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We introduce the Broadband Reflector Experiment for Axion Detection (BREAD) conceptual
design and science program. This haloscope plans to search for bosonic dark matter across the
[10−3, 1] eV ([0.24, 240] THz) mass range. BREAD proposes a cylindrical metal barrel to convert dark
matter into photons, which a novel parabolic reflector design focuses onto a photosensor. This unique
geometry enables enclosure in standard cryostats and high-field solenoids, overcoming limitations of
current dish antennas. A pilot 0.7 m2 barrel experiment planned at Fermilab is projected to surpass
existing dark photon coupling constraints by over a decade with one-day runtime. Axion sensitivity
requires < 10−20 W/

√
Hz sensor noise equivalent power with a 10 T solenoid and 10 m2 barrel. We

project BREAD sensitivity for various sensor technologies and discuss future prospects.

I. INTRODUCTION

Astrophysical evidence for dark matter (DM) is un-
ambiguous [1–6], but its particle properties remain enig-
matic. Recent efforts are expanding bosonic DM searches
for mDM . 1 eV masses [7] predicted by many exten-
sions of the Standard Model (SM) [8–14], complement-
ing higher-mass searches [15–24]. Notably, the unob-
served neutron electric dipole moment [25–28] motivates
the quantum chromodynamics (QCD) axion a predicted
by the Peccei-Quinn solution of the strong charge-parity
problem [29–31]. Dark photons A′ are also sought-
after candidates arising in string theory scenarios [32–35].
These states have compelling early-Universe production
mechanisms and their field oscillations with frequency
ν = mDM/2π exhibit DM properties [36–41]. Nonzero
DM-photon couplings enable laboratory detection via
electromagnetic (EM) effects.

The most-sensitive detection strategy today is the
radio-frequency resonant-cavity haloscope [42–45], where
ADMX [46–52], CAPP [53–55], HAYSTAC [56–59] probe
QCD axions within [1.8, 24]µeV masses. However, this
strategy has long-standing obstacles from (i) narrow
band tuning to unknown mDM and (ii) impractical high-
mass scaling for mDM & 40µeV. Scan rates fall pre-
cipitously with photon frequency Rscan ∼ ν−14/3 [59]
and the number of required resonators scales unfavor-
ably with effective volume ∼ m3

DM. Proposed dielec-
tric haloscopes could probe [40, 400]µeV [60–62] and

[0.1, 10] eV [63] masses, while topological insulators tar-
get [0.7, 3.5] meV [64]. Significant sensitivity gaps persist
across [10−4, 1] eV masses, favored by several theoretical
scenarios [65–67], motivating broadband approaches.

This Letter introduces the Broadband Reflector Exper-
iment for Axion Detection (BREAD) conceptual design
to search multiple decades of DM mass without tuning
to mDM. BREAD proposes a novel experimental design
that optimally realizes dish-antenna haloscopes [68]. Its
hallmark is a cylindrical metal barrel for broadband DM-
to-photon conversion with a coaxial parabolic reflector
that focuses signal photons onto a sensor. In contrast to
existing dish antennas using spherical or flat surfaces [69–
73], our geometry is optimized for enclosure in stan-
dard cryostats and compact high-field solenoids. This
enhances signal to noise, ensures the emitting surface
and magnetic field are parallel, and keeps costs practical.
We delineate the optical properties of this novel geome-
try with detailed ray tracing and numerical simulation.
While photoconversion is broadband, photosensor perfor-
mance governs final discovery reach. We assess various
state-of-the-art sensors and discuss the advances required
in quantum sensing technology for next-generation de-
vices to fulfill BREAD science goals with broad antici-
pated impact in astronomy and beyond [74].

II. DARK MATTER SIGNAL

Sub-eV-mass bosonic DM behave as classical fields,
whose coherent oscillations generate the local halo energy
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FIG. 1. (a) BREAD reflector geometry: rays (yellow lines) emitted from the cylindrical barrel, which is parallel to an external
magnetic field Bext from a surrounding solenoid (not shown) and focused at the vertex by a parabolic surface of revolution.
(b) Radial intensity distribution rI(r) expected from DM velocity effects in the xy plane at the focal spot using ray tracing,
for the BREAD geometry as in (a) with R = 20 cm (blue) and for a conventional plane-parabolic mirror setup used in
other experiments [69–73] with the same emitting surface area (gray). (c) Full field simulation at around 15 GHz including a
preliminary coaxial horn design. (d) Electric (blue) and magnetic (orange) field distribution and time-averaged Poynting flux
along the z direction in the xy plane at the focal spot. (e) Schematic setup in cryostat for pilot dark photon searches.

density ρDM, which we assume to be 0.45 GeV cm−3 [75].
We consider scenarios where either axions or dark pho-
tons exclusively saturate the halo DM. The DM-photon
interaction augments the Ampère-Maxwell equation with
an effective source current JDM [9]

∇×B− ∂tE = JDM. (1)

A nonzero JDM induces a small EM field that causes a
discontinuity at the interface of media with different elec-
tric permittivity, such as a conducting dish in vacuum.
To satisfy the E‖ = 0 boundary condition parallel to the
dish surface, a compensating EM wave with amplitude
|E0| must be emitted perpendicular to the surface. These
waves transmit PDM = 1

2 |E0|2Adish of power for dish area
Adish. For axions with gaγγ coupling to photons, the cur-

rent is Ja = gaγγ
√

2ρDMB
‖
ext cos(mat) given an external

magnetic field B
‖
ext with nonzero component parallel to

the plate, resulting in Pa = 1
2ρDM(B

‖
extgaγγ/ma)2Adish

emitted power [68]. QCD axion models [76–80] relate
gaγγ to the mass by gaγγ ∼ 10−13(ma/meV) GeV−1,
giving ma-independent power. For dark photons with
A′-SM kinetic mixing κ and polarization n̂, the cur-
rent is JA′ = κmA′

√
2ρDMn̂ cos(mA′t), yielding PA′ =

1
2ρDMκ

2Adishα
2
pol power. The factor αpol =

√
2/3 aver-

ages over A′ polarizations [68]. PA′ is mA′ -independent
and persists even when Bext = 0. Signal emission occurs
independent of frequency in principle, allowing searches
across several mass decades in single runs.

