σ̃mix(s), of a single-shelled spherical

cell in suspension in the s-domain, is [55]

σ̃mix(s) =

λ1s
3 + λ2s

2 + λ3s + λ4

b1s2 + b2s + b3

. (6)

The coefficients λi and bi in equation (6) are given in the

appendix.

The complex impedance of a cell in suspension, Z̃mix(s),

is calculated from the complex conductivity of the system,

provided the geometric cell constant κ is known:

Z̃mix(s) =

1

σ̃mix(s)lκ
(7)

where l is the length of the electrode (see figure 2(b)). For the

micro-cytometer the calculation of the cell constant takes into

account the fringing field [30, 32, 58].

In the continuous time domain (t-domain) the bipolar

MLS current signal can be expressed using the superposition

of unit step functions (U0(t)):

IMLS(t) = U0(t) + 2

m
∑

i=1

(−1)iU0(t − ti). (8)

Equation (8) is for the MLS signal with initial state +1;

ti is when the polarity of the signal changes (from +1 to −1

and vice versa). The case for an MLS starting with −1 is

similar.

Applying the Laplace transform to equation (8), the

expression for the MLS in the frequency domain (s-domain)

is

IMLS(s) =

1

s

(

1 + 2

m
∑

i=1

(−1)i e−sti

)

. (9)

Combining equations (5), (7) and (9) gives the output response

of the system in the s-domain:

Vsys(s) = IMLS(s)Z̃mix(s)

=

1

sσ̃mix(s)lκ

(

1 + 2

m
∑

i=1

(−1)i e−sti

)

. (10)

Figure 3. Time-dependent output responses of the system Vsys(t)

(divided by scale factor Gf ) in low (σ m = 0.016 S m−1) and high
(σ m = 1.6 S m−1) conductivity media. The transient response of the
system can be seen in the time domain plot.

Substituting equation (6) into (10) gives

Vsys(s) = Vsys0(s)

(

1 + 2

m
∑

i=1

(−1)i e−sti

)

Gf (11)

with Vsys0(s) =
b1s

2+b2s+b3

λ1s4+λ2s3+λ3s2+λ4s
and Gf =

1
lκ

. Here, Vsys0(s)

is the output response of the system following a unit step

excitation signal U0(t) and Gf is a scale factor which accounts

for the geometry of the system.The expression for Vsys0(s) can

be written in the form of a pole-residue representation:

Vsys0(s) =

k1

s − s1

+
k2

s − s2

+
k3

s − s3

+
k4

s − s4

(12)

where ki and si (i = 1, 2, 3, 4) are the residues and

poles of Vsys0(s). Applying the inverse Laplace transform,

equation (12) is converted into the time domain:

Vsys0(t) = k1 es1t + k2 es2t + k3 es3t + k4 es4t . (13)

Equation (13) is the output response of the system under unit

step excitation signal, U0(t), in the time domain. The residues

(ki) and poles (si) are dependent on the size of the cell and the

dielectric properties of the cell and the medium. These are

numerically solved in MATLABTM (Mathworks, Inc., USA)

for each specific case.According to the time shift property

of the Laplace transform, the inverse Laplace transform of

equation (11) becomes

Vsys(t) =

(

Vsys0(t) + 2

m
∑

i=1

(−1)iVsys0(t − ti)U0(t − ti)

)

Gf .

(14)

This equation is the output response of the system in the

continuous time domain.

Simulations of the output response were performed in

MATLABTM, with the following parameters for suspending

medium, cell and geometry (figure 2(b) and (c)): R = 5 µm,

d = 5 nm, εm = 80εo, σ m = 1.6 S m−1, εmem = 5εo, σ mem =

10−8 S m−1, εi = 60εo, σ i = 0.4 S m−1 and h = w = l =

20 µm. These values are used in all the simulations.

Figure 3 shows the simulated output response of the

system, Vsys(t), in the time domain for different suspending

medium conductivities, non-dimensionalized using the scale
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factor Gf . The MLS is a current signal; therefore, a lower

suspending medium conductivity (higher impedance) gives a

greater voltage response. The time domain analysis shows

that the MLS technique allows the analysis of the transient

response of the system over any time period.

3.2. Frequency domain analysis

As stated previously, the impedance spectrum (transfer

function) of the system can be characterized in the frequency

domain by sequentially applying the FMT and FFT to the

response of the system in the time domain—equation (14). To

improve the computational efficiency of the FFT, we insert one

zero (zero padding) at the end of the output response of the

system to perform a 2n-point FFT instead of (2n
− 1) point.

