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Abstract:  This  article  presents  a comprehensive critical  overview of fundamental  and practical
aspects of the modern stripline broadband ferromagnetic resonance (BFMR) spectroscopy largely
employed for the characterisation of magnetic low–dimensional systems, such as thin ferro– and
ferromagnetic, multiferroic and half–metallic films, multi–layers and nanostructures. These planar
materials form the platform of the nascent fields of magnonics and spintronics. Experimental and
theoretical results of research on these materials are summarised, along with systematic description
of various phenomena associated with the peculiarities of the stripline BFMR, such as the geometry
of stripline transducers, the orientation of the static magnetic field, the presence of microwave eddy
currents, and the impacts of non–magnetic layers, interfaces and surfaces in the samples. Results
from more than  240 articles,  textbooks and technical  reports  are presented  and many practical
examples are discussed in detail. This review will be of interest to both general physical audience
and  specialists  conducting  research  on  various  aspects  of  magnetisation  dynamics  and
nanomagnetism.
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1. Introduction

Much  of  the  modern  technology that  energises  today's  society  is  based  on  magnetism.
Magnets  and  numerous  sophisticated  magnetic  effects  play key roles  in  computer  hard  drives,
medical  equipment,  telecommunications  systems,  data  storage,  sensors  [1],  and  non–volatile
random access memory already used in spaceships [2]. However, modern magnets are not only bulk
magnets familiar from high-school physics classes. A large class of magnetic devices is based on
low–dimensional systems, such as thin continuous films or complex nano–patterned structures. This
is  because  thin  magnetic  films  and  nanostructures  may  possess  very  different  properties  with
respect to their counterpart bulk materials, in part due to the presence of surfaces and interfaces. At
a film surface (or interface) the symmetry is lower than in the bulk of the film, and the atoms
experience a different local environment. When the films are made sufficiently thin, the impact of
material  boundaries,  surfaces  and  interfaces  becomes  significant.  From  the  technological
perspective  this  is  extremely  important  because  by  customising  multi–layered  thin  films  and
nanostructures it is possible to create materials with unique properties that do not exist in nature.

The study of magnetic thin films has been around for nearly seven decades (see, e.g., [3, 4,
5, 6, 7, 8, 9, 10]) and this research direction still remains very active. An important aspect of the
current research is the microwave magnetisation dynamics in thin films, multi–layers, and planar
nanostructures  made  from ferromagnetic  metallic  materials.  The  interest  in  these  structures  is
motivated by their potential as a future platform for microwave signal processing [11, 12, 13, 14, 15,
16], magnetic logics [17, 18, 19, 20, 21], magnetic memory [22, 23, 24, 25, 26], sensors [27, 28, 29, 30,
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31], and other areas of science and technology [1].
Recently,  it  has  been  demonstrated  that  the  magnetisation  of  a  magnetic  material  can  be

controlled  by  using  electric  currents  that  transport  spin  angular  momentum  [32].  A  changing
magnetisation orientation produces currents that transport spin angular momentum. Understanding how
these processes occur reveals the intricate connection between the magnetisation and the spin transport,
and lays foundations of a new technology called spintronics. This technology can be used to develop
novel  devices  that  generate,  store,  or  processes  information  via  the  magnetisation  direction  (spin
orientation  in  quantum  language)  [33].  Consequently,  there  is  a  huge  interest  in  a  number  of
spintronic effects such as the spin transfer torque, direct and inverse Spin–Hall effects, and spin
pumping  [33,  34,  35].  A deep  understanding  of  physics  of  these  effects  is  crucial  for  the
development of magnetic random access memory (MRAM), spin–torque MRAM, and spin–torque
nano–oscillators [33, 34]. The time scale for responses of the aforementioned devices corresponds
to  the  microwave  frequency  range.  These  devices  are  based  on  continuous  thin  films  or
nanostructures consisting of an (often intricate) sequence of thin non–magnetic and ferromagnetic
layers.  Furthermore,  we are now witnessing a huge progress in the microwave quality of half–
metallic [36] and ferrimagnetic films [37, 38] with thicknesses in the nanometre range. It is highly
likely that availability of these new materials will give a new boost to this research direction.

More generally, the advances in the research on magnetisation dynamics and spintronics stem
from the progress in nanofabrication and experimental characterisation techniques. One of the key
characterisation techniques – the broadband ferromagnetic resonance (FMR) spectroscopy – is the
main  subject  of  this  review.  For  several  decades  the  FMR  spectrometers  have  employed  a
microwave cavity to take a measurement of FMR absorption [39, 40]. The importance of the FMR
technique has recently skyrocketed thanks to the advent of the broadband stripline FMR (BFMR)
spectroscopy. The BFMR allows characterising materials  in a broad range of frequencies, often
from several hundreds of MHz to 30–40 GHz [41, 42]. This allowed significant improvement of
accuracy of extraction of material parameters from the raw FMR absorption traces [42].

Furthermore,  the  Gilbert  magnetic  damping constant  [43]  is  extracted  as  a  slope of  the
frequency dependence of the resonance line width.  Without  BFMR it  is  difficult  to  distinguish
between the contribution to the resonance linewidth due to the intrinsic damping (given by the value
of  the  Gilbert  constant)  and  extrinsic  contributions  [44,  45,  46].  The  high  interest  in  the
magnetisation  damping  originates,  for  example,  from the  technological  importance  of  the  spin
transfer and spin pumping effects (see, e.g., [32, 33, 34, 35, 41, 42, 47]). In this case, the Gilbert
damping constant affects the critical current needed to switch the magnetisation direction [32, 48].
In the case of self–sustained oscillations, the Gilbert damping affects the instability current that
confines the regions of microwave emission [49, 50, 51].

We  also  stress  the  importance  of  the  BFMR  spectroscopy  in  the  emerging  area  of
magnetically  tuneable  microwave  meta–materials  and  sensors  of  various  substances  including
sensing of gases and nanoparticles. For more information, we refer the interested reader to Ref. [29,
52, 53, 54, 55, 56, 57] and references therein.

Several  reviews,  books  chapters,  and  technical  reports  on  various  aspects  of  the  FMR
spectroscopy have been completed up to date [10, 39, 58, 59, 60, 61, 62, 63, 64]. However, some of
these works are either technically outdated [10], written in very introductory style [61, 64] or very
specialised and focused on technical aspects of particular FMR setups [39, 58, 59, 62, 63] and their
particular  applications,  e.g.,  on  the  characterisation  of  materials  for  high–frequency  signal
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processing devices [62]. Despite a high practical value of the previous attempts to overview FMR
spectroscopy,  there  is  obviously  a  lack  of  a  comprehensive  review  of  the  stripline  BFMR
spectroscopy. In order to be really useful for the research community, the scope of such a review
should go beyond just giving a bird's–eye view of various aspects of the BFMR spectroscopy. It
should also discuss the important peculiarities of the BFMR, the practical methods of raw data
analysis  and  interpretation,  as  well  as  the  numerical  methods  helping  to  better  understand
experimental results. The aim of the present review is to fill this gap.

Before we start, we note that results presented in many articles on FMR measurements and
relevant topics are given in Gaussian units based on the cgs system. Furthermore, in many modern
articles Gaussian units co–exist with SI units because, for example, the Oersted units are often used
to display the applied field in raw data measurements. For this reason, below the reader will find
that some quantities are expressed in cgs units and some in SI ones. We refer the reader to the
magnetic units conversion table given in Appendix I.  We also recommend Ref. [65] containing
useful formulae in both systems of units.

2. Ferromagnetic resonance spectroscopy

2.1 Ferromagnetic resonance and standing spin–wave modes

FIG. 1.  A spin wave on a spin chain.  Top: the spins viewed in perspective.  Bottom: the spins
viewed from above, showing one wavelength. The wave is drawn through the ends of the spin
vectors. For clarity, the trajectories of spin precession are shown as circles.

Central  for  the  understanding  of  the  microwave  magnetisation  dynamics  and  the
ferromagnetic resonance experiment is the notion of spin waves. Spin waves are eigen–excitations
in ferromagnetic media, existing in the microwave frequency range. Spin waves represent collective
precessional motion of spins coupled by short–range exchange and long–range dipole interactions
in a magnetic medium (Fig. 1). The classical description of spin waves is given by the Landau–
Lifshitz–Gilbert (LLG) equation [43] for the magnetisation vector M
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where  is the gyromagnetic ratio, Heff is the effective magnetic field inside the medium, Ms is the
saturation magnetisation, and  G is the Gilbert damping coefficient. The first term on the right–
hand–side (r.h.s) of Eq. (1) gives rise to the precessional motion of the magnetisation vector about
an equilibrium direction determined by the effective magnetic field. The second term is the damping
term responsible for the magnetisation vector spiralling back to the static equilibrium. Equation (1)
can be solved together with the Maxwell’s equations for particular geometries to yield spin wave
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eigen–modes.  The  eigen–frequencies  depend  on  the  sample  shape,  external  field  and  material
parameters. 

FIG. 2. Schematics of the spin precession amplitude across the film thickness direction for the first
three standing spin wave modes (SSWMs). These profiles assume that the magnetisation vector is
unpinned at the film surfaces. The fundamental resonance mode (FMR mode) represents in–phase
precession with uniform amplitude across the thickness direction, while for the 1st SSWM the spins
at the top and bottom precess in anti–phase.

Ferromagnetic  resonance  (FMR)  –  also  known  as  the  fundamental  mode  of  uniform
precession  of  magnetisation  –  is  the  case  where  the  spins  precess  with  the  same  phase  and
amplitude over the whole volume of the magnetic material (Fig. 2). It may be considered as a spin
wave with an infinite wavelength or zero wave number. FMR was unknowingly discovered by V. K.
Arkad'yev  in  1911 [66]  –  he  was  first  to  observe  resonant  absorption  of  ultra–high frequency
radiation by ferromagnetic materials. A qualitative explanation of FMR along with an explanation
of  the  results  by Arkad'yev  was  given  by J.  Dorfmann  in  1923;  he  suggested  that  the  optical
transitions due to Zeeman splitting could provide a way to study ferromagnetic structure [67].

The frequency of the uniform FMR mode for an ellipsoid of revolution magnetised along
one of its axis (z–direction) is given by the Kittel equation [43]

2 2
res res( ( ))( ( ))xx zz yy zzf H N N H N Ng= + - + - ,  (2)

where Nxx, Nyy, and Nzz are the demagnetising factors along the axes of the ellipsoid.

In  the  limiting  case  of  a  thin  continuous  film  magnetised  in  its  plane  (IP)  (Nxx = 1,
Nyy = Nzz = 0) this formula reduces to [43]

( )2 2
res res 4 sf H H Mg p= +

,    (3)
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and for the case of magnetisation of the film perpendicular to its plane (PP, Nzz = 1) one has

( )res 4 sf H Mg p= - . (4)

In Eqs. (2–4),  f is  the resonant frequency and  Hres is the resonant magnetic field.  This mode is
efficiently excited if  the microwave magnetic  field of  the driving source is  uniform across  the
thickness of the film [68].

Besides  the  uniform (or  often  quasi–uniform)  mode,  confined  geometries  often  support
excitation of higher–order FMR modes which represent standing spin waves across the direction of
confinement  [“Standing  Spin  Wave  Modes”  (SSWM)].  As  the  name  implies,  the  dynamic
magnetisation profiles of SSWMs across the thickness of the film represent stationary waves with
wave vectors k = n/d, where n is the mode number and d is the thickness of the film (Fig. 2). The
IP Kittel equation is then modified [43]

( )( )2 2
res res 4ex ex sf H H H H Mg p= + + +

, (5)

where Hex = Dk2 is the exchange field, and D is the exchange stiffness constant.

FIG. 3. (a) The unpinned first SSWM profile across the film thickness direction. Arrows in the film
(grey  area)  show  an  instant  snapshot  of  spin  precession.  The  blue  line  shows  the  profile  of
precession amplitude across the film thickness. Label H denotes the direction of the applied static
magnetic  field.  One  notices  that  the  mean  value  of  the  amplitude  (the  net  dynamic  magnetic
moment) vanishes for this mode for symmetry reason. (b) Spin precession in the presence of spin
(magnetisation) pinning at one of the film surfaces (shown schematically by the presence of a thin
pinning layer at the top surface of the film). One sees that the precession amplitude is altered at this
interface. As a result, the SSWM develops a non–vanishing net dynamic magnetic moment, which
may couple to an external magnetic microwave field.