Practically, DM-detection sensitivity also depends on
the signal emission-to-detection efficiency εs, photosensor
noise equivalent power (NEP), and runtime ∆t. NEP is

defined as the incident signal power required to achieve
unit signal-to-noise ratio (SNR) in a one Hertz band-
width. We estimate sensitivity to gaγγ and κ (squared) as

the SNR exceeding five SNR = (εsPDM

√
∆t)/NEP > 5,

where we assume sensors have sufficiently fast readout
bandwidth O(100 kHz):

{( gaγγ
10−11

)2
(

κ
10−14

)2
}

=





1.9
GeV2

(
ma
meV

10T
Bext

)2

7.6 2/3
α2

pol





10 m2

Adish

(
hour

∆t

)1/2

× SNR

5

0.5

εs

NEP

10−21 W/
√

Hz

0.45 GeV/cm
3

ρDM
. (2)

At high masses, shot noise is relevant due to insufficient
signal photons Nsignal = (εsPDM∆t)/mDM < 5. For the
nominal Adish = 10 m2, Bext = 10 T configuration, QCD
axions induce a few 1 eV photons week−1 so month-long
runtimes render shot noise subdominant for mDM . 1 eV.

In photon-counting regimes, sensors with dark count
rate DCR detect photons emitted at rate RDM =
PDM/mDM. We use the counting-statistics significance

Z = Nsignal/
√
Nnoise = (εsRDM∆t)/

√
DCR∆t > 5 to es-

timate sensitivity in the background-limited regime. In
the background-free photon-counting limit, the coupling
sensitivity scales faster gsensaγγ ∝ (∆t)−1/2. With nominal
photoconversion rates down to 1 photon per day, scal-
ing as Rγ ≈ 10−5(1 eV/ma) Hz, the photosensors con-
sidered are background limited. We thus constrain our
projections to this scenario, where appendix 1 discusses
requirements of background-free experiments.



3

III. COAXIAL HALOSCOPE DESIGN

BREAD proposes a cylindrical barrel as the emitting
surface and a novel reflector geometry comprising a coax-
ial parabolic surface of rotation around its tangent. This
focuses the emitted radiation to a photosensor located
on-axis at the parabola’s vertex as shown in Fig. 1 (a).
DM-to-photon conversion also occurs at the parabolic
surface but is not focused on the vertex. For a barrel
with radius R and length L = 2

√
2R, the effective emit-

ting area is Adish = 2πRL. This aspect ratio suits en-
closure in conventional high-field solenoid magnets and
ensures Bext is parallel to the emitting surface. Such
magnets are widely used in basic or applied applications
with fields reaching 10 T or higher [81, 82].

While photoconversion occurs regardless of mDM, sen-
sitivity is limited at high (low) masses by focusing
(diffraction) effects. Both effects broaden the focal spot
and reduce the geometric signal efficiency due to finite
photosensor size. In the high-mass limit λdB � R, DM-
to-photon conversion occurs incoherently as the DM de
Broglie wavelength λdB is smaller than the radius of the
barrel R ∼ 1 m. Here, the DM-halo velocity v ' 10−3

smears out the focal spot size [83–85] on length scales
larger than the signal-photon wavelength λsig, rendering
diffraction effects negligible. The blue line in Fig. 1 (b)
shows the expected intensity distribution at the focal
spot for the most conservative case where the DM wind
points along the least favorable direction. The gray line
refers to a planar conversion surface of the same area
comparable to other dish-antenna experiments [69–73]
with an on-axis parabolic mirror at 1 m distance. Since
rays impinge the focal plane from a larger solid angle,
BREAD achieves improved focusing.

In the opposite low-mass limit λdB � R, such defocus-
ing effects are negligible and the signal can be detected
coherently. Figure 1 (c) shows the result of a COMSOL
simulation at around 15 GHz. Here the full modified
Maxwell wave equation is solved to verify that there are
no spurious sources or resonances excited that may in-
terfere destructively with the signal. Figure 1 (d) shows
the diffraction-limited electromagnetic fields at the focal
plane. The electric field polarized along the radial direc-
tion can be picked up by coaxial horn antennas [86, 87].
Receiver designs based on microwave and submillimeter
astronomy projects could be considered for signal col-
lection. Proof-of-principle pilot experiments near both
these limits are in preparation. The radio-frequency pi-
lot targeting 10s of GHz masses, called GigaBREAD, will
be detailed in future work.

Figure 1 (e) shows the proposed experimental design
for the pilot A′ search at infrared (IR) frequencies, called
InfraBREAD. Cooling the conducting surfaces to 4 K
suppresses thermal noise and we identified a large cryo-
stat at Fermilab built to test ADMX resonators, which
will be available in 2022. The barrel is constructed from
aluminum with Adish = 0.7 m2 (10 m2) for the pilot (up-
grade). A 4 K blackbody with 0.7 m2 area and unit emis-

sivity emits ∼ 10−8 W of power above 1 THz (4 meV).
Simulation shows that thermal radiation is evenly dis-
tributed across the focal plane and so suppressed by
Asens/Adish ∼ 10−6 for active sensor area Asens. For
Adish = 0.7 m2, Asens = 0.5× 0.5 mm2 yields 50% (25%)
signal efficiency εs for optimistic (pessimistic) DM-wind
alignment; see appendix 3 for further discussion. For
absolute alignment of the photosensor in the reflector,
we propose a piezoelectric motion stage to fine-tune the
sensor position at the focus. Off focus, the signal is
not enhanced. This enables in situ noise measurements
by moving the single photosensor off axis or installing
a second off-axis photosensor. A monochromatic laser
or bandpass-filtered blackbody source can inject photons
via a small hole in the barrel for absolute calibration
of the reflector-photosensor setup. A room-temperature
spectrometer at UChicago is available to characterize
sources and filters [88].