The bandwidth of the spectrum obtained using the MLS

technique is limited by two parameters: the order of the MLS

and the sampling rate. The lowest frequency fmin (which

also gives the resolution of the MLS) is determined by the

order of the MLS and the sampling rate fs (equation (15a)).

The frequency resolution is defined as the difference between

two adjacent measured discrete frequencies. Therefore, if the

sampling rate is fixed, a higher order MLS gives a higher

frequency resolution. From Nyquist sampling theory [56], the

highest frequency fmax (equation (15b)) is half the sampling

rate:

fmin =

fs

2n
(15a)

fmax =

fs

2
. (15b)

Therefore, the number of discrete measurement

frequencies is 2n−1 . The data are collected in one sequence

period. For example, if fs = 1 MHz and the MLS signal

is 10th order, a full data set of 512 frequency points can be

collected in approximately 1 ms.

To avoid time aliasing [42], the minimum measurement

time needs to be two or more MLS periods with starting the

data acquisition from the second MLS. Figure 4(a) shows

the simulated impedance spectrum for a cell, using 10th-

order MLS with 100 MHz sampling rate, in the frequency

band 97.656 kHz to 50 MHz (equation (15)). Variations in

the impedance arising from changes in cell parameters are

shown (for a fixed cell radius). Around 1 MHz, changes

in membrane permittivity dominate the impedance, due to

interfacial polarization effects—the β-relaxation [13, 15].

Changes in cytoplasm conductivity are apparent at higher

frequencies (above 10 MHz), where the membrane capacitance

is effectively short-circuited.

An important advantage of the MLS technology is high

noise immunity. Since the sequence is deterministic and

precisely repeatable, the signal-to-noise ratio (SNR) of the

system can be improved by synchronous averaging of the

output response (prior to FMT) from several sequence periods.

This pre-averaging process increases the SNR by 3 dB for

each doubling of the averaging process. To illustrate this,

an additive white Gaussian noise (AWGN), w(t), with zero

mean and variance σ 2
w was added to the output response

of the system. This noise is independent of the input

signal, and is representative of the background noise in an

(a)

(b)

Figure 4. (a) Simulated impedance spectra showing variations due
to the different dielectric properties of the cell using MLS analysis.
(b) Simulations showing the influence of noise on the impedance
spectra (obtained using MLS). Synchronous averaging of the
response over several sequences reduces the noise, improving the
signal-to-noise ratio (SNR) of the system.

experiment. The output response of the system with AWGN

is then Vsys n(t):

Vsys n(t) = Vsys(t) + w(t). (16)

Figure 4(b) shows the impedance spectrum of this system

with and without averaging. The data are averaged 18 times

and the MLS is 10th order, with a sampling rate of 100 MHz.

The figure clearly shows how the noise signal is attenuated by

the process.

In order to examine the accuracy of the impedance

spectrum obtained with the MLS, the reference spectrum is

taken to be the impedance of a single cell in suspension in the

ω-domain (replacing s with jω in equation (7)). The impedance

spectrum obtained from MLS technique is by applying the FFT

to the impulse response of the system. However, a number of

spectral artefacts occur because of FFT sampling errors in

both the time and frequency domains. These are the leakage

effect, picket-fence effect and aliasing effect [59]. For a fixed

sampling rate, the leakage effect and picket-fence effect can

be minimized by increasing the number of FFT points, i.e.

increasing the length of the MLS. A longer MLS leads to more

FFT points, increasing the time window and also gives a higher

frequency resolution. The aliasing effect can be minimized by

increasing the sampling rate.

Figures 5(a) and (b) show a simulated impedance

spectrum, compared to a reference, for two different orders

of the MLS (at a fixed sampling rate of 100 MHz). For 10th-

order MLS, there are 1023 elements in a single MLS, while the

14th order has 16 383 elements, giving a frequency resolution
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(a) (b)

(c) (d )

Figure 5. (a and b) Simulations of the impedance spectra for different orders of the MLS; a longer MLS increases the accuracy.
(c and d) Simulations of the impedance spectra for different sampling rates; higher sampling rate increases the accuracy of the measurement,
but restricts the frequency resolution.

of 97.656 kHz for 10th order and 6.1 kHz for 14th order,
respectively. It can be observed that using a longer MLS leads
to a more accurate impedance magnitude spectrum. However,
deviations in the phase are unaffected by the order of the MLS,
figure 5(b), because phase errors are dominated by aliasing
effects.

In figures 5(c) and (d), the impedance magnitude and
phase spectra are compared for different sampling rates, with
MLS being set to the 14th order. Increasing the sampling rate
leads to much better agreement with the reference spectra for
both phase and magnitude. However, for a fixed MLS order,
a higher sampling rate reduces the frequency resolution, for
example a 14th order MLS with a 100 MHz sampling rate has
a frequency resolution of a 6.1 kHz, but this changes to 61 kHz
for a sampling rate of 1 GHz.