The efficiency of excitation of SSWMs depends on the uniformity of the driving microwave
magnetic  field  of  the  FMR setup and the uniformity of  the material  properties  over  material’s
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volume. For instance, observation of SSWMs in thin films requires either the presence of a surface
anisotropy or non–uniformity of magnetic parameters across the film thickness. Typical examples
are a multi–layered film lacking inversion symmetry or magnetisation pinning at the surface of a
single–layer film. The latter case was actually first considered by Kittel [5, 68, 69].

The case of a continuous single–layer film with a normal uniaxial surface anisotropy [70] is
the most  instructive example.  The anisotropy leads to pinning of dynamic magnetisation at  the
surface of the film where it is present. In the absence of the anisotropy the dynamic magnetisation
m at the external surfaces of the magnetic film satisfies the Rado–Weertman condition [71]

0
¶

=
¶
m

n . (6)

If the anisotropy is present and the film is magnetised in its plane, this boundary condition should
be generalised as 

0
m

d m^
^

¶
+ =

¶
n

n n , (7)

|| 0
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=

¶n , (8)

where n is the vector normal to the surface of the magnetic film, and m┴ and m|| are, respectively,
the perpendicular  (PP) and parallel  (IP)  components  of  the  dynamic magnetisation  vector  with
respect to the surface of the film. In Eqs. (7, 8), the effect of pinning is taken into account by means
of the surface pinning parameter  d = Ku/A, where  Ku represents the uniaxial surface anisotropy
constant and A is the exchange constant (not to be confused with the exchange stiffness constant D).

In a multilayer film, in addition to the pinning, the angle of magnetisation precession obeys
specific  conditions  at  the  internal  interface  between  two  magnetic  layers  [72,  73,  74].  The
corresponding (linearised) boundary conditions read
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where A12 is a constant describing the exchange coupling between the magnetic layers '1' and '2', m1

and m2 are the magnetisation vectors in the magnetic layers '1' and '2', and Ms1, Ms2, A1, A2 are the
saturation magnetisations and the exchange constants of the magnetic layers '1' and '2', respectively.

The surface pinning means that the magnetisation at the surface cannot precess as freely as
in the bulk. Because sharp spatial variation in the amplitude of precession would result in a strong
exchange contribution to the resonance energy, the amplitude of the precession can vary only slowly
with the distance from the surface, from its surface value to the bulk one. In this way the surface
state  of  magnetisation  “propagates”  across  the  bulk  of  the  film  which  leads  to  important
consequences  for  experimental  detection  of  the  conditions  for  the  magnetisation  vector  at  the
surfaces (and interfaces). The case of integer values n = 0, 1, 2, 3… in Eq. (5) corresponds to the
absence of  the surface  pinning.  The perfect  symmetry/anti–symmetry of  the  n = 1,  2,  3  modes
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[Fig. 3(a)] makes them unobservable while driven by a spatially uniform microwave magnetic field
[68]. In the presence of surface anisotropy the mode profiles are deformed [Fig. 3(b)] and SSWMs
become driven in a uniform microwave field. As seen from Fig. 3(b), the n–values in this case are
not  integer  numbers  [40].  Thus,  the  SSWM frequencies  are  affected  by  the  inhomogeneous
exchange interaction and carry important information about the value of the exchange constant for
the material. They also depend on the surface/interface state of magnetisation, and thus, due to the
surface state “propagation” through the bulk, one gets access to valuable information about the
behaviour of the surface/interface magnetisation vector. 

This  effect  was  predicted  by  Kittel  [68]  and  confirmed  experimentally  in  [40].  It  is
noteworthy that the frequencies for the higher order modes are more strongly shifted than those for
the lower order modes because of the square spin wave dispersion law Eq. (5). This is the best seen
for the case of the PP magnetised film.

( )res 4ex sf H H Mg p= + - . (11)

Also,  it  is  worth  noting  that  different  types  of  surface  anisotropy  pin  different  vector
components  of  the  dynamic  magnetisation.  Furthermore,  the  strength  of  the  pinning  strongly
depends on the orientation of the vector of the static (equilibrium) magnetisation with respect to the
anisotropy  axis.  For  instance,  if  the  static  magnetisation  vector  lies  in  the  film  plane  (i.e.
perpendicular  to  the  anisotropy  axis)  the  perpendicular–to–plane  component  of  the  dynamic
magnetisation can be pinned, but the in–plane component of the magnetisation is free to precess
[see Eqs. (7, 8)]. However, if the static magnetisation is aligned along the anisotropy axis, as it
happens in the case of a film magnetisation perpendicular to its plane, both components of the
dynamic magnetisation (which are now lying in the film plane) can be pinned. Hence, the effect of
the surface magnetisation pinning on the SSWM frequencies is generally stronger for the PP film
magnetisation than for the IP one.

To  understand  why  different  components  of  the  dynamic  magnetisation  are  pinned
differently for different directions of the applied field, let us make use of the idea of the effective
field of surface anisotropy. In the case of the normal uniaxial anisotropy, the effective anisotropy
field  is  along the  film normal.  For  a  film magnetised  IP,  only the  dynamic  component  of  the
anisotropy field matters in the linear approximation, since this field is perpendicular to the static
magnetisation. This field is huy=2Ku/(Ms)2my [75, 76]. In the same linear approximation, there is no
effective anisotropy field hux in the direction perpendicular to the direction of the anisotropy axis,
i.e. in the film plane. This explains why there is an effect of the uniaxial anisotropy on one vector
component of the dynamic magnetisation, but no effect on the other one. 

As follows from the formula above, depending on the sign of Ku this field either adds to or
subtracts from the PP dynamic dipole field 4my. The PP dipole field is known to strongly reduce
the PP component of the dynamic magnetisation my with respect to the in-plane one mx. This may be
considered as the effective dipole pinning of  my all over the film bulk. Similarly, one may expect
that the my component is further reduced at the surface if easy-plane (Ku<0) surface anisotropy is
present. This will be seen as surface pinning of my. If Ku >0, this component will be anti-pinned. On
the contrary, there will be no direct effect of hux on the dynamics of mx, as there is no direct effect of
4my on the dynamics of mx in the linear approximation. Hence, the boundary condition for this
component is “unpinned spins”.

When the film is  magnetised  PP,  the  effective field  of  normal  uniaxial  anisotropy is  of
different nature. It is now purely static: Huy=2Ku/Ms. [75]. Huy adds to the static demagnetising field
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4Ms.  Similarly to the effect of  4Ms in this geometry,  the effective surface anisotropy field
affects both dynamic components of the magnetisation equally. This explains why one obtains the
same boundary conditions for both dynamic components of m in this case. One sees that the applied
field orientation with respect to the anisotropy axis rather than to the film plane is important. Every
time when the field is applied perpendicular to the anisotropy axis, the dynamic component of the
magnetisation along the axis will be pinned and the other one will remain fully unpinned at the
surface. Similarly, every time when the applied field is along the anisotropy axis, both dynamic
magnetisation  components  will  be  pinned,  just  for  the  sheer  reason  of  the  uniaxial  symmetry
introduced by the uniaxial anisotropy. For instance, if an IP exchange-bias field is present at one of
the  film  surfaces  and  the  static  field  is  applied  in  the  direction  of  the  exchange  bias,  both
components of m will be pinned/anti-pinned, although the geometry is one of the IP FMR [77].

As follows from above, the pinning constant scales as the uniaxial anisotropy constant Ku.
For the easy–axis anisotropy (Ku > 0) the pinning constant is negative. This situation can be termed
“anti–pinning” since the dynamic magnetisation precesses more freely at  the surface where the
anisotropy  is  present  than  in  the  bulk  of  the  film.  This  results  in  a  surface  character  of  the
fundamental FMR mode [10]. Examples of the thickness profiles of the fundamental mode for the
cases  of  Ku < 0  (easy–plane  anisotropy,  surface  magnetisation  pinning)  and  Ku > 0  (easy  plane
anisotropy, anti–pinning) are shown in Fig. 4.

FIG. 4. Thickness profiles of the fundamental FMR mode for the surface magnetisation pinning
(left–hand  panel)  and  anti–pinning  (right–hand  panel).  “0”  and  “1”  of  the  horizontal  axes
correspond to the two film surfaces. The surface pinning is present at the left-hand surface of the
film only. The spins at the other film surface are unpinned (Ku=0).

Another useful example is the interface Dzyaloshinskii–Moriya interaction [78, 79, 80, 81].
It pins circular components of the dynamic magnetisation vector. The pinning constants for the left–
and right–polarised components are of different signs and scale as the spin– wave wave number
[82].

As discussed above, the term “ferromagnetic resonance” or FMR is also employed as the
name of a spectroscopy technique with which to probe the magnetisation dynamics in magnetic
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materials. Although, to the best of our knowledge, it is unknown who was the first to employ the
FMR spectroscopy, its possible date of birth is somewhere in the 1930s. Early FMR experiments
used a microwave cavity to drive magnetisation precession.  This configuration is very sensitive
since it exploits “resonance amplification” of a usually very weak FMR signal by a microwave
cavity. Importantly, the microwave cavity produces a microwave field which is highly uniform on
the length scale of a typical magnetic film sample [39, 58, 59, 61, 63, 64].

Modern BFMR setups use a section of a stripline (coplanar or microstrip line) instead of a
cavity to drive magnetisation precession. BFMR creates highly inhomogeneous driving rf–fields if
the magnetic sample is a good electric conductor (see Section 5). Furthermore, in contrast to the
single–frequency cavity FMR, BFMR is broadband (hence the name) and it allows the excitation
frequency to be selected, so that resonance conditions may be more fully explored and exploited by,
e.g., extracting the Gilbert damping parameter from a series of field-resolved FMR traces taken in a
broad range of frequencies. However, because no resonant signal amplification is available with the
broadband stripline elements, BFMR is usually less sensitive than the cavity FMR. Consequently,
most often one needs to conduct several measurements as the same frequency/applied field and take
the average to improve the signal–to–noise ratio.

2.2 Cavity FMR vs. stripline FMR

Historically,  the  first  FMR experiments  used  a  microwave (rectangular  or  cylindrical)  resonant
cavity with an electromagnet  (Fig. 5).  A typical  cavity FMR setup also consists  of a  source of
microwave power (e.g. a klystron), a microwave waveguide, and a detector diode (e.g. a Schottky
barrier diode). The waveguide is used to supply microwave power to the cavity with the sample.
The same waveguide is also used to return the signal reflected from the cavity to the detector. A
circulator is employed in this scheme to direct the reflected signal to the diode and simultaneously
protect the generator from the reflected power.

Given the  single  frequency operation  of  the  cavity,  the  measurements  are  conducted  as
follows. The generator frequency is tuned to the resonance frequency of the cavity. The cavity with
the magnetic sample is placed between the poles of an electromagnet and the magnetic field is
swept  while  the  resonant  absorption  intensity  of  microwaves  is  detected.  The  variation  in  the
applied field “sweeps” the FMR eigen–frequency for the sample. When the FMR frequency and the
resonant cavity frequency become equal, the microwave absorption by the cavity increases sharply
which is indicated by a decrease in the signal intensity at the detector.

For the measurements the TE102 resonant mode of the cavity [Fig. 5(a)] is exploited, since it
ensures high spatial uniformity of the microwave magnetic field right in the middle of the cavity.
The microwave field uniformity is very important for the interpretation of experimental results. In
particular, uniformity of the microwave field at the position of the sample ensures the absence of
microwave  eddy  currents in  the  ferromagnetic  samples  which  typically  have  sub–skin–depth
thicknesses (see the discussion in Section 5). Thus, highly conducting samples respond as insulating
films  in  the  cavity  FMR method. This  considerably  simplifies  the  theoretical  interpretation  of
experimental results. 