Various upgrades and optimizations could be imple-
mented to improve sensitivity of the proposed experi-
mental concept. A small secondary mirror near the focal
point could guide the signal toward a low-field region
where, e.g. a chopper and/or spectrometer could be in-
stalled. The optics may optimize the radiation polariza-
tion and incident angle on the photosensors. A detector
array or photon imager [89] could also provide spatial
resolution to correlate any observed signals with the as-
trophysical DM distribution. Specifically, the focal point
and signal undergo diurnal and annual modulations due
to the rotating DM velocity vector in the lab frame [90]
and possibly A′ polarization [91]. The total Adish could
be increased within the same available volume by combin-
ing the signals from an array of smaller BREAD-like bar-
rels, but this increases complexity significantly. Cosmic-
ray muons are a suggested noise source for photon coun-
ters [92]; in situ vetoes at the sensor or barrel exterior,
and/or underground operation are mitigation strategies.
Studying these options is deferred to future work.

IV. PHOTOSENSOR TECHNOLOGIES

The expected DM signal rates and optical geome-
try imply stringent photosensor requirements: broad
spectral response ∆E/E > 1, ultralow noise NEP <

10−20 W Hz−1/2 or DCR < 10−3 Hz, and millimeter-size
active area. Bolometers are promising because they di-
rectly measure absorbed photon power, only the absorb-
ing material or structures limit spectral response, and are
established technology with diverse applications [93, 94].
They comprise a thermally isolated absorbing element
with low heat capacity, sensitive thermometer and weak
link to a cold thermal bath. They can measure pho-
ton energies from 10−5 eV [95] to 106 eV. Bolometers
are typically insensitive to static (DC) radiation due to
instrumental low-frequency (1/f) noise, so input signals
must be time-modulated with, e.g. a chopper that shifts
the signal to a frequency where 1/f noise is subdominant
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TABLE I. Illustrative photosensor performance: spectral
energy E, operating temperature Top, active area Asens.
Bolometers (photocounters) report noise equivalent power
NEP (dark count rate DCR).

Photosensor
E

meV

Top

K

NEP

W/
√

Hz

Asens

mm2

Gentec [97] [0.4, 120] 293 1 · 10−8 π2.52

IR Labs [98] [0.24, 248] 1.6 5 · 10−14 1.52

KID/TES [99, 100] [0.2, 125] 0.3 2 · 10−19 0.22

QCDet [101, 102] [2, 125] 0.015 DCR
Hz

= 4 0.062

SNSPD [103, 104] [124, 830] 0.3 DCR
Hz

= 10−4 0.42

and SNR increases ∝ (∆t)1/2.

Photon-counting devices (photocounters) are poten-
tially more sensitive than total-power bolometry, since
simple signal-processing techniques, e.g. thresholding and
pulse fitting, can suppress noise. Small devices achieve
nearly background-free single-photon counting at thresh-
olds & 1 eV. For lower energies, numerous devices exploit
athermal breaking of Cooper pairs, including kinetic in-
ductance detectors (KID), superconducting nanowire sin-
gle photon detectors (SNSPD), and quantum capacitance
detectors (QCDet) [96].

We now discuss specific technologies motivating the
values in Table I assumed for our projections. We dis-
play typical Asens, but later set εs = 50% for simplic-
ity assuming sensor development will enable scaling to
required sizes. Room-temperature (Gentec pyroelec-
tric [97]) and cryogenic (IR Labs semiconducting ther-
mistor [98]) devices exemplify commercial performance.

Superconducting titanium-gold transition edge sensors

(TES) [105–107] report down to 2 × 10−19 W Hz−1/2

NEP in arrays of 200 × 200µm2 pixels [99]. TESs have
broad spectral response, where a molybdenum-gold de-

vice reporting 4 × 10−19 W Hz−1/2 NEP covers 1–4µm
to 160–960µm (eV to meV) [108]. Elsewhere, small
10µm superconducting–normal-metal junction bolome-

ters report 2×10−20 W Hz−1/2 NEP [109], which may be
promising if active areas are scalable to millimeters [110].

KIDs [112–114] are thin-film resonators, whose sur-
face inductance is sensitive to Cooper-pair-breaking pho-
tons above the band gap ∆ ' 0.2 meV. Titanium-nitride
KIDs are scalable to 50 × 50 mm2 kilopixel arrays with

3 × 10−19 W Hz−1/2 NEP [100], which are antenna cou-
pled and optimized to [3.4, 12] meV [115]. For cosmic
microwave background (CMB) applications (0.2 . E .
2 meV), KIDs are limited by signal power rather than sen-

sor noise at NEP ∼ 10−17 W Hz−1/2 [116], and therefore
could have better performance in such frequencies than
current sensors targeting CMB science. Given KID and
TES devices report similar NEP in each application, we
amalgamate their presentation in our projections for sim-

plicity. We extrapolate the 2×10−19 W Hz−1/2 NEP [99]
into the [0.2, 125] meV range where we expect KID/TES

devices to operate bolometrically, but this will require
experimental demonstration.