In practical measurements, the sampling rate of the system
is determined by the speed of the A/D converter in the data
acquisition card. Real measurement system cannot achieve the
sampling rates (approaching 1 GHz) used in the theoretical
simulations. However, such a high sampling rate is not
required for impedance analysis of cells in the frequency
range of interest (up to 50 MHz). The anti-aliasing problem
can be solved using a low-pass filter (LPF) prior to A/D
conversion, which pre-filters the signal and minimizes the
high frequency spectral components. The MLS technique
measures the transfer function of the entire system, therefore
the impedance information of the cell have to be determined
from the transfer-function spectrum. This is discussed in the
next section.

4. Experimental results

4.1. MLS cytometer system set-up

The MLS technology is integrated into a differential ac

single frequency impedance measurement system as described

previously [30, 36]. Compared to the ‘standard experimental

system’, fixed frequency ac signal generators and lock-

in amplifiers are not required. Custom-designed software

controls the data flow as shown in figure 2(a). Figure 6 shows

how the MLS technology is implemented in the microfluidic

cytometer to perform impedance characterization of cells.

The MLS signal is generated in software and applied as a

voltage to the top pair of electrodes, with the output response

measured through the bottom electrodes. A differential

amplifier measures the difference between the signals from

these two electrodes—the detection and reference volume.

This signal is low-pass filtered, sampled and digitized by a

data acquisition card (NI 6251, National Instruments Inc.,

USA) for data processing (FMT, FFT and data selection).

This process gives the transfer-function spectrum for the whole

system, from which the impedance of a cell is determined. In

the measurements, the highest sampling rate used is 1 MHz,

limited by the NI 6251. A 10th-order MLS was used to provide

‘real-time measurement’ of flowing cells. The data consisted

of 512 discrete spectral components, evenly distributed in the

frequency range up to 500 kHz for each period of the MLS

(approximately 1 ms).
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Figure 6. Diagram showing the differential impedance measurement set-up used in the MLS technique.

(a)
(b)

(c)

Figure 7. (a) Schematic of the microfluidic chip. (b) A photo of the impedance detection electrodes. (c) A side view of the detection
volume.

4.2. Microfluidic cytometer design

Figure 7 shows the schematic diagram of the microfluidic

chip. Cells flow along a channel (200 µm wide, 30 µm

high) in which two pairs of overlapping electrodes measure the

impedance. This is shown in figure 7(a), with a photograph

in figure 7(b). The dimension of the sensing region is shown

in the inset (figure 7(c)). The cell sample is focused into the

central stream either hydrodynamically, using sheath flow, or

by dielectrophoresis (DEP), using the two sets of focusing

electrodes, as shown in the figure. Two shielding electrodes

on either side of the sensing region are grounded to minimize

the interactions between the electric fields generated by the

DEP electrodes and the impedance detection electrodes.

4.3. Results and discussions

Human red blood cells (RBCs) were suspended in phosphate

buffered saline (PBS), with a conductivity of 1.6 S m−1. The

sample solution was pumped through the microchannel, with

the flow rate adjusted to obtain the optimum impedance signal.

The amplitude of the MLS excitation signal was 0.25 V.

When the impedance in the detection and reference

volume (the two pairs of parallel electrodes, figure 6) are

balanced, the transfer function of the system is zero. Each

time a cell passes through the detection zone, the transfer

function is modulated. Figure 8(a) shows an example of the

data for single RBC flowing through the detection volume.

The data are the real part of the transfer function plotted
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(a)

(b)

Figure 8. (a) Variation in the real part of the transfer function for a single RBC passing through the detection volume. Four discrete
frequencies are plotted: 146.48 kHz, 244.14 kHz, 390.625 kHz and 488.28 kHz. (b) Real and imaginary parts of the impedance spectrum for
a single RBC obtained from PSpice simulation (lines) and MLS measurements (symbols) showing good agreement.

for four discrete frequencies (from 512 total frequencies):

146.48 kHz, 244.14 kHz, 390.625 kHz and 488.28 kHz.

The data were smoothed using a Savitzky–Golay (S–G)

finite impulse response filter and baseline drift corrected

by subtracting the averaged background noise level. The

figure demonstrates that the MLS can perform multi-frequency

measurement of single cells. For 10th-order MLS, 512

individual discrete frequencies are obtained in a single

measurement time of approximately 1 ms. The figure shows

that the transit time of a single cell across the electrodes is

approximately 40 ms. In this time window, 40 periods of the

MLS are applied to the cell, giving sufficient time for the cell

to be polarized and for data collection. The impedance data

for the cell is extracted from the peaks in the data stream, for

each discrete frequency.