The resonant cavity has a  high quality factor  Q = fres/f,  where  fres is  the resonant  mode
frequency of the cavity and f is the full width at half maximum of the resonance peak. The high
quality  factor  of  the  cavity  explains  a  very  high  sensitivity  of  the  cavity  FMR.  Naturally,  Q
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decreases when the magnetic sample is inserted into the cavity. This is because the sample and its
holder absorb microwave energy, which in turn slightly shifts the resonance frequency and broadens
the resonance peak. These deviations can be compensated by adjusting the iris that controls the
effective impedance by varying the size of the aperture between the cavity and the waveguide,
or/and by adjusting the position of the metallic cap.

FIG.  5 (a)  Microwave  magnetic  field  of  the  TE102 mode  of  a  rectangular  cavity.  (b)  Basic
configuration of the cavity FMR setup. For a relevant discussion see, e.g., Ref. [83].

Apart  from very high  sensitivity,  the  other  advantages  of  the  cavity FMR are  that  this
technique  is  well–established  and  uses  standard  microwave  components.  We  have  already
mentioned that the results of measurements in the cavity are easy to interpret due to the microwave
field uniformity and the absence of the microwave electric currents in the sample. Similarly, one
finds that the higher–order SSWMs do not absorb microwave power and thus are not seen in the
cavity FMR spectrum unless the inversion symmetry of the material is broken on the length scale of
the free propagation path for travelling spin waves. This conclusion follows from the simple idea
that the FMR response driven by a spatially uniform microwave magnetic field scales as the net
dynamic magnetic moment (i.e.,  the mean value of the dynamic magnetisation over the sample
volume).  A break in the symmetry may occur due to the surface magnetisation pinning in thin
continuous films or due to nano–patterning of the films in the film plane (see the discussion in
Section 2.1)
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Some of the advantages of the cavity FMR are also its limitations. Because the cavity has a
very  high  Q–factor  and  operates  at  a  single  frequency,  measurements  are  conducted  for  one
frequency only and thus the amount of extracted information is  very limited.  Furthermore,  the
cavity  method  is  difficult  to  employ  for  the  characterisations  of  the  samples  with  very  small
magnetic losses. When the intrinsic Q–factor of a sample is very high (due to the small losses),
coupling of the sample resonance to the cavity resonance may be very strong which may lead to the
shift the resonance frequency of the cavity [84, 85] and thus make the measurement of the FMR
frequency impossible.

Furthermore, the resonant frequency of a cavity may be too low in order to observe some
magnetisation  precession  modes.  For  instance,  at  9.5GHz,  which  is  the  typical  frequency  of
operation of commercially available Electron Spin Resonance spectrometers, no FMR response will
be seen for many nano–patterned materials (see, e.g., Fig. 3 in [86]). One may also expect that no
SSWMs will be seen in the spectra of very thin ferromagnetic films at 9.5 GHz.

The disadvantages of the cavity FMR are not present in the stripline BFMR method. The
stripline  transmission  line  is  a  type  of  a  microwave  waveguide.  In  the  following,  we  will  be
interested in the microstrip [Fig. 6(a)] and coplanar [Fig. 6(b)] microwave transmission lines. We
will  use the  notion of  a  “stripline”  as  a  more  general  term which  refers  to  both coplanar  and
microstrip  lines.  On  the  contrary,  when  particular  stripline  types  are  important  for  particular
contexts we will employ the terms “microstrip line” and “coplanar line”.

The planar structure of striplines and easy accessibility of the area of localisation of their
microwave  field  make  them very  convenient  for  the  characterisation  of  thin  films  and  planar
nanostructures. Furthermore, being naturally broadband microwave waveguides, the striplines can
be employed for taking measurements in a broad frequency range, often from several hundreds of
MHz to 30–40 GHz [41, 42]. The magnetic sample is mounted on top of the stripline [Fig. 6(c)].
The magnetisation dynamics in the sample is induced by a microwave Oersted (dynamic) magnetic
field, which is created by a microwave current flowing through the signal line of the stripline.
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FIG. 6. Schematic of the microwave magnetic field of an unloaded microstrip line (a) and coplanar
line (b). After [87]. The microwave electric field distribution is shown by the solid lines and the
distribution of the microwave magnetic field by the dashed lines. The thin vertical lines in (a) and
(b) show the symmetry axes of the geometries of the microstrip and coplanar lines. (c) Photograph
of a microwave microstrip line with the sample under test (dark grey square) across the signal line.
This fixture was used to take the measurements in [88].

A microstrip line represents combination of a metal strip of a finite width w called the signal
line (or sometimes “microstrip”) and a parallel ground plane of infinite width. The two metallic
planes are separated by a layer called the substrate made from a microwave dielectric material. A
coplanar line represents a combination of three parallel planar metallic electrodes, all lying in the
same plane. The central electrode has a finite width w and is called the signal line. The two other
electrodes represent half–planes and are called the ground lines. The electrodes are separated by two
air gaps.

Numerically  simulated  distribution  of  the  microwave  electric  potential  over  the  cross–
section of a microstrip line is shown in Fig. 7(a). An important observation from Fig. 6(a) is that the
microwave  magnetic  field  of  a  microstrip  has  two  components:  an  in–plane  (IP)  one  and  an
perpendicular–to–plane (PP, also called out–of–plane) one. They are characterised by similar peak
amplitudes but different spatial symmetries: the IP one is symmetric with respect to the vertical
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symmetry axis of the microstrip line [shown by the thin vertical lines in Fig.  6(a) and (b)], but the
PP one is anti–symmetric (and hence vanishes on the symmetry axis, see Fig.(7b)). The similarity of
the peak amplitudes for the two field components is a fundamental property of an Oersted field of a
plane sheet of a current: it follows from the circulation law for the Oersted field (see Eq. (15) in
Ref. [89]). The microwave magnetic field of a coplanar line is more complicated [Fig. 6(b)]. The IP
component is mostly localised above the signal (central) line (also called “track”) of the coplanar
line and the PP component in the slits separating the signal line from the ground lines (half–planes).

In a stripline FMR experiment, one measures microwave absorption as a function of the
driving microwave frequency or externally applied static magnetic field while keeping the applied
field  or  frequency  (respectively)  fixed.  At  resonance,  a  dip  in  the  trace  of  microwave  power
transmitted through the stripline vs. frequency or applied field indicates absorption of microwave
power into the sample. The experiment is usually repeated for a number of frequencies or static
magnetic  fields  (respectively).  This  feature  makes  the  stripline  FMR very  useful  for  studying
different material parameters such as the damping constant  G and  g–factor (see, e.g., [41, 42]).
These  parameters  are  extracted  from  experimental  data  by  fitting  them  with  the  appropriate
analytical formula [e.g., the Kittel equations Eq. (2)] or numerical simulation (see, e.g., Ref. [90]).

FIG. 7. (a) Simulated distribution of the electric potential over a (x–y) cross–section of a microstrip
line loaded with a thin film sample. The width of the microstrip line is w = 1.5 mm. The parameter
h  denotes  the  thickness  of  the  substrate  of  the  sample.  (b)  The  in–plane  (solid  line)  and
perpendicular–to–plane (dotted line) component of the microwave magnetic field of a microstrip
line  as  a  function  of  the  y–coordinate.  This  profile  is  along the  vertical  symmetry axis  of  the
geometry in Fig. 6(a). In this graph the microstrip ground plane is at 0 and the microstrip is located
at  0.3 (the  distance is  normalised to  the microstrip  width  w).  This  profile  was calculated  with
customised software developed by one of the authors (M.K.). The numerical method is based on the
duality of the microwave electric and magnetic fields and the approach from [91] to calculate the
microwave electric field of the microstrip line.
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2.3 Pulse Inductive Microwave Magnetometry

Historically,  most  of  the  early stripline  FMR spectrometers  [92]  mimicked the  “Fourier
Transform  Method”  of  operation  of  Nuclear  Magnetic  Resonance  spectrometers  [93]  –  they
exploited broadband pulse excitation of the stripline.  The method got the name “Pulsed Inductive
Microwave Magnetometry” or shortly PIMM [92, 94]. Below we describe it on the example of the
setup at the University of Western Australia1.

The magnetic  sample is  placed upon a coplanar  line (Fig. 8).  The sample is  electrically
isolated from the waveguide by a thin separating layer of teflon. The sample can then be placed
face–side down to maximise the inductive coupling with the field to the coplanar line. The coplanar
line is connected to the measurement system via coaxial cables.

FIG. 8. Schematic of the PIMM setup described in the main text. The excitation field is created by
a pulse generator, and the transmitted pulse is measured with a sampling oscilloscope.

An excitation field is launched onto the waveguide from a step pulse generator. The pulses
have a nominal rise time of 50 ps, a pulse duration of 10 ns, and are outputted with a repetition rate
of 10 kHz. The excitation field disturbs the equilibrium position of the magnetisation by altering the
effective field direction. The magnetisation precesses around this new equilibrium position. The
precessing magnetisation induces a voltage back into the coplanar line.

The harmonic part of the signal is exponentially damped due to energy dissipation within the
sample, and is super–imposed onto the original much larger 10 V excitation pulse. This is measured
by a  20 GHz  sampling  oscilloscope,  measuring  512  pulses.  As  the  period  between  the  pulses
(0.1 ms)  is  much  larger  than  the  relaxation  time  of  the  magnetisation,  the  measurement  is
completely repeatable. Noise is reduced by averaging the measurement a few hundred times. Time
Fourier  transformation of measured data is  used to  obtain the susceptibility of the investigated
magnetic film. The susceptibility for a Permalloy (Ni80Fe20) thin film is shown in Fig. 9.

1

 This setup was developed by K. J. Kennewell, R. Woodward and R. L. Stamps under guidance by T. Silva
from the National Institute of Standards and Technology (NIST) Boulder, Colorado, USA. This description is taken
from the PhD thesis by K. J. Kennewell.
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FIG. 9 Susceptibility  spectra  of  a  Permalloy  (Ni80Fe20)  thin  film  for  different  applied  fields
calculated from the Fourier transformed PIMM data. Both the real and imaginary parts are shown
(red open circles). The real part of the data exhibits a crossing and the imaginary part of the data
exhibits a peak at the samples resonant frequency. The solid blue lines are, respectively, the best fits
to the Lorentzian (bell) shape characteristic and a sign varying function featuring a characteristic 
phase jump at the resonance frequency. (The red open circles largely overlap making an impression
of a thick red solid line.)

The results in Fig. 9 are seen to be dependent on the applied bias field H, with the frequency
increasing with field. In this case the Kittel equation reads 

( )( )2 2
K K 4 sf H H H H Mg p= + + +

, (12)

where HK is the effective magnetic field of magnetocrystalline anisotropy. By plotting the square of
the resonant  frequency versus  H and fitting the resulting curve to  the Kittel  equation,  one can
extract  the  values  of  HK and  g from  the  gradient  by  taking  the  approximation  when
HK + H << 4Ms.  Moreover,  the  parameter  f/f,  which  is  a  measure  of  the resonance peak line
width, can be extracted from the Fourier transformed data and used to extract the Gilbert damping
constant G.

To summarise the discussion of the PIMM, we notice a considerable complexity of the post–
processing of the experimental data due to the time–domain origin of this spectroscopy technique.
Whereas the PIMM benefits from broadband properties of the stripline, the post–processing and
analysis  of  the  data  require  complex  Fourier  transformations.  Furthermore,  each  step  of
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mathematical  processing  of  data  registered  with a  finite  experimental  accuracy “amplifies” the
uncertainty in the values of  material parameters extracted from the experiment.  This makes the
PIMM  a  much  more  complex  and  less  accurate  method  as  compared  with  the  cavity  FMR.
Furthermore,  the  costs  of  the  nanosecond  pulse  generator  and  the  broadband  oscilloscope  are
typically higher than the costs of a microwave generator and a detector used in the cavity FMR.
Some of  the  disadvantages  of  the  PIMM –  its  time–domain  character  and  the  complex  post–
processing – are not present in the VNA FMR configuration, which is discussed in the next section.

2.4 Vector Network Analyser (VNA) FMR

The Vector Network Analyser (VNA) FMR is used to study excitations of the magnetisation
dynamics in thin magnetic films and high–quality magnetic nanostructures (see, e.g., [46, 88, 92,
95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110]). These nanostructures
have attracted a lot of attention due to the advent of modern fabrication technologies allowing one
to fabricate high–quality thin magnetic films as well  as single and periodic nanostructures.  The
latter are often called “magnonic crystals” [14, 15, 16, 111].