QCDets [117–119] recently report 3× 10−21 W Hz−1/2

NEP at 1.5 THz (6.2 meV) [101]. These are scal-
able to 441 pixel arrays and simulation indicates 1-

4×10−20 W Hz−1/2 NEP for [2, 125] meV [102], driven
by e.g. Origins Space Telescope goals [120]. Such
performance is promising, and for simplicity, we as-

sume constant 3 × 10−21 W Hz−1/2 NEP in our projec-
tions. We convert this to DCR = 4 Hz using NEP =
(E/η)

√
2 ·DCR [121] for E = 6.2 meV and optical effi-

ciency η = 0.9 [101].
SNSPDs [121–123] comprise sub-micron-width wires

wound across thin-film substrates that count photons
above an energy threshold. Superconductivity is momen-
tarily lost upon photon absorption, leading to a mea-
surable voltage pulse. Such devices achieve > 90% ef-
ficiency [124] and recently, a 400 × 400µm2 tungsten-
silicide device reports DCR < 10−4 Hz for 0.8 eV thresh-
old [103]. Using Fermilab refrigerators [125], we are
preparing to test similar SNSPDs fabricated at MIT.
Recent advances important for BREAD include extend-
ing up to 10µm (0.12 eV) [104] and developing large
3.1 × 3.1 mm2 single pixels [126]. Continued research to
lower thresholds is motivated given axions with ma .
60 meV are disfavored by supernova constraints [127].

Photocounting is also possible using KIDs [128, 129]
and TESs [130–132], with the benefit of per-photon en-
ergy resolution. With e.g. 10% energy resolution deter-
mined by detector resolution, the monochromatic DM
signal occupies one energy bin but noise can be spread
across 10 bins, improving SNR after sufficient ∆t up to
a trials factor. Exploring this in BREAD requires more
detailed resolution and noise models, which is deferred
to future work.

V. SENSITIVITY AND DISCUSSION

We project BREAD sensitivity to dark photons in
Fig. 2 (left) using Eq. (2) assuming the spectral and
noise benchmarks in Table I. Existing constraints fol-
lowing Ref. [91] (blue shading) include stellar astro-
physics [133, 134], cosmology [40, 135, 136], and γ → A′

conversion that includes laboratory probes [137, 138].
With just 1 day runtime assuming Adish = 0.7 m2, the
gray thin line shows the BREAD pilot could surpass
existing κ constraints by one decade around 1 meV us-
ing the commercial IR Labs sensor. The reach of
BREAD is substantially broader compared with two ex-
isting dish antennas, SHUKET [139] and Tokyo [71]
(dark blue). Importantly, BREAD probes higher masses
than existing haloscopes ADMX [47, 48], CAPP [53–
55], HAYSTAC [58, 59], transmon qubit [140], and WIS-
PDMX [141], whose results are recasted for A′ follow-
ing Ref. [91]. Scaling to Adish = 10 m2 and using
KID/TES sensors could open two decades further κ sen-
sitivity, while SNSPDs could achieve three decades gain
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FIG. 2. Projected BREAD sensitivity by sensor technology (bold labels, see Table I) for dark photons A′ (left) and axions a
(right). This assumes signal-to-noise ratio SNR = 5 (significance Z = 5 for photocounters), signal efficiency εsig = 0.5, and
dish area Adish = 10 m2. Blue shading shows existing constraints from Ref. [91]. Benchmark axion predictions include QCD
axion models [111] (green band), cogenesis [67] (green dots), KSVZ [78, 79] and DFSZ [76, 77] (green lines). Sensitivity scaling

assumes background-limited operation where signal-power limits scale as
√

∆t for runtime ∆t and linearly with improved NEP.

for mA′ & 0.1 eV. Extending runtime to ∆t = 103 days
enables κ sensitivity to reach six (four) decades beyond
existing constraints for mA′ ∼ 0.4 (200) meV.

Axion sensitivity is illustrated in Fig. 2 (right). Ex-
isting constraints [91] additionally include the CAST
helioscope [142, 143], telescopes [144, 145], neutron
stars [146–148], alongside ORGAN [149] QUAX [150,
151] RADES [152] and URF [43–45] haloscopes. While
challenging with commercial devices, 10 day runtimes

using KID/TES sensors with NEP ∼ 10−19 W Hz−1/2

could surpass CAST sensitivity for ma . 10 meV.
Longer runtimes could test cogenesis predictions for the
caγγ = 1 benchmark [67]. Increasing Adish (Bext) beyond
10 m2 (10 T) is financially unfavorable, requiring custom
cryostats and magnets. Thus practically probing QCD
axion models [111] requires longer runtime and lower sen-
sor noise. Coupling sensitivity scales slowly with runtime
gsensaγγ ∼ (∆t)−1/4, i.e. halving gsensaγγ requires 16× longer

runtimes. For ∆t = 103 days, reaching KSVZ [78, 79]

(DFSZ [76, 77]) demands 1 (0.2)×10−22 W Hz−1/2 NEP.
Achieving this NEP for wide spectral ranges is chal-
lenging and a key science driver for sensor develop-
ment. This may be attainable above 0.1 meV for pho-
tocounters, e.g. SNSPDs, motivating dedicated measure-
ments in preparation, and next-generation bolometers at
lower masses given a recent TES-based device reports

8 × 10−22 W Hz−1/2 electrical NEP [153]. Maintaining
signal efficiency when upgrading Adish = 0.7 → 10 m2

requires quadrupling the active sensor width. Overcom-
ing these challenges promises significant scientific payoff
given the multidecade improvements in search coverage
that has long eluded cavity haloscopes. Post discovery,

the DM signal will always persist, enabling cross checks
with resonant techniques and measurements to elucidate
its particle physics and astrophysical properties [70, 91].

In summary, we proposed BREAD to improve sub-eV-
mass DM reach by several decades. We introduced the
novel coaxial design optimized for embedding in stan-
dard solenoids and cryostats, in contrast to existing dish
antennas, then detailed numerical optics simulation and
examined photosensor candidates. Realizing BREAD
into a cornerstone DM experiment will catalyze synergies
across quantum technology and astroparticle physics.
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[152] A. Álvarez Melcón et al. (CAST), “First results of the
CAST-RADES haloscope search for axions at 34.67
µeV,” JHEP 10, 075 (2021), arXiv:2104.13798 [hep-ex].