The MLS measurement results were compared with

circuit simulations performed using PSpice (OrCAD Capture,

Cadence, Inc., USA). Simulations were performed using the

equivalent circuit model for the cell in suspension reported in

[30], including the electrical double layer, with a geometric

cell constant of 1.106 for the impedance chip. Because the

high frequency limit of the present set-up is 500 kHz, the

simulations and measurements are dominated by the cell size

and double layer effects. The MLS technique characterizes

the transfer function of the complete system, including the low-

pass filter in the data acquisition. This element must therefore

be included in the circuit simulations. This was determined

by analysing the transfer function of the system without the

chip, by connecting the D/A and A/D ports together using a

fixed length of 50 � coaxial cable [60]. Figure 8(b) compares

the impedance obtained from the MLS measurements with

PSpice simulations for a single RBC, showing good agreement

between the simulation and the measurement.

5. Conclusion

A novel impedance spectroscopic technique has been

developed with using maximum length sequences. The basic

theoretical outline has been described and its application

to single cell measurement in a microfluidic cytometer is

analysed. With sufficiently long MLS and high enough

sampling rate, the complete impedance spectrum of a

biological particle can be obtained over a broad frequency

band in a short time period. We experimentally demonstrate

that the MLS system can be used to measure the complete

impedance spectrum of a single red blood cell up to 500 kHz at

512 discrete frequencies. Compared to conventional discrete

frequency measurements, the acquisition time of the MLS

system is much shorter (typically 1 ms for a full spectrum). The

complexity of the measurement system is substantially reduced

and there is a significant saving in hardware instrumentation
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(no signal generators and lock-in amplifiers). The method

enables broadband impedance spectra to be obtained for each

cell.

The system described in this paper is still under

development and a number of issues remain to be addressed.

The modelling assumes that the particle is static in the electric

field. However, as shown experimentally, the particle flows

through the impedance detection area during data acquisition.

Further work is required to develop a dynamic model for

a moving particle. Also the bandwidth of the spectrum is

limited by the data acquisition rate of the card, which can

be extended, typically up to 50 MHz using the latest data

acquisition cards. Extension of the frequency range should

enable complete dielectric characterization of a single cell,

including the membrane, cytoplasm and nucleus.
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Appendix

In equation (7), the coefficients λi (i = 1–4) are

λ1 = εma1 (A.1)

λ2 = εma2 + σma1 (A.2)

λ3 = εma3 + σma2 (A.3)

λ4 = σma3. (A.4)

And the coefficients ai and bi (i = 1–3) are

a1 = γ 3(εi + 2εmem)[(εmem + 2εm) + 2ϕ(εmem − εm)]

+ 2(εi − εmem)[(εmem − εm) + ϕ(2εmem + εm)] (A.5)

a2 = γ 3(εi + 2εmem)[(σmem + 2σm) + 2ϕ(σmem − σm)]

+ γ 3(σi + 2σmem)[(εmem + 2εm) + 2ϕ(εmem − εm)]

+ 2(εi − εmem)[(σmem − σm) + ϕ(2σmem + σm)]

+ 2(σi − σmem)[(εmem − εm) + ϕ(2εmem + εm)] (A.6)

a3 = γ 3(σi + 2σmem)[σmem(1 + 2ϕ) + 2σm(1 − ϕ)]

+ 2(σi − σmem)[σmem(1 + 2ϕ) − σm(1 − ϕ)] (A.7)

b1 = γ 3(εi + 2εmem)[(εmem + 2εm) − ϕ(εmem − εm)]

+ (εi − εmem)[2(εmem − εm) − ϕ(2εmem + εm)] (A.8)

b2 = γ 3(εi + 2εmem)[(σmem + 2σm) − ϕ(σmem − σm)]

+ γ 3(σi + 2σmem)[(εmem + 2εm) − ϕ(εmem − εm)]

+ (εi − εmem)[2(σmem − σm) − ϕ(2σmem + σm)]

+ (σi − σmem)[2(εmem − εm) − ϕ(2εmem + εm)] (A.9)

b3 = γ 3(σi + 2σmem)[σmem(1 − ϕ) + σm(2 + ϕ)]

+ (σi − σmem)[2σmem(1 − ϕ) − σm(2 + ϕ)] (A.10)

where ϕ is the volume fraction and γ = (R + d)/d is the ratio

of the outer and inner layers of the particle. For the detailed

derivations, see [55].
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