By  analogy  with  the  PIMM,  the  VNA  FMR  is  an  inductive  method  to  study  the
magnetisation dynamics in magnetic films and nanostructures because the magnetisation dynamics
in the sample under test is induced by a microwave field. This field can be created, for example, by
a microwave current flowing through the signal line of a microwave stripline (Fig. 10). 

FIG. 10. (a) VNA–FMR setup displayed schematically, with the stripline and sample geometry in
the bottom right. Shown is the applied field direction H, relative to the rf microwave field hrf. VNA
denotes the Vector Network Analyser, PC denotes the Personal Computer.

The stripline with the sample under  test  on top of it  is  placed between the poles of an
electromagnet (Fig. 10) such that the line is parallel to the direction of the applied static magnetic
field (so–called in–plane FMR configuration). The stripline is connected on both ends to the two
ports  of  a  VNA.  The  VNA functions  as  both  a  source  of  a  microwave  signal  to  excite  the
magnetisation  dynamics  in  the  magnetic  sample,  and  as  a  signal  receiver.  More  precisely,  it
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measures the scattering parameters – S21 (transmission) and S11 (reflection) – of the device under test
(DUT). The values of the scattering parameters represent proxies to the strength of the microwave
magnetic absorption by the sample. One measures the microwave absorption as a function of the
driving microwave frequency and/or externally applied static magnetic field. Resonant absorption
of microwave power by the sample is  seen as  a  dip in  the measured spectrum. There are two
methods to measure the FMR response of the sample: frequency sweep and field sweep. They are
discussed below.

In the frequency sweep method, the field of the electromagnet is fixed, and the scattering
parameters  are  measured  as  a  function  of  frequency.  This  method  is  quick,  but  less  sensitive
compared  to  a  field  sweep.  In  addition,  frequency  sweeps  may  yield  signals  which  are  non–
magnetic in origin, but simply due to variations in the impedance of the DUT as the frequency is
swept.  Therefore,  the  raw  experimental  data  require  post–processing  to  eliminate  the  parasitic
resonances from the traces. This will be explained below.

An example of the spectrum taken with the VNA FMR using the field sweep method is
shown  in  Fig. 11.  In  this  method,  the  VNA is  set  to  operate  at  a  single  frequency,  and  the
electromagnetic field is swept. The same scattering parameters are measured, but now as a function
of the field. This method is slower, because it is usually impossible to vary the applied field with the
same rate  as  VNA may sweep the microwave frequency.  However,  it  is  more  sensitive than  a
frequency sweep. In addition to the advantage in sensitivity, it only yields signals which vary with
the magnetic field. Ensuring that all microwave parts of the setup which are in contact with the
magnetic field (such as cables, coaxial–to–stripline adapters, and the stripline itself) do not contain
magnetic materials, removes the parasitic magnetic background completely. This gives the field–
sweep method an important advantage with respect to the frequency sweeps.

Here  one  has  to  note  that  this  method  fails  if  the  measurements  are  to  be  taken  on
magnetically unsaturated samples, because varying the applied magnetic field will gradually change
the ground state of magnetisation. Therefore, for taking measurements inside hysteresis loops for a
material the frequency swept FMR is more appropriate [54, 60, 112, 113, 114, 115].

FIG. 11. Microwave absorption spectrum of a 100 nm thick Permalloy film at the frequency of
10 GHz, showing the fundamental mode (labelled as “FMR” in the figure) and the 1st SSWM as
absorption dips.

In all  cases of the VNA FMR, the measured quantities are  S–parameters.  Similar to the
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PIMM, the relationship of the S–parameters to the resonance in the sample (via susceptibility of the
sample) should be determined. The  S–parameters represent ratios of the complex pre– and post–
transmission (and reflection) standing power waves as discussed in detail in [116].

To summarise Section 2.4, we have discussed the advantages and disadvantages of the VNA
FMR. The merit of the VNA FMR is that it enables one to take measurements of the value of the
microwave magnetic  absorption in  terms of  well–defined scattering  parameters  and in  absolute
units.  The complex S–parameters  are measured with a  standard commercially available  tool  (a
VNA)  that  also  serves  as  the  source  of  microwave  power.  Usually,  a  VNA is  supplied  with
embedded software and calibration kits allowing one to quickly calibrate the device.

The disadvantage of this technique is that it measures the scattering parameters of the whole
DUT – both the stripline line and the sample of interest. Due to a significant difference between the
stripline characteristic sizes and the sample thickness, the magnetic part of the absorption signal
inserted by the sample is almost always much smaller that the total signal from the output of the
stripline,  appearing  as  a  blip  on  top  of  the  background  stripline  signal.  Typically,  background
subtraction needs to be done to isolate the sample signal from the total DUT signal. It complicates
post–processing and interpretation of the data.

An important exception is the samples made from single–crystal yttrium–iron garnet (YIG).
Due to  exceptionally small  magnetic  losses  for  this  material  the  magnetic  absorption  by those
samples  is  most  often  comparable  to  the  non–magnetic  background.  Thus,  no  background
subtraction is needed in this case.

2.5 Field–modulation FMR (FM FMR) and interferometric detection of weak FMR signals

Due  to  the  aforementioned  disadvantages  of  the  VNA FMR,  lock–in  and  modulation  BFMR
techniques  are  also  often  used  [64,  61,  117,  118].  In  these  cases,  the  VNA is  replaced  by  a
microwave generator, a microwave diode, and a lock–in amplifier. In addition, modulation coils are
fixed at  the  poles  of  the electromagnet  (Fig. 12).  Given high costs  of  a  brand–new VNA, this
method is much cheaper to implement which may be an important factor in many cases; especially
if some of the above listed equipment pieces are already available in the lab.

The microwave signal transmitted through the DUT is measured as a function of applied
field for given microwave frequencies. Alternatively, the reflected signal can also be measured by
redirecting the power reflected from the DUT to the diode with a circulator. Similar to [99, 103], the
field is modulated using two small coils attached to the poles of the electromagnet. The setup used
at the University of Western Australia employs the modulation frequency of 220 Hz, and the AC
magnetic field produced by the coils is typically between 1 and 9 Oe, depending on the anticipated
linewidth of the measured resonances. This input power is set such that the rectified bias voltage at
the output end of the tunnel diode is in the most sensitive and linear region of the particular diode's
response. The transmitted/reflected signal from the DUT is rectified using the diode and fed into a
lock–in amplifier referenced by the same 220 Hz signal driving the modulation coils. The signal
obtained in this way is proportional to the field derivative of the imaginary part of the microwave
susceptibility  [103].

Consider  the  microwave  susceptibility  of  the  DUT  (H)  as  a  function  of  the  magnetic
field H. The modulation produces an AC field on top of the DC field, so the susceptibility becomes
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(H + heit),  where  h is  the  magnetic  field  of  the  modulation  coils  and   is  the  modulation
frequency. The first two terms of the Taylor expansion (with respect to time) of the susceptibility
are

( ) d
e

d
i tH i h

H

w c
c w+ . (13)

This signal is fed into the lock–in amplifier. The first term is effectively a DC term, which gets
filtered  out.  The  second  term  is  an  oscillatory  signal  with  the  same  frequency  as  the  field
modulation  frequency.  By referencing  the  lock–in  amplifier  with  the  driving  frequency of  the
modulation coils, the second term gets “locked–in”.

It is worth noting that the second term is proportional to the modulation amplitude and the
shape of the curve is the first derivative of the susceptibility curve (“differential absorption”). This
curve can be fit with analytical and numerical model in order to extract important material constants
such as the Gilbert damping parameter. However, in contrast to the VNA FMR, the direct extraction
of the amplitude of the FMR and higher–order SSWMs in absolute units is hardly possible, or at
least would require a sophisticated analysis of the microwave track between the generator and the
diode (which is automatically done by the VNA built–in software in the case of the VNA FMR).
Note that in order to extract the full width at half maximum (FWHM) of the FMR resonance from
the first derivative of the susceptibility curve, one needs to measure the distance between the two
peaks (the positive one and the negative one) of the first derivative of the susceptibility curve and

multiply this distance by 3 .

For those who are accustomed to analysing the VNA FMR traces, a differential absorption
trace may look unusual. However, by taking a first “anti–derivative” of a raw differential absorption
trace numerically one easily retrieves the conventional Lorentzian shape for the resonance lines
typical for the raw VNA data (Fig. 13). Here one has to note that often the features in differential
absorption traces, such as a fine peak structure, are more pronounced as in the “anti–derivative” (i.e.
in the equivalent VNA data), as seen in Fig. 13. This is due to the simple fact that differentiating
emphasises any changes in the slope present in a curve.
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FIG. 12 Lock–in with field modulation broadband method circuitry.

Furthermore, typically,  background signals from the sample itself,  the stripline and other
potentially magnetic components located between the electromagnet poles are broadband features.
However, signals from the magnetic resonances in the sample are typically sharp. Consequently, the
derivative of the background signal is effectively vanishing in the differential absorption data as
compared to  the sample resonance signal.  The practical  absence of background means that  the
sensitivity of the lock–in amplifier can be set to the sample signal level. Furthermore, one does not
need to take a background sweep as necessary in the case of the frequency–swept VNA FMR.

It is noteworthy that 1/f noise [119] in the collected data can be reduced by increasing the
modulation frequency. Furthermore, as follows from Eq.(13), the amplitude of the FM response and
hence the  setup sensitivity scale as  the  modulation  frequency.  Thus,  increasing the modulation
frequency is beneficial. Here one has to take care that the modulating coils are located well away
from the pole pieces of the electromagnet and as close as possible to the sample. If they are attached
to the poles of the electromagnet (as in Fig. 12), due to the large contribution from the magnet yoke,
the coil inductance will quickly increase with modulation frequency resulting in a quick drop in the
current through the modulating coil and hence in the AC field it produces for a given AC voltage
supplied  by  a  function  generator.  For  a  coil  sitting  on  a  magnet  pole  piece  frequencies  of
modulation of a couple of hundreds of Hertz are typical [120], but with a standard Varian–IV cavity
with built–in modulation coils modulation frequencies of several tens of kHz are easily achievable
[121].
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FIG. 13 Differential absorption curve (blue line) and its first anti–derivative (equivalent to a VNA
FMR trace) taken on a magnetic nano–dot array. One sees that the fine structure of the resonance
line is significantly better visible in the differential data than in the equivalent VNA trace [122].

All the above considered, a single run of the FM FMR yields much better signal–to–noise
ratio compared to VNA traces taken without averaging over numerous VNA measurement runs. A
further decrease in the noise level in the FM FMR data is achieved by increasing the lock–in time
constant  and  collecting  the  lock–in  signal  for  a  longer  time  accordingly (at  least  5  to  6  time
constants). This is equivalent to an increase in the number of VNA runs in the VNA FMR method
over which the FMR signal is averaged.

However,  the  most  radical  reduction  in  the  noise  floor  is  achieved  by  replacing  the
microwave  diode  with  a microwave  interferometric  instrument  (“receiver”)  [123].  With  this
custom–build receiver a single measurement run allows one to register FMR signals with amplitude
of just 100nV with no noticeable noise background at all when the lock–in time constant is set to
0.3s which is just 60 periods of the field modulation [120], with plenty of room for the further noise
level improvement by increasing the field modulation frequency (see the discussion above of the
importance of proper positioning of the modulation coils). 

The receiver is easy to tune and represents quite a small investment compared with a typical
price of a brand–new VNA. Importantly, sensitivity to the signal of either real or imaginary part of
the complex microwave magnetic  susceptibility can be achieved by proper tuning of the receiver.
Moreover, it is even possible to measure both parts simultaneously by investing slightly more into
the microwave parts.  In the latter  case,  one eliminates  the main disadvantage of the  FM FMR
method with respect to the VNA FMR one – the impossibility of measuring the real and imaginary
parts of the complex FMR response simultaneously.

The authors of this paper now employ the interferometric instrument for most of their FMR
measurements. 