[153] P. C. Nagler, J. E. Sadleir, and E. J. Wollack, “Demon-
stration of ultra-low noise equivalent power using a
longitudinal proximity effect transition-edge sensor,”
(2020), arXiv:2012.06543 [astro-ph.IM].

[154] J. I. Read, “The Local Dark Matter Density,” J. Phys.
G 41, 063101 (2014), arXiv:1404.1938 [astro-ph.GA].

[155] M. Tanabashi et al. (Particle Data Group), “Review of
Particle Physics,” Phys. Rev. D 98, 030001 (2018).

[156] A. G. A. Brown et al. (Gaia), “Gaia Data Release
2: Summary of the contents and survey properties,”
Astron. Astrophys. 616, A1 (2018), arXiv:1804.09365
[astro-ph.GA].

[157] J. Buch, S. C. Leung, and J. Fan, “Using Gaia DR2 to
Constrain Local Dark Matter Density and Thin Dark
Disk,” JCAP 04, 026 (2019), arXiv:1808.05603 [astro-
ph.GA].

http://dx.doi.org/10.1063/1.4739839
http://arxiv.org/abs/1207.2164
http://dx.doi.org/ 10.1088/1475-7516/2013/08/034
http://arxiv.org/abs/1305.2920
http://dx.doi.org/10.1088/1475-7516/2015/10/015
http://dx.doi.org/10.1088/1475-7516/2015/10/015
http://arxiv.org/abs/1501.01639
http://dx.doi.org/ 10.1103/PhysRevD.101.063030
http://dx.doi.org/ 10.1103/PhysRevD.101.063030
http://arxiv.org/abs/1911.05086
http://dx.doi.org/ 10.1103/PhysRevLett.125.221303
http://arxiv.org/abs/2002.05165
http://dx.doi.org/ 10.1103/PhysRevD.88.075014
http://dx.doi.org/ 10.1103/PhysRevD.88.075014
http://arxiv.org/abs/1310.8098
http://arxiv.org/abs/1310.8098
http://dx.doi.org/10.1103/PhysRevD.102.095015
http://dx.doi.org/10.1103/PhysRevD.102.095015
http://arxiv.org/abs/2008.02209
http://dx.doi.org/ 10.1103/PhysRevLett.122.201801
http://arxiv.org/abs/1905.05579
http://dx.doi.org/10.1103/PhysRevLett.126.141302
http://dx.doi.org/10.1103/PhysRevLett.126.141302
http://arxiv.org/abs/2008.12231
http://dx.doi.org/ 10.1088/1475-7516/2019/10/014
http://arxiv.org/abs/1907.12449
http://dx.doi.org/10.1103/PhysRevLett.112.091302
http://dx.doi.org/10.1103/PhysRevLett.112.091302
http://arxiv.org/abs/1307.1985
http://dx.doi.org/10.1038/nphys4109
http://dx.doi.org/10.1038/nphys4109
http://arxiv.org/abs/1705.02290
http://dx.doi.org/10.1103/PhysRevD.75.105018
http://arxiv.org/abs/astro-ph/0611502
http://dx.doi.org/ 10.1016/j.physletb.2021.136075
http://dx.doi.org/ 10.1016/j.physletb.2021.136075
http://arxiv.org/abs/2009.01310
http://dx.doi.org/10.1103/PhysRevLett.125.171301
http://dx.doi.org/10.1103/PhysRevLett.125.171301
http://arxiv.org/abs/2004.00011
http://dx.doi.org/ 10.3847/2041-8213/abb23f
http://dx.doi.org/ 10.3847/2041-8213/abb23f
http://arxiv.org/abs/2008.11188
http://dx.doi.org/ 10.1103/PhysRevD.105.L021305
http://dx.doi.org/ 10.1103/PhysRevD.105.L021305
http://arxiv.org/abs/2107.01225
http://dx.doi.org/10.1016/j.dark.2017.09.010
http://arxiv.org/abs/1706.00209
http://arxiv.org/abs/1706.00209
http://dx.doi.org/10.1103/PhysRevD.99.101101
http://dx.doi.org/10.1103/PhysRevD.99.101101
http://arxiv.org/abs/1903.06547
http://dx.doi.org/10.1103/PhysRevD.103.102004
http://arxiv.org/abs/2012.09498
http://arxiv.org/abs/2012.09498
http://dx.doi.org/ 10.1007/JHEP10(2021)075
http://arxiv.org/abs/2104.13798
http://arxiv.org/abs/2012.06543
http://dx.doi.org/10.1088/0954-3899/41/6/063101
http://dx.doi.org/10.1088/0954-3899/41/6/063101
http://arxiv.org/abs/1404.1938
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/ 10.1051/0004-6361/201833051
http://arxiv.org/abs/1804.09365
http://arxiv.org/abs/1804.09365
http://dx.doi.org/ 10.1088/1475-7516/2019/04/026
http://arxiv.org/abs/1808.05603
http://arxiv.org/abs/1808.05603


11

APPENDIX

This appendix first reviews the axion and dark pho-
ton signal rate and sensitivity in bolometric and photo-
counting regimes. Next, we present additional discussion
on the cryostat and magnet followed by dark matter ve-
locity effects on the signal spot size. Then, we expand
discussion on photosensor performance and noise sources
before commenting further on bolometers. Finally, we
discuss a potential experimental staging for BREAD.

1. Signal rate

The interaction Lagrangian coupling SM photons to
dark photons A′ (a spin 1 vector) and axions a (a spin 0
pseudoscalar) is given respectively by [9, 68]

LA′ = −1

4
κF ′µνF

µν , La = −1

4
gaγγaFµν F̃

µν , (3)

where F̃µν = εµνρσFρσ with εµνρσ being the totally an-
tisymmetric tensor, gaγγ is the axion–photon coupling,

κ is the kinetic mixing parameter, and F
(′)
µν = ∂[µA

(′)
ν] is

the SM (dark) photon field strength. Upon solving the
Lagrangian equations of motion, the consequential mod-
ification to SM electrodynamics is an additional effective
source current JDM in the Ampère–Maxwell equation [42]

∇×B− ∂tE = JDM. (4)

The nonzero current JDM from the DM–photon interac-
tion Lagrangian of Eq. (3) is given by

JA′ = κm2
A′A

′(t), Ja = gaγγBextmaa(t), (5)

where A′(t) and a(t) are the dynamical dark photon and
axion fields, respectively, and Bext is the external mag-
netic field applied in the laboratory. In general, one con-
siders wave solutions of the form exp[i(k ·x−ωt)], where
ω = mDM. As the local DM halo has nonrelativistic
velocity v ' 10−3, the momentum wavevector approxi-
mately vanishes k→ 0 and thus ∇×B in Eq. (4) induced
by DM is negligible. From the cosmology of bosonic con-
densate DM, the local halo energy density ρDM is related
to the DM mass and fields by

ρ
(A′)
DM =

1

2
m2
A′ |A′(t)|2, ρ

(a)
DM =

1

2
m2
aa

2(t). (6)

Using this in Eq. (5) gives the resulting source current
for axions has the form Ja = gaγγ

√
2ρDMBext cos(mat).

For dark photons, the source current is JA′ =
κmA′

√
2ρDMn̂ cos(mA′t), where n̂ is the A′ polarization.

The electric field induced by JDM is then deduced from
Eq. (4) and has magnitude

|EA′ | = κ
√

2ρDM, |Ea| =
(
gaγγ |B||ext|/ma

)√
2ρDM,

(7)
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FIG. 3. Photon emission rate of QCD axion benchmarks using
Eq. (12). Thick blue (thin orange) solid lines shows the KSVZ
(DFSZ) models. Dotted (dashed) variations shows the dish
area (magnetic field) reduced by a factor of 10.

where B
||
ext is the magnetic field component parallel to

the emitting barrel surface. This nonzero electric field
causes a discontinuity at the interface of a conducting
dish in vacuum. To satisfy the E‖ = 0 boundary con-
dition parallel to the dish surface (from Faraday’s law
∇×E+ ∂tB = 0, which remains unchanged), a compen-
sating electromagnetic wave with amplitude E0 must be
emitted perpendicular to the surface. The power per unit
area P/Adish of the emitted waves is given by P/Adish =
1
2 |E0|2 and applying this to the axion-induced electric

field of Eq. (7) gives Pa = 1
2ρDM(B

‖
extgaγγ/ma)2Adish for

dish area Adish. Normalizing the power to experimental
parameters, the power emitted for axion and dark photon
DM is, respectively





Pa
8.8 · 10−23 W

PA′

2.2 · 10−23 W





=





(
gaγγ

10−11 GeV−1
meV
ma

)2(Bext

10 T

)2

α2
pol

2/3

( κ

10−14

)2





× ρDM

0.45 GeV/cm
3

Adish

10 m2
. (8)

In photon counting regimes, it is more convenient to
consider the DM-induced rate RDM of emitted photons
given by PDM/mDM:





Ra
0.55 Hz
RA′

0.14 Hz





=





(
gaγγ

10−11 GeV−1

)2(
meV

ma

)3(
Bext

10 T

)2

α2
pol

2/3

( κ

10−14

)2 meV

mA′





× ρDM

0.45 GeV/cm
3

Adish

10 m2
. (9)
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For counting statistics, the relevant figure-of-merit is
the significance Z given a runtime ∆t, which for a pho-
tosensor with dark count rate DCR, is estimated as

Z =
Nsignal√
Nnoise

=
εsRDM∆t√

DCR∆t
. (10)

Formally, Nsignal/
√
Nnoise holds in the Gaussian regime

where Nnoise & 10, below which Poissonian statistics ap-
plies. For zero noise counts Nnoise = 0, one has 95% CL
exclusion sensitivity for three or more signal events.

Requiring Z = 5 for DM reach implies the coupling
sensitivity is related to the DCR by





( gaγγ
10−12

)2
( κ

10−15

)2





=





3.0

GeV2

( ma

meV

)3(10 T

Bext

)2

11.9
2/3

α2
pol
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(
hour

∆t

)1/2
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Adish

Z

5

0.5

εs

(
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)1/2
0.45 GeV/cm

3

ρDM
.

(11)

While measuring DCR is more relevant for photo-
sensors operating in photon counting regimes, device
physics literature often converts to NEP using NEP =
(E/ε)

√
2 ·DCR to facilitate comparisons [121], where ε

is the detection efficiency.

Canonical QCD axion scenarios [80] fix the relation
between the axion coupling and mass to gKSVZ

aγγ =

−3.9 × 10−13(ma/meV) GeV−1 and gDFSZ
aγγ = 1.5 ×

10−13(ma/meV) GeV−1. The prefactor depends on the
theoretical details of the ultraviolet completion assumed
in the KSVZ and DFSZ models [76–79]. Using Eq. (9),

we find the photon emission rate is

{
RKSVZ
a

RDFSZ
a

}
=





72.2

day
10.6

day





meV

ma

(
Bext

10 T

)2

× ρDM

0.45 GeV cm−3
Adish

10 m2
. (12)

Figure 3 shows the photon emission rate Rγ =
PDM/mDM for the QCD axion scenarios assuming
Adish = 10 m2 and Bext = 10 T, where the impact of
reducing these parameters by a factor of ten is shown.
In this configuration, we estimate on the order of 100
photons per day for 1 THz (4 meV) photons considering
the KSVZ scenario. Higher masses ma & 1 eV requires
longer runtimes ∆t & months to overcome shot noise.