2.6 In–plane vs. perpendicular–to–plane FMR

Magnetic multilayer materials with strong perpendicular magnetic anisotropy are amendable for use
in emerging spintronics [33, 124, 125] and next–generation data–storage technologies [126] due to
the high degree of tuneability of both anisotropy and saturation magnetisation. Such multi–layers
can be formed from alternating two ferromagnetic  materials  such as  Co/Ni [127] and CoFe/Ni
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[128],  or alternating a ferromagnetic material  with a non–ferromagnetic  material  such as Co/Pt
[129,  130,  131,  132],  Co/Pd  [133],  CoFe/Pd  [134],  and  CoNi/Pd  [135].  The  high–frequency
behaviour of these materials is of considerable technological interest due to the strong dependence
of spin–torque critical currents and patterned–media switching rates on the degree of damping for
gyromagnetic precession [136]. However, measurements of damping in multi–layers by means of
FMR can  be  challenging  in  the  case  of  strong  perpendicular  anisotropies  (which  require  high
measurement frequencies in excess of 30 GHz) and/or broad FMR line widths (which necessitate
high instrument signal–to–noise ratio and stability) [41, 137, 138, 139].

Néel  was  the  first  to  propose  that  an interface  or  surface  will  generate  a  perpendicular
anisotropy due to the broken symmetry of a surface or interface [140]. However, the fundamental
origin  of  this  effect  has  been  the  focus  of  much  debate  over  the  past  two  decades.  Many
investigations on the origin of surface anisotropy have focused on the measurement of the orbital
and spin moments of magnetic interfaces and surfaces [141, 142, 143, 144, 145, 146]. Nevertheless,
measurement of the orbital moment in materials along specific directions remains an experimental
challenge.  Whereas  synchrotron  facilities  are  required  to  conduct  X–ray  magnetic  circular
dichroism (XMCD) measurements [147, 148], the orbital moment can also be determined in the
laboratory using FMR through careful evaluation of the spectroscopic splitting factor g [59, 149].

Measurements of the  g–factor  were made accessible due to the increased availability of
broadband VNA's discussed in Section 2.4. However, precise (<1%) determination of the g–factor
of thin films has remain a challenge for the in–plane VNA FMR configuration due to the nonlinear
dependence of the resonance frequency on the resonance field [see Eq. (5)] resulting in a difficulty
of  fitting  the  experimental  data  with  this  equation.  This  drawback  is  less  present  in  the
perpendicular–to–plane FMR configuration, in the first place due to the linear law Eq. (4). This
becomes  of  high  importance  for  precise  measurements.  Moreover,  in  the  PP  geometry  the
contribution of two–magnon scattering to  the measured line width is  minimised [150].  Another
important  advantage  of  the  PP  FMR  arises  specifically for  the  samples  with  the  normal
(perpendicular) surface/interface uniaxial anisotropy. As we have shown above (Section 2.1) in this
case both components of the dynamic magnetisation are pinned at the surface/interface possessing
the  interface  anisotropy,  whereas  in  the  conditions  of  the  IP FMR only the  PP component  of
dynamic magnetisation feels the presence of the normal surface/interface anisotropy. Thus, one may
expect a stronger contribution of the normal uniaxial anisotropy to the PP FMR data.

It is known that the resonance is described by the complex susceptibility  (Hres) derived
from the LLG equation [Eq. (1)]. For the perpendicular–to–plane configuration the susceptibility
for a single–layer continuous film reads
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where  Hres is  the  resonance  field,  Heff = 2f/(0)  is  the  effective field,  Meff is  the  effective
magnetisation, H is the line width, and also f is the frequency and  = (gB)/ħ is the gyromagnetic
ratio  being  ħ the  reduced  Plank's  constant.  The  VNA FMR technique  is  sensitive  to  both  the
amplitude and the phase, and therefore both the real and imaginary parts of the susceptibility can be
measured. It can be done by simultaneously fitting the real and imaginary spectra to Eq. (14) in
order to determine Hres and H [138]. According to the definition of the anisotropy energy density E
given in  Ref.  [151],  which  includes  the  second–order  (K2)  and fourth–order  (K4)  perpendicular
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anisotropies,
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where   is  the  polar  angle  relative  to  the  sample  normal  (perpendicular)  direction.  The  Kittel
equations for the perpendicular–to–plane () and in–plane (||) geometries in a saturated state are
given by Eqs. (16, 17)
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Using Eq. (14), the perpendicular–to–plane (M
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Examples  of  perpendicular–to–plane  and  in–plane  geometry  data  with  fits  to  the  Kittel
equations are given in Fig. 14 [41]. As stated earlier, precise (<1%) determination of the g–factor is
challenging for the in–plane geometry because, as Eq. (17) shows, the relationship between f and
Hres is nonlinear unless Hres>>Meff  . As a result, measurements must be conducted over a very large
range of f and Hres in order to obtain reliable fits.
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FIG. 14 (a)  Schematic  diagram of  the multilayer  and alloy sample structures.  (b)  Examples of
imaginary and real parts of the FMR spectra taken at 30 GHz for the  tCoFe = 0.18 nm multilayer
sample. The line through the data is the fit to Eq. (14). Exemplary Kittel plots of the resonance field
versus frequency for the (c) perpendicular–to–plane and (d) in–plane geometries. The lines through
the data are fits to Eqs. (16, 17). From [41].

3. Peculiarities of the stripline FMR

As we already mentioned, the cavity FMR is a well–established experimental technique and
the interpretation of data obtained with it is relatively simple. However, the cavity FMR is very
narrowband because of a very high Q–factor of the cavity.

In recent years the interest turned to the characterisation of the FMR line width. As the VNA
FMR is a relatively new technique that has evolved in recent years, the interpretation of measured
data (e.g., the accuracy of measurements of the resonance line width) is still sometimes a subject of
discussions [46 , 96, 99, 152, 153] because in the past measurements made on different setups did
not yield identical results, largely due to differences in methodology or equipment limitations. In
the VNA FMR, the scattering parameters S11 and S12 are measured. In this case, S11 and S12 contain
information regarding both magnetic and non–magnetic properties of the sample. Knowing the S–
parameters, the effective impedance arising from the magnetic response of the sample can be used
in  order  to  determine  the  effective  susceptibility  of  the  sample.  To  derive  the  change  in  the
characteristic impedance caused by the magnetic response of the film, the dielectric properties of
the film and the substrate must be known. In spite of the attempt to design the stripline with a near
50  impedance to match the VNA and cables, multiple reflections between the two ends of the
sample must be considered. Hereafter, we discuss and compare several important raw data analysis
techniques taking microwave reflection in the stripline into account.
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As suggested in Ref. [154], in order to take into account the effect of the reflections from the
sample, the part of the stripline with the sample on top may be approximated as a lumped element
with an effective inductance caused by the stripline itself and film susceptibility (L), effective series
resistance (R), shunt conductance (G), and capacitance (C), caused by the stripline and the substrate
of the sample. The equivalent device circuit is shown in Fig. 15. The reflection and transmission
coefficients are
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where  is the microwave angular frequency and Z0 is the characteristic impedance of the stripline.
From Eqs. (20, 21) one obtains the simple relation
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In the particular permeameter setup described in Ref. [154] the static external magnetic field
can be supplied either along or perpendicular to the stripline. When the sample is saturated along
the hard axis, the microwave field is parallel/anti–parallel to the magnetisation vector, and thus
L = Lw, where Lw is the self–inductance of the stripline. The measured values are S0

11 and S0
12. When

the magnetisation vector is along the easy axis with the microwave field perpendicular to it, noting
that   ≈ ,  where   and   are  relative  susceptibility  and  relative  permeability,  the  effective
inductance is

w 0L L cltmm» + , (23)

where  l is  the length of the magnetic film of the sample,  t is  the thickness of the film,  c is  a
geometry factor with a dimension m–1. Now the measured coefficients are S1

11 and S1
12. The relative

permeability can be written as
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The constant c is typically determined by measuring a standard sample with known initial relative
permeability. As a result, the complex relative permeability can be calculated without knowing the
values of the other circuit components.
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FIG. 15 (a) The equivalent circuit of a microstrip line section with a sample on the top is shown,
where  L,  R,  C,  and  G are  the  effective  inductance,  series  resistance,  capacitance,  and  shunt
conductance, respectively.  S11 and S21 are the reflection and transmission coefficients. (b) Relative
permeability of a Permalloy sample from microstrip frequency domain (solid and dotted lines) and
time domain measurement (Fourier transform) (solid and open dots) with a longitudinal bias field of
50 Oe. (c) Relative permeability of the same sample from loop frequency domain measurement
[154].

The solid  and dashed lines  in  Fig. 15 show the real  and imaginary parts  of  the relative
permeability spectrum for a 100 nm–thick Permalloy film at a bias field of 50 Oe. The circles in
Fig. 15 show the real and imaginary parts of a Fourier transformed PIMM measurement for the
same sample. One can see that the VNA FMR and the PIMM yield identical spectra. The close
agreement between the frequency–domain (VNA–FMR) and time–domain (PIMM) measurements
indicates that the LRC equivalent circuit shown in Fig. 15 is a good approximation to the stripline
with a magnetic film on the top. Furthermore, Fig. 15 shows equivalent data obtained using a loop
permeameter, except the minor resonance corresponding to the first higher–order SSWM.

It is obvious that the different samples may have different dimensions and also the position
of the sample with the respect to the axis of the stripline may vary (e.g. the sample can be shifted
toward one of the input ports of the stripline.) This can affect the result of VNA FMR measurements
leading to a considerable (up to 10%) overestimation of the resonance line width [46]. To fix this
problem, a full two–port data analysis technique was proposed in Ref. [46] to extract the resonance
frequency and line width.

Let us assume that the stripline is connected to a VNA via two ports at the reference planes
R1 (left edge of the sample) and R2 (right edge of the sample). A full two–port calibration has been
performed.  Thus,  any contribution  to  the  measured  S–parameters  from outside  the  stripline  is
compensated.  The complex–valued  S–matrix  representing  the  section  between  the  two ports  is
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calculated analytically by multiplying several transmission matrices, followed by a transformation
to the S–matrix.
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where l1 ≠ l2 are the distances between the edges of the sample and the reference planes R1 and R2,
respectively, and ls the length of the sample. The five matrices multiplied in Eq. (25) represent: (i)
the  section  of  the  stripline  of  length  between  the  left  port  of  the  VNA and  the  sample  edge
(propagation constant  0); (ii) the change in the impedance from  Z0 to  Z at the left edge of the
sample; (iii) the wave propagation in the loaded region of the stripline of length ls with a modified
propagation constant ; (iv) the change in the impedance from Z back to Z0 at the right edge of the
sample; and (v) the unloaded section of the stripline of length  l2 between the right edge of the
sample and the right port.

In order for this description to be valid, the characteristic impedance of the stripline Z0 needs
to be equal to the characteristic impedance of the measurement system, e.g. 50 . The impedance Z
of the stripline loaded with the sample is related to the complex reflection coefficient  as follows

0

0 0

1

1

Z Z Z

Z Z Z

- +G
G = Û =

+ -G . (26)

Transformation of the  T-matrix into an  S–matrix results in the desired description of the stripline
loaded with a magnetic sample
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where

P = exp(–ls). (28)

According to Eq. (27) the network is reciprocal, i.e. the two matrix elements S12 and S21 are
equal within measurement accuracy. Consequently, only S21 will be used. However, S11 and S22 are
generally different, which is due to finite precision of centring of the sample between the ports
(l1 ≠ l2). This problem can be corrected mathematically by using a geometric mean of S11 and S12

( ) ( )2

0 1 2
2 2

1

11/22 11 22 1

Pl l

P
S S S e

g G -- +

- G
= × =

. (29)

The transformation (29) makes the pre–factor exp[–l1 + l2  )] the same for S21 and S11/22. This pre–
factor contains only the sum of the lengths of the two unloaded sections of the stripline, which
equals to the total distance between the ports minus the sample length. In this way the effect of
potential misalignment of the sample on the results of raw data processing becomes accounted for,
as shown in Ref. [46].

27



In what follows, the reference planes are shifted from the positions of the ports connecting
the stripline (R1 and R2) to the VNA to the edges of the sample (B1 and B2). This “de–embedding” is
achieved  by  multiplying  S21 and  S11/22 with  the  inverse  pre–factor.  The  latter  is  extracted  by
measuring S21 of the stripline2 without the sample on top and not changing the positions R1 and R2.
Since in the absence of the sample SMS

21 = exp(–0ltotal), the inverse pre–factor reads 
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The two de–embedded parameters are then given by
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As shown in Ref. [155],  can be obtained from the measured S parameters using 

2 1K KG = ± - , (33)

with K defined as 
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The plus/minus sign before the square root in Eq. (33) is chosen such that || < 1. The next step is
computing P (Eq. (28)) and extracting the propagation constant  from its value:
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It is worth noting that care has to be taken while evaluating the logarithm in (36) because P
is a complex number and the logarithm of a complex number is multi–valued. This can be resolved
by calculating the real and imaginary parts of  separately [Eq. (36)], and taking care of possible 2
jumps  appearing  in  the  complex  argument  of  P.  Our  own  experience  shows  that  adding  the
appropriate number of 2 to remove the jumps may be a problem when the measurements are taken
applied field resolved for a  given frequency (or frequencies).  This problem is  easily solved by
taking an extra VNA sweep, this time a frequency sweep across the whole range of frequencies of
interest for a given applied field (e.g. for a zero field).  It is useful to start the sweep from the
minimum VNA frequency. By adding 2n  to the phase of  S21,  S22 and  S11 at the positions of the
jumps in the respective raw phase vs. frequency dependence, the jumps can be removed to produce
smooth curves. Usually,  the wavelength of the microwave signal in the stripline for the lower–

2A coplanar line was used in Ref. [46]. However, their results should be applicable to the microstrip–line based BFMR
as well.
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frequency edge of the VNA frequency range (typically 10 to 100 MHz) is significantly larger than
the length of the stripline, therefore, for the lowest frequency jump one has  n = 1 and n increases
by one at each consecutive jump. The obtained values of n for each frequency can be then used to
correct the complex argument of P in the field–resolved data.

The next step in the data evaluation procedure suggested in Ref. [46] is the introduction of
an  effective  permittivity  ɛɛr and  an  effective  relative  permeability  μɛr.  These  effective  quantities
(marked by a tilde) are used to link the complex geometry, where several materials contribute to ɛ ɛr
and  μɛr,  to  an effective medium model  where  the stripline  is  surrounded entirely by one single
material with these effective electromagnetic properties. ɛɛr and μɛr are related to  and  by

r r
fs 0 02i f

g g
m e

g p m e
= = %%

, (37)

r r

0 r r

1

1

Z
G

Z

m m
e e

+G
= = µ

-G

% %

% %
. (38)

The variable  fs is the propagation constant of the stripline in free space, and  G is a frequency–
independent constant depending on the geometry of the stripline. Because G is difficult to estimate,
one can easily calculate values proportional to effective quantities
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Whereas the main interest is in permeability, it is still important to evaluate the effective relative
permittivity. In this case, it is impossible to separate the different contributions from the relative
permittivity r of the substrate of the stripline, the substrate of the sample, and of the small air gap
between the sample and the stripline. However, it Ref. [46] it was shown that Im(ɛɛr)<<Re(ɛɛr) and
that Re(ɛɛr) is a constant over the frequency range of interest. Hence, this simplifies the calculation
of μɛr as
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Using Eq. (40)  instead  of  Eq. (39)  offers  an  advantage  because  only one of  the  two extracted
quantities ( or ) is required. Consequently, depending on specific measurement conditions, one of
these quantities can be determined with higher precision [156]. For instance, at frequencies up to a
few GHz low noise is observed in both  and . However, above 10 GHz the noise in  increases
significantly, but it stays low in .

It is also worth noting that μɛr is superposition of the relative permeability r of the magnetic
layer of the sample and the relative permeability of the other surrounding material (which is equal
to  one).  As  μɛr is  an  unknown linear  function  of  r of  the  magnetic  material,  a  value  directly
proportional to the transverse susceptibility  can be introduced

ref
r r r1c m m m= - µ -% % , (41)

where μɛr is the measurement result (the magnetic field is typically orientated along the stripline) and
μɛrref is the result of a reference measurement for which the magnetic field is orientated perpendicular
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to the stripline (and parallel to the excitation field), and hence no FMR is excited.

In Ref. [46] results obtained using the described data evaluation technique were compared to
those obtained with the other evaluation schemes [152, 157]. It was found that whereas the FMR
frequencies obtained by the different methods agree well (the relative error <1%), the resonance
line width differ up to 10%.

BFMR measurements  can  be also  affected  by the  presence  of  tiny amount  of  magnetic
material  in  the end–launch connectors  and  L–shape connectors used to connect  the stripline to
microwave cables, as well as in the stripline itself. This introduces some experimental error. It can
be quantified as S210(H) – the field dependence of the S21 parameter of the microstrip line without
a sample on its top. It was shown that  ln[S21/S210] scales as the complex microwave impedance
inserted  by  the  presence  of  the  sample  on  top  of  the  stripline.  Accordingly,  the  real  part  of
r' = S21(H)/S210(H)  should have a Lorentzian  (bell)  shape characteristic  to  the real  part  of  the
impedance  or  imaginary  part  of  .  Im(r')  is  described  by a  sign  varying  function  featuring  a
characteristic   phase jump at  the resonance frequency,  characteristic  to  the resonance induced
reactance or Re().

Experimental data, however, often display deviation from this picture – they frequently look
as linear combination of these “standard” curves. Observations show that in the general case the
experimentally  measured  real  part  has  a  shape  as  follows:  C1Re(r’)+C2Im(r’).  The  measured
imaginary part of S21 can be cast in a similar form: C2Re(r’)+C1Im(r’). The coefficients C1 and C2

of these linear combinations are real numbers and |C1+iC2|=1. This demonstrates that  C1=cos()
and C2=sin(), where  is some phase shift. It appears that is not arbitrary, but is usually in
good  agreement  with  the  formula  as  follows  arg[S21(Hmax)/S210(Hmax)].  Here  Hmax is  the
maximum field accessible in the experiment (which serves here as a proxy to an infinitely large
field), and “arg” denotes the phase of the respective complex number. Introduction of this phase
shift  produces  a  new  complex  trace:  r = |S21(H)/S210(H)|×exp(i),  where
i = arg[S21(H)/S210(H)] – arg[S21(Hmax)/S210(Hmax)]. The new dependencies Re(r) and Im(r) on
H have the shapes which are very close to the standard ones. For wide microstrip FMR transducers,
as used in the experiment  [88],  Im(r)  is  often much smaller  than Re(r).  This results  in  a very
convenient and compact form for the output data, since Im(r ) may be neglected.

As a final note we would like to emphasise that the length of the coplanar line used for the
measurements of S21 and S11 in [46] was quite short: just 5 mm [96]. For longer striplines (which are
more common), one may expect larger uncertainty in the extraction of μɛr from the raw data, because
for  the  longer  striplines,  the  stripline  length  is  more  comparable  with  the  wavelength  of  the
electromagnetic wave in it and uncertainties of measurements of the phases of S11, S22, and S22 may
contribute more to the results of calculations using Eqs. (34, 35). Also we would like to note that the
same authors have also developed a method of extraction of μɛ from single–port measurements of S11

[158].

4.  Most  general  peculiarities  of  magnetisation  dynamics  arising  from  driving  it  by  the

microwave field of striplines 

4.1 Dependence of the BFMR response on the stripline width and the travelling spin wave

contribution
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BFMR response depends on the distribution of the microwave magnetic and electric fields
created by the stripline. The distributions of these fields depend on the geometry of the particular
stripline and the material properties of the sample under test, which sits on top of this stripline. A
detailed discussion of the effect of the sample material on the stripline FMR response is presented
in Sections 5.

BFMR response also depends on the amplitudes of the microwave magnetic and electric
fields. Hence, the most favourable experimental position of the sample is when the magnetic film
faces the stripline. In this configuration, the magnetic film is physically closer to the line and the
amplitude  of  the  microwave magnetic  field  induced in  the  film is  the  maximum.  However,  as
discussed in Section 5.3.2, one can also place the sample such that the substrate of the magnetic
film faces the stripline. Of course, in this configuration the amplitude of the microwave magnetic
field reaching the magnetic film is lower.

Below we will consider the example of a microstrip line. However, the results are equally
applicable to a coplanar–line BFMR transducer as well,  provided the width of the microstrip is
replaced by some characteristic width of the coplanar line in the formulas. The sum of the width of
the signal line and of the widths of the two gaps between the signal and the ground line is usually a
good candidate to the characteristic width [88].

Let  us  assume that  the  thickness  (the  perpendicular–to–plane size)  of  the  microstrip3 is
negligibly small and that the total microwave current I is uniform across the microstrip width (the
microstrip size in its plane) w. Then the linear current density in the microstrip is j = I/w. As follows
from Maxwell equations,  in the close vicinity of the microstrip  the in–plane component of the
microwave magnetic field is  j/2. The amplitude of magnetisation precession in the sample placed
close to the microstrip scales as the driving field and hence as j. We are able to detect the onset of
FMR in the material  because the sample provides feedback to the microstrip  in the form of  a
microwave electric  field induced by the precessing magnetisation vector.  The amplitude of this
electric field at the position of the microstrip scales as the precession amplitude and hence as  j.
Importantly, it does not depend on w. As a result, the amplitude of the FMR peak at the output of the
microstrip  line  scales  as  j = U/(wZ0),  where  Z0 = 50  is  the  characteristic  impedance  of  the
microstrip line and U is the microwave voltage supplied by the microwave generator. From the last
formula one sees that decreasing w should improve the signal–to–noise ratio for the stripline FMR
setup.

Narrow striplines are also needed for the studies of nonlinear FMR dynamics [159, 160].
Given very large magnetic losses for metallic ferromagnets, the oscillating magnetic field hrf needed
to produce nonlinear behaviour in metallic magnetic films ranges from 35 to 230 Oe.

3In  the  theoretical  analysis  below we  neglect  the  effect  of  mirror  current  flowing along the  ground  plane  of  the
microstrip line and consider only the microwave current flowing in the microstrip (see Fig. 6(a) for the explanation of
the notions “microstrip” and “ground plane”). The mirror currents were included in the recent theory [161].
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FIG. 16 Simulated in–plane dynamic magnetisation as function of distance from the microstrip line
symmetry axis. Blue solid line – the magnitude of the in–plane magnetisation |mx|, green dashed line
– phase arg(mx). The microstrip width is (a) 2 m and (b) 200 m. The film thickness is 110 nm,
saturation  magnetisation is  4Ms =8900 G,  and the microwave frequency is  10 GHz.  The static
magnetic field is applied perpendicular to the film plane. (c) The same but for the geometry of the
in–plane BFMR utilising a coplanar line. The coplanar line characteristic size is the same as in the
experiment from [96] – the width of the signal line is 45 m and the film thickness is 50 nm. The
width of the gaps between the signal and the ground line is assumed to be the same – 45 m.
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However, there is an important limitation to the minimum stripline width. In contrast to the cavity
FMR, where the microwave magnetic field is perfectly uniform, the microwave magnetic field of a
stripline  is  non–uniform on the  length  scale  given by  w.  This  spatially  non–uniform field  can
potentially excite travelling spin waves in the film plane. The excited wave vector range is 0 < |
k| < 2/w, being w the width of the microstrip. (For a coplanar line k = 2/(w + ), where  is the
separation of the central conductor from the ground planes [88].) The direction of k is perpendicular
to  the  microstrip  and  the  waves  are  excited  in  both  directions  (+k and  k).  The  excitation  of
travelling spin waves takes place if the lateral dimensions of the sample are much larger than the
free  propagation  path  of  spin  waves  lf,  and  if  the  width  of  the  microstrip  is  comparable  to  lf.
Following  Ref.  [88],  the  free  propagation  path  scales  as  the  magnetic  losses  in  the  material
expressed in the form of the frequency resolved FMR line width . It also scales as 1/Vg, where Vg

is the spin wave group velocity.