2. Cryostat and magnet considerations

The BREAD geometry is advantageous over recent
dish antenna designs that use spherical or flat emitting
surfaces [69–73] because the latter are not suited for en-
closure in a solenoid and typically require custom magnet
designs. Solenoids are the leading magnet design that al-
lows access to large bore sizes and high magnetic fields.
An extant large-bore of radius R = 3 m solenoid in par-
ticle physics is the CMS experiment at CERN but with
modest fields B = 3.8 T, while the ITER project features
an R = 1.3 m, B = 13 T magnet [81, 82]. However, these
meter-scale magnets cost around three orders of mag-
nitude more than magnets used for state-of-the-art DM
experiments e.g. ADMX.

The dish area and magnetic field are two haloscope
parameters that bound the instrument dimensions and
govern experimental sensitivity of BREAD. The coupling

sensitivity improves as ∼ A
1/2
dishBext. One may consider
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advances in both existing cryostat and magnets size pos-
sible with 10 years of research-and-development. Figure 4
(left) shows how the sensitivity to the axion–photon cou-
pling varies with the product Adish ·B2

ext for 1 and 1000
days runtime. For the proposed aspect ratio where the
barrel length L is related to its radius R by L = 2

√
2R,

the radius is fully determined from the dish area Adish

by R =
√
Adish/(4π

√
2). So as R ∼ A1/2 for BREAD,

coupling sensitivity scales linearly with both bore radius
and field strength BextR.

The radius for the pilot Adish = 0.7 m2 is R = 0.2 m
and the nominal experiment with Adish = 10 m2 has
R = 0.75 m. While a Adish = 100 m2 barrel that has
R = 2.4 m is within engineering feasibility, the financial
cost of the large cryostat and magnet required is chal-
lenging. The energy stored in the magnetic field in the
solenoid is (B2V )/(2µ0) = (π2

√
2R3B2)/(2µ0), where

µ0 is the vacuum magnetic permeability, which corre-
sponds to 150 MJ for R = 0.75 m, B = 10 T. For com-
parison, standard medical magnetic-resonance-imaging
(MRI) magnets typically have a bore radius of around
0.35 m. Constructing a dedicated solenoid for BREAD is
financially impractical. We have identified an available
9.4 T solenoid originally constructed for MRI research at
the University of Illinois at Chicago, which we plan to
repurpose for next-generation axion DM experiments at
Fermilab including BREAD. Given coupling sensitivity
scales quickest with the magnetic field, this reinforces
the motivation for continued research-and-development
into high-field large-bore solenoids. Once the haloscope
design parameters Adish, Bext are maximized within engi-
neering and financial feasibility, photosensor performance
then governs DM discovery reach.

3. Focusing and velocity effects

In principle, the parabolic reflector focuses EM radia-
tion emitted perpendicularly to the barrel onto a point,
but in practice, the resulting spot size is smeared. This
is due to a nonzero DM velocity causing the direction of
photon emission to deviate from the surface normal by a
small angle. Therefore, if the photosensor area Asens is
smaller than the signal spot area Aspot, Asens < Aspot,
the signal detection efficiency is reduced.

Figure 6 shows the impact of DM velocity on the ge-
ometric signal efficiency Asens/Aspot assuming the sen-
sor has saturated efficiency i.e. each photon that ar-
rives within Asens is absorbed and a detection reported.
The upper (lower) axis shows the detector radius assum-
ing the barrel radius is R = 0.75 (0.2) m. The dashed
(solid) line shows the most optimistic (pessimistic) sce-
nario for the DM wind velocity aligned in the z (x/y)
direction. For the pilot experiment with R = 0.2 m with
Adish = 0.7 m2, achieving 50% signal efficiency assuming
z (x/y) DM-wind alignment requires a 0.25 mm (0.5 mm)
sensor radius. The larger nominal radius of R = 0.75 m

requires a 1 mm (2 mm) radius sensor. As discussed in
the main text, such sensor dimensions are readily fabri-
cated for commercial bolometers but state-of-the-art su-
perconducting photosensors are typically on the order of
∼ 0.1 mm in size or smaller. Figure 4 (center) shows how
the sensitivity varies with detection efficiency, showing
the modest

√
εs dependence in Eq. (2). Indeed, the main

text sets an efficiency of εs = 50% for simplicity. Be-
cause the coupling sensitivity from Eq. (11) only scales
as
√
εs, if instead εs = 5%, the sensitivity is only reduced

by a factor of around three. Nonetheless, this sets an
important BREAD physics-driven instrumentation goal
of scaling the candidate sensors to millimeter dimensions
while maintaining low noise.

4. Photosensor performance and noise

The main text identifies various candidate technologies
that could meet the stringent requirements of BREAD.
The values reported in the literature are often opti-
mized to certain spectral bands or optical configurations,
and while the sensor technologies typically have broad-
band response, this requires experimental demonstration.
Photosensors are also typically fabricated as a flat plane
for perpendicular illumination, whereas the photons in
BREAD can arrive at steep incidence angles. As the pho-
tons are emitted perpendicularly to the surface (and mag-
netic field), they also have specific polarization. Specif-
ically for BREAD, it is important to characterize how
both signal efficiency and noise (dark count) performance
scales with not only frequency but also angle-of-incidence
and polarization. Many of these photosensor proper-
ties are challenging to simulate, therefore dedicated in-
situ measurements of candidate photosensor technolo-
gies are required and under preparation. Ensuring sig-
nal efficiency and noise performance are demonstrated
while scaling sensor active area to millimeter-sized pixels
and/or arrays are key research goals for BREAD.