Consider the typical example of the IP FMR. In this case the applied field is parallel to the
stripline  and the  type  of  spin  waves  which  is  excited  in  this  situation  is  the  Damon–Eshbach
Magnetostatic  Spin  Wave (DE MSSW) [9].  The group  velocity of  DE MSSW for  small  wave
numbers scales as the film thickness L and the film saturation magnetisation [43]
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where  H = |0H and  M = |0Ms.  The  free  propagation  path  is  lf = Vg/(G+H0)  where
G+H0 is the frequency–resolved FMR line width. From this expression, for  f = 10 GHz and
4Ms = 10500 G one obtains lf = 30 m for an L = 100 nm Permalloy film (G = 0.008, H0=0) and
lf = 0.62 m for L = 2 nm.

The same applies to the case of the PP FMR. In this case the Forward Volume Magnetostatic
Spin Waves  are excited [162]. In Fig. 16(a,b), we plot the amplitude and phase of FVMSW as a
function of the distance from the microstrip carrying a microwave current. This numerical result
was obtained by using the theory from [163]. One sees a sharp maximum of the magnetisation
precession  amplitude  right  beneath  the  transducer  and  an  exponential  decay  of  the  precession
amplitude with the distance from it. Together with a gradual change of the phase of precession with
the distance, the spatial decay of the precession amplitude evidences the excitation of propagating
spin  waves.  The  spin  wave  amplitude  decays  exponentially  due  to  the  losses  in  the  medium
[Fig. 16(a)]. The phase is accumulated linearly because it scales as |kd|, where d is the distance from
the edge of the microstrip. The distance which spin waves can travel before they decay completely
is 3lf.

The spin waves propagate in both directions from the microstrip transducer and carry away
the energy of the “resonance” which takes place below the transducer. This results in a broadening
of the FMR peak [96]. One may think of the area in Fig. 16 right below the transducer, where the
phase and the amplitude are almost constant as the area where the resonant FMR absorption takes
place. The edges of this area are essentially the edges of the microstrip. From the comparison of the
panels (a) and (b) of Fig. 16 one sees that  with an increase in the transducer width the resonant
absorption area becomes larger with respect to 3lf.  As a result,  for transducers which are much
wider than 3lf  (as in Fig.16(b)) the spin wave contribution to the resonance line width becomes
negligible.
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The (in–plane) profile of the magnetisation amplitude across the resonant absorption area in
Fig. 16(b) mimics the profile of the microwave magnetic field of the microstrip line. This represents
one more reason for which one may consider the microwave energy absorption in this area as the
FMR absorption.  It  is  worth  noting  that  the  microwave  magnetic  field  of  real  microstrip  and
coplanar  lines  is  more  non–uniform  in  the  plane.  This  is  due  to  the  strong  repulsion  of  the
microwave currents. This property is an in–plane counterpart of the usual microwave skin effect. As
a result, the microwave current density tends to strongly concentrate at the stripline edges. Given
the  electromagnetic  boundary condition  for  the  field  of  a  thin  sheet  of  a  current  hx = jz/2,  the
microwave field  profile  along the  width  of  the  stripline  follows  closely the  distribution  of  the
current density (see Fig. 6).

The capability of striplines to excite propagating spin waves in a broad range of frequencies
explains why in Propagating Spin Wave Spectroscopy (PSWS) experiments one uses micrometre–
sized spin wave antennas [12, 163, 164]. Figure 17 schematically shows the dispersion relation of
magnetostatic surface spin waves (MSSW) [9] and the spectrum of Fourier–components for the
microwave field created by a microstrip line. The DE MSSW propagates at a right angle to the
magnetic field applied in the film plane. This is precisely the geometry of the in–plane stripline
FMR.

Figure 16(c) shows the profile of the dynamic magnetisation calculated for the coplanar line
geometry used in the in–plane BFMR experiment from [96]. The data in Fig. 16(c) correspond to
the applied field value which differs by  H/2 from the FMR field, being  H the intrinsic field–
resolved  resonance  line  width  for  the  fundamental  FMR  mode.  One  observes  a  significant
asymmetry of the profile of the dynamic magnetisation, which is a fundamental signature of the
Damon–Eshbach  geometry  –  a  strong  non–reciprocity  of  MSSW excitation  by  striplines.  This
asymmetry is due to the fact that both IP and PP components of the microwave Oersted field of the
current  in  the stripline contribute to  the excitation [89,  163].  Hence,  the asymmetric  profile  in
Fig. 16(c) evidences a significant contribution of the PP component of the microwave field to the
formation of the stripline FMR response.  This represents one more important peculiarity of the
stripline FMR with respect to the conventional cavity FMR: the microwave field in the centre of a
cavity is perfectly parallel to the cavity walls. Therefore, the magnetisation precession is driven
only by the IP component of the microwave field in this case. Below in Sections 4.1 and 7.4 we will
present  experimental  evidence  of  the  importance  of  PP microwave  field  component  in  some
particular cases.

Another important observation from Fig. 16(c) is a strong non–uniformity of both amplitude
and  phase  of  the  dynamic  magnetisation.  This  profile  is  consistent  with  potential  presence  of
propagating  spin  waves  in  the  gap  between  the  signal  and  ground  lines.  It  is  not  easy  to
quantitatively estimate the contribution of propagating spin waves to the total BFMR response in
this case. However, the analytical theory by Counil et. al. [96] showed that this contribution exists
for these particular coplanar sizes.

Let  us  now discuss  the  origin  of  the  resonance  line  width  broadening from a  different
perspective. If we use the same model of the uniform distribution of the microwave current density
across the stripline width as above, we obtain |hek| =|jk|/2= sin(kw/2)/(kw/2), being k the wave vector
and  jk the Fourier–transform of the microwave current density distribution [166]. (For a coplanar
line the Fourier  spectrum is  more complex,  see Fig. 25(a).)  The first  zero of |hek|  is  located at
k = 2/w. For two striplines of widths  w1 and  w2 (w2 < w1) the first zero is denoted by  k1 and  k2,
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respectively [Fig. 17(b)]. One sees that the wider stripline (w1) excites the spin wave modes in the
range  = 1 – 0, being 0 the FMR frequency. The narrower stripline (w2) excites the spin wave
modes in  the range   = 2 – 0,   > .  As a criterion for  the choice of the width of the
stripline  for  the  BFMR  one  can  use  the  inequality  H >> .  In  contrast,  for  the  efficient
excitation of the propagating spin wave modes the H <<  criterion should be satisfied.

FIG.  17 (a)  Illustration  of  the  dispersion  relation  of  the  magnetostatic  spin  wave  modes.  (b)
Spectrum of Fourier–components for the microwave field created by two striplines of widths  w1

(red  line)  and  w2 (blue  line,  w2 < w1).  The first  zero  of  the  spectrum is  denoted  by  k1 and  k2,
respectively. (In this sketch, we show the spin wave dispersion with a positive slope. Accordingly,
this picture is valid for Damon-Eshbach [9] and forward volume spin wave configuration [162]). 

This  idea is  illustrated in  Fig.  18,  in  which we present  results  of the calculation of the
microwave  power  reflected  from  a  microstrip  line  loaded  with  a  thin  Permalloy  film.  The
calculation is conducted for two widths of the microstrip line. In this simulation, we use the theory
from [163]. One of the ends of the microstrip line is shorted, which is a proxy to the single–port
stripline BFMR method from [46].  However,  one may expect  a very similar  behaviour  for  the
standard stripline BFMR operating in the transmission mode (2–port FMR).

From Fig. 18  one  clearly  sees  that  for  the  20 m–wide  stripline  [Fig. 18(a)]  the  field–

35



resolved absorption band is larger and the resonance line shape is noticeably asymmetric. This is
because the absorption line corresponds to the excitation of the DE wave in the wave–number range
from zero to ~3200 cm–1. The propagating spin waves contribute to the formation of the lower–field
slope of the absorption line (see Fig. 17(a), but note that in Fig. 17(a) the MSSW dispersion is
plotted frequency resolved and the data in Fig. 18 are plotted applied–field resolved4 for a given
frequency). At the fields above the resonance field, the propagating MSSW do not exist and the
higher–field slope of the resonance line is due to the magnetic losses in the medium. Therefore, its
shape is very close to the Lorentzian one.

For the 200 m–wide microstrip line the line width is significantly smaller, and the line
shape is more symmetric and closer to a Lorentzian one. This is because the range of spin–wave
wave  numbers  excited  in  this  case  is  from  0  to  ~320 cm–1.  This  k–range  corresponds  to  the
~1047÷1063 Oe  applied–field  range  in  the  applied–field  resolved  spin  wave  dispersion.
Importantly, this range is smaller (~16 Oe) than the intrinsic FMR line width H.

FIG. 18 Simulated  S11 for  two  microstrip  widths.  (a)  w = 20 m.  (b)  w = 200 m.  The  film
thickness is 110 nm. The microwave frequency is 10 GHz. Film saturation magnetisation: 11100 G.
Intrinsic resonance linewidth: H=25 Oe (full linewidth at half-maximum: 2H=50 Oe).

4"Applied–field resolved dispersion” means the dependence of k on the applied field for a fixed microwave frequency.
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Based on this simple physical picture, Counil et. al. [96] derived analytical expressions that
make it  possible to separate the extrinsic contribution to the FMR peak width originating from
excitation of spin waves having non–zero in–plane wave vector  k.  The total  absorption can be
obtained by summation over all contributions from the excited spin waves
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where kmax = 2/w,  represents the constant density of excitations in the wave vector space, s(k) is
the  dispersion  law for  spin waves,  and  int is  the  “intrinsic”  line  width corresponding to  the
“intrinsic” damping factor 0 given by int = 00Meff. As shown in Ref. [96], in the considered
particular geometry only spin waves with the in–plane wave vector  k in the  x–direction may be
excited. Hence, the relevant density of excitations is one–dimensional in the wave vector space, i.e.
() = (∂/∂k)–1. One can sum up the contribution of each mode in the frequency space as
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where 0 ≡ (k=0) is the FMR frequency. From Eq. (44) one obtains the expressions for the peak
frequency shift  0(kmax) and for the total line width  (kmax). In the limit of small  dispersion in
wave vector space these expressions read
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where  dfilm is the thickness of the magnetic film,  C is a constant depending on  M = 0Meff and
int,  being  0Meff = MS – 2KS/(MSdfilm) the effective demagnetising field (determined as the field
applied  normally  to  the  sample  surface  necessary  to  saturate  the  sample)  and  KS the  surface
anisotropy.  Once  these  expressions  have  been  obtained,  it  is  possible  to  separate  the  extrinsic
contribution of propagating spin waves ext(kmax) and the “intrinsic” damping factor 0
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From the expressions above one sees that the resonance frequency shift 0 scales linearly

with the film thickness [see the first equation of Eqs. (45)] and 1/ 0w  (see Fig. 6 in [96]). This

scaling is consistent with experimental data collected by Counil et al. [96] for 50 nm and 10 nm–
thick Permalloy films. Experimentally Counil et al. found that at small frequencies (1–2 GHz) for

the 50 nm–thick film tota  is between 0.02 and 0.012 and drops to the intrinsic value 0a =0.0062 at 6

GHz or so (Fig.8 in [96]). For the 6nm–thick film no noticeable experimental frequency dependence
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of a  was found (see Fig. 7 in [96]), which is also in agreement with Eq. (46).

Finally, we would like to note that Eqs. (43)–(46) were derived assuming that the dispersion
curve  represents  a  straight  line  for  small  wave  vectors  k.  However,  as  shown  in  [167],  in
ferromagnetic metal films the dispersion curve may deviate from a straight line due to the impact of
eddy currents.

4.2. Contribution of the PP component of the microwave magnetic field of striplines 

As sketched in Fig. 6(a, b), the microwave currents in coplanar and microstrip lines generate
significant PP components of the microwave magnetic field. Thus, a sample located in close vicinity
to the surface of a stripline experiences an effect of both IP and PP components of the microwave
magnetic field. It is clear that the PP component cannot contribute to the formation of the FMR
response in the case of PP BFMR, because this component is parallel to the applied field. However,
in the case of the IP BFMR both components are perpendicular to the applied field and potentially
they can deliver equal or similar contributions to the total FMR response of a material.