The noise budget and sources can be categorized by:
intrinsic to sensor such as readout, internal thermal fluc-
tuations; extrinsic to sensor such as environmental ther-
mal emission and cosmic rays. Devices that act like
bolometers are limited by intrinsic sources such as ther-
mal fluctuations in TESs, and generation-recombination
noise of pairs in KIDs. Single photon counters such as
SNSPDs are reaching very low noise that they are lim-
ited by extrinsic sources. Carefully understanding these
noise sources experimentally for BREAD could help de-
sign strategies for their mitigation.

Environmental conditions that would affect long-term
low-background measurements are challenges not unique
to BREAD but also other DM experiments. Cosmic-
ray backgrounds are stochastic, are not expected to have
long-term variations, and can be actively rejected with in
situ veto systems. The alignment of the barrel-reflector-
sensor setup could be subject to time-dependent environ-
mental variations such as temperature and humidity or
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mechanical vibrations. These can be rejected by correla-
tion with active monitoring systems, and further accom-
modated with regular dedicated calibration and align-
ment runs. Detailed studies of this requires in situ data
of the experimental site that is the subject of future work.

To provide concrete targets driven by BREAD for pho-
tosensor noise, we can estimate the required NEP for
sensitivity to the KSVZ and DFSZ axion assuming dif-
ferent runtimes in Figure 4 (right) following Eq. (2). The

BREAD Pilot Stage 1 Stage 2a Stage 2b

Axion a — X X X
Dark photon A′ X X X X

Experimental parameters

Adish [m2] 0.7 10 10 10
Bext [T] — 10 10 10
εs 0.5 0.5 0.5 0.5
∆t [days] 10 10 1000 1000

NEP [W Hz−1/2] 10−14 10−18 10−20 10−22

Coupling sensitivity (SNR = 5)∣∣gaγγ/gKSVZ
aγγ

∣∣ — 280 9.0 0.90∣∣gaγγ/gDFSZ
aγγ

∣∣ — 740 23 2.3
κ/10−14 8400 22 0.7 0.07

TABLE II. Benchmark experimental parameters for staging
the BREAD science program. Shown are the dish area Adish,
external magnetic field Bext, signal emission-to-detector effi-
ciency εs, runtime ∆t, and photosensor noise equivalent power
(NEP). The lower rows show the sensitivity assuming signal-
to-noise ratio SNR = 5 to axion–photon couplings gaγγ nor-
malized to the KSVZ/DFSZ predictions and dark photon ki-
netic mixing κ using Eq. (2).

state-of-the-art NEP today is around 3×10−21 W Hz−1/2

for quantum capacitance detectors [101]. There are
also recent claims TES-based device could achieve 8 ×
10−22 W Hz−1/2 electrical NEP [153]. With this noise
performance, it remains challenging to probe the KSVZ
scenario assuming 1000 days runtime, which requires

1× 10−22 W Hz−1/2. Probing DFSZ requires an order of

magnitude improvement in NEP to 2× 10−23 W Hz−1/2,
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which is very challenging but motivates a target for sen-
sor research-and-development.

Figure 5 shows the projected reach for dark photons
and axions in the coupling vs. mass plane for generic bolo-
metric photosensors or photocounters, assuming various
NEP and DCR for ∆t = 1000 days runtime. Experimen-
tally demonstrating that the required NEP is achievable
across several decades of frequency with high efficiency
is a challenging requirement for BREAD to probe QCD
axion models. The scientific potential for realizing this is
significant, given the multidecade mass sensitivity with-
out needing to tune the experiment to an unknown DM
mass. Photocounters such as SNSPDs have promising
dark count rates, but their low-mass (longer wavelength)
reach are currently limited to E > 125 meV photon en-
ergies (λ < 10µm wavelengths) [104]. Lowering these
photon energy thresholds is a key sensor research-and-
development target that would have a significant payoff
in BREAD.

5. Further bolometry discussion

We expand on details related to bolometers. For the
SNR calculation with bolometers, the bandwidth of the
sensor does not enter directly. A chopper or moving mir-
ror modulates the signal, allowing noise mitigation by
rejecting DC power components. Thus the bandwidth
appearing in the signal-to-noise calculation is the band-
width of the modulated signal, which becomes narrower
with integration time, giving an SNR that improves with√

∆t. The sensor bandwidth of a bolometer is measured
with pulse rise and decay time. This is only relevant in
that it restricts the speed that the signal can be modu-
lated with a chopper. For example, the chopper acquired

with the IR Labs bolometer operates at 100 Hz implying
a 10 millisecond or faster bolometer response is required.

The noise equivalent power NEP is related to the ther-
mal relaxation time of a bolometer. Therefore, the design
goals of NEP and large bandwidth are in tension and the
lowest noise bolometers will be slow. Bolometers need to
have sufficiently fast response such that a chopper can
modulate the signal at a frequency that makes 1/f com-
ponents of the system noise subdominant. We anticipate
this does depend on the specific device technology, and
characterizing this for candidate sensors with experimen-
tal measurements is an important part of the BREAD
research program.

6. Experimental staging

Table II summarizes benchmark experimental parame-
ters for a staged approach to BREAD. The corresponding
sensitivity to the axion gaγγ and dark photon κ couplings
are normalized to benchmark targets. We consider the
prototypical pilot dark photon search with 10 days run-
time. This demonstrator forms a nearer-term science goal
that will give valuable experimental experience, already
provide meaningful physics results, and serve as a proof-
of-principle for BREAD. Longer term, stage 1 shows the
nominal experiment with the full-scale experiment inside
a 10 T magnet assuming only a 10−18 W Hz−1/2 NEP
photosensor can be installed and demonstrated, which
can start to probe currently unconstrained axion param-
eter space. The planned stage 2a (2b) considers 1000
days runtime and experimental work to successfully de-
velop and couple a 10−20 (10−22) W Hz−1/2 NEP photo-
sensor. This could probe QCD axion scenarios assuming
ongoing research-and-development can demonstrate mul-
tiple order-of-magnitude improvements in sensor NEP.
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