As we mentioned in the previous section, the asymmetry of the dynamic magnetisation profile
in Fig. 16(c) is due to the fact that both PP and IP components contribute to the profile shape. The
asymmetry arises because from one side of the vertical symmetry axis of the stripline [see Fig. 6(a)
and (b)] the contributions of the two components sum up in phase, but from the other side of the
axis they sum up in anti–phase [89]. However, this asymmetry is not very pronounced, and below
we will show that this is because of the stronger contribution of the PP component of the microwave
magnetic field to the FMR absorption in planar geometries. 

Consider a continuous film magnetised in its plane. Then from Eq. (1) for the conditions of the

IP ferromagnetic resonance we easily find that ˆ( )dk= +m h h , being m the vector of the dynamic

magnetisation,  h is the microwave driving field, and  hd is the dynamic dipole (or demagnetising
field) created by the dynamic magnetisation. For the IP geometry hd has only a PP component. It
equals precisely to the PP component of m, but has an opposite sign. Above, k̂  is the microwave
magnetic susceptibility tensor [43].

Let  us  consider  the  in–plane  component  of  the  dynamic  magnetisation  mx.  One  finds  that

( ) / ( ) / ( ) 1/ 1x z x x sm h m h H H M e= + = < , where ( )x zm h  and ( )x xm h  are contributions of the PP

and IP components of the microwave field to  mx.  From this formula one sees that for the film
geometry the in–plane component of the driving field is more important than the PP one. For very
small applied fields or large saturation magnetisations for the material (H<<Ms) the contribution of
hz becomes even more negligible. Physically this happens because of the large ellipticity of the

precession  of  magnetisation  /x zm me =  in  a  film for  H<<Ms. As  a  result,  for  ferromagnetic–

metallic  and  half–metallic  films  the  in–plane  component  of  the  driving  field  produces  the
dominating  contribution  to  the  stripline  FMR  response,  because  typically  for  these  materials
0Ms>1 T or so.  For ferrimagnetic materials,  Ms is  usually significantly lower.  Accordingly,  the
precession of magnetisation for them is more circular and the PP component of  h plays a much
more important role in the formation of the FMR response. (Note that this is also the reason why the
non–reciprocity of excitation of MSSW [see Fig. 16(c)] in ferromagnetic yttrium–iron–garnet (YIG)
films [89] is much stronger than in ferromagnetic Permalloy films [168, 169]).
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Above we did not assign particular values to the amplitudes xh  and zh . More specifically, in

that analysis we implicitly assumed that x zh h³ . Indeed, as we will show later on with a simple

numerical  simulation  (Sect.  5.2.1,  Fig. 24),  the  two  components  have  usually  comparable
amplitudes while induced by a microwave current in a stripline. 

Experimentally, the contributions of the two microwave field components to the stripline
FMR response  were  studied  in  [86].  Two  samples  were  used  in  this  study –  a  100 nm–thick
Permalloy continuous film and an array of parallel nanostripes made from Permalloy and having the
same thickness as the continuous film. The width of the individual nanostripes was 264 nm. The
BFMR measurements were taken in two configurations: the microstrip line was oriented either
parallel  (i) to the applied field or perpendicular (ii)  to it.  The width of the microstrip line was
0.3 mm. The results of these measurements are shown in Fig. 19. One sees that the FMR response
taken  in  Configuration  (ii)  is  smaller  than  for  Configuration  (i)  for  both  continuous  film  and
nanostripe array. One also notices that in the case of the continuous film the difference in responses
is about 30 dB. However, for the nanostripes the difference in responses is not very significant. 

In Configuration (i), both components of the microwave magnetic field can contribute to the
FMR response, but only the PP component of the field is able to drive the magnetisation precession
in Configuration  (ii).  Hence,  the data taken for  the continuous film are  in  agreement  with  the
prediction of the theoretical analysis above: for the high–magnetic moment ferromagnetic films the
impact of the PP component of the microwave magnetic field of the stripline on the BFMR response
is negligible. However, this is definitely not the case for the nanostripes. The explanation for this

difference in behaviours can be found recalling that the impact of zh  scales as 1/ e . The in–plane

nanopatterning produces a significant in–plane component of the dynamic demagnetising field of
precessing magnetisation. This reduces the ellipticity of the magnetisation precession (e  becomes

closer to 1).  As a result, zh  contributes strongly to the amplitude of the dynamic magnetisation. 

Below, in Section 7.4, we will use the latter fact to explain the experimental results from that
section.

FIG.  19 (a)  Nanostripe  array,  (b)  Continuous  film.  Dashed  line  –  stripline  BFMR  with  the
microstrip line parallel to the applied field (and parallel to the  nanostripes for (a)). Dash–dotted line
– stripline BFMR with the microstrip line perpendicular to the applied field (and to the nanostripe
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array for (a)). For the meaning of the other lines, which are not relevant to the discussion in this
review article, see [86]. Taken from [86].

5. Shielding of the microwave electromagnetic field of striplines by a metal film

5.1 Numerical analysis

It is evident that in an electrically conducting thin film the shielding by eddy currents occurs
independently of the magnetic properties of the film. Indeed, eddy currents are induced inside both
magnetic and non–magnetic conducting thin films by a microwave magnetic field incident on a film
surface. According to a theory from Ref. [170], at ferromagnetic resonance the shielding effect can
be different from the one at off–resonance frequencies. However, the origin of the eddy current
shielding will always be due to intrinsic electrical conductivity of the film. Consequently, in a first
approximation one can assume that the thin film is non–magnetic but conducting.

Hereafter, we discuss the results obtained by M. Bailleul [171] who used this approach. He
employed a rigorous numerical method and an intuitive theoretical model to investigate the impact
of the shielding effect on coplanar waveguide broadband FMR measurements. Figure 20(a) shows
the geometry used in the simulations by means of a finite element method (FEM). This design
mimics the transverse cross–section of a commercial test board fabricated using the conventional
printed circuit technique over an RO4003 substrate.

The  simulations  were  carried  out  using  commercial  COMSOL  Multiphysics  software
implementing  a  FEM  algorithm.  This  software  solves  the  Maxwell's  equations  describing  the
propagation  of  electromagnetic  waves  along  an  infinite  transmission  line  with  a  cross–section
sketched in Fig. 20(a). An eigenvalue problem for these equations was solved for the microwave
frequency of 2 GHz to obtain the only one allowed propagation mode, which is  predominantly
TEM, and its propagation wave vector kz. The FEM software also allowed simulating the transverse
distributions of the electric E and magnetic H field, as well as extracting the propagation index neff

and the characteristic impedance Zc.
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FIG. 20 (a) Geometry of the FEM simulation. (b) Results of the solution of the eigenvalue problem
for  the  microwave  frequency 2 GHz (dots).  The  real  and imaginary parts  of  the  characteristic
impedance Zc (top) and the effective propagation index neff (bottom) as a function of the resistance
per square of the film  Rsq. The lines are the result of the transmission line model. (c) Amplitude
maps  of  the  microwave  magnetic  and  electric  fields  for  Rsq = 1 .  (d)  same  for  Rsq = 100 k.
Sketches of the modes of the coplanar (e) and parallel plate (f) transmission lines. From [171].

Figure 20(b) shows the real and imaginary parts of neff and Zc as a function of the resistance
per square of the film  Rsq, varied between 10–3 and 106 .  (Recall that the sheet resistance is a
measure of the resistance of thin films that are nominally uniform in thickness.) We distinguish
clearly three regions where the curves for the real parts of neff and Zc are nearly flat. These regions
are separated by transition regions in which the real parts of  neff and  Zc vary smoothly but their
imaginary parts show peaks denoted as RH and RE. Different field distributions of E and H as well
as different values of neff and Zc are observed for each of the three regions. For Rsq > RE ≈ 2.5 k,
both  E and  H are concentrated in the gaps between the signal line and the lateral ground planes
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[Fig. 20(d)] and one also recovers ZC = 50  and neff = 1.5 targeted in the design of the coplanar line
(i.e. there is no effect of the conductivity of the thin film). For  Rsq < RH≈ 1  (i.e. for a strongly
conducting thin film), both H and E fields become strongly concentrated in the air gap between the
signal line and the metal film [Fig. 20(d)]. In this case, neff and Zc are strongly reduced to 1.2 and
20 ,  respectively.  For  RH < Rsq < RE,  the  distributions  of  the  electric  and  magnetic  fields  are
different  from each other because  E is  concentrated above the signal  line,  but  H is  distributed
around the signal line. The corresponding values of neff and Zc are 2.1 and 35 , respectively.

The physical  interpretation of these results  is  possible  within the standard formalism of
transmission lines. In the high resistance regime, the effect of the metal film is negligible and one
recovers the characteristics of the unperturbed coplanar line [Fig. 20(e)]. In the low resistance limit,
the metal film acts as a perfectly conducting ground plane that dominates over the other ground
planes because of its proximity to the signal line. Hence, the propagation mode resembles that of a
transmission line consisting of two parallel plates with air in between [Fig. 20(f)]. The propagation
parameters of this transmission line are easily evaluated as neff

PP ≈ 1 and ZC
PP ≈ (0/0)1/2h/w = 32 .

In this regime, the metal film acts as a perfect magnetic shield, i.e. it carries currents and charges
opposite to those existing in the signal track so that the microwave field above the film is zero. 

In  accord  with  these  observations  M.  Bailleul  distinguishes  two  types  of  electromagnetic
shielding for the coplanar lines – the electric one and the magnetic one. The electric shielding takes
place for Rsq < RE. It is due to the capacitive coupling of the sample to both signal and ground lines
of the coplanar waveguide. Because a microwave voltage is applied between the signal line and the
ground lines, this coupling results in a microwave current flowing from the signal line to the ground
lines, i.e. in the direction perpendicular to the coplanar. (Essentially, the metallic layer acts a short-
circuiting plug.) It is clear, that the Oersted field induced by this current is along the static applied
field  and  hence  cannot  contribute  to  the  IP FMR response  of  a  metallic  ferromagnetic  layer.
However, in the geometry of the PP FMR this contribution potentially exists. 

In the coplanar line configuration, for Rsq<RH the magnetic shielding adds to the electric one.
This type of shielding is due to inductive coupling of the metallic layer to the signal line of the
coplanar waveguide. The inductive coupling results in a microwave current flowing in the layer in
the direction opposite to the direction of the current in the signal line, as we already stated above.
The origin of the current in the metallic layer is the same as in the case of the incidence of a plane
electromagnetic wave on a metal surface – an eddy current is induced in the material. The direction
of the eddy current is such that the total microwave magnetic field is enhanced in front of the
sample (i.e strong back-reflection of the electromagnetic wave takes place) and gradually drops
inside the metal with a distance from its surface (skin effect). For more details, see Fig. 21 and its
discussion in the main text.

As discussed in [172], the electric shielding is a peculiarity of the coplanar geometry; for the
microstrip geometry it is not relevant. This is because of a significant separation of the sample from
the microstrip ground plane. The microstrip equivalent of the s+g parameter for coplanar lines [171]
is the thickness of the microstrip substrate. The substrate thickness is usually large which leads to a
negligible contribution of the electric shielding to the total shielding effect. This was confirmed in
[172]  by  rigorous  finite–difference  time–domain  (FDTD)  simulations  [173].  The  simulations
showed that the microwave current in the sample sitting on top of a microstrip line flows in the
opposite direction to the one in the microstrip. As follows from the discussion above, this is a clear
indication of the dominance of the magnetic shielding regime for microstrip lines.

An approximate analytical  model  of the electric shielding for the microstrip geometry was
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recently  suggested  in  the  appendix  to  Ref.  [161].  This  calculation  confirmed  that  the  electric
shielding is usually negligible for the microstrip geometry.

5.2 Intuitive analytical approach

In this Section, we reproduce a simple analytic electrodynamic theory of magnetic shielding
from Appendix to [90] and from [174]. An example of a microstrip line is used, because it is easier
to analyse. Qualitatively, a similar behaviour is expected for the coplanar–line–based BFMR, which
was confirmed by the numerical work by M. Bailleul [171], which we discussed in the preceding
section.

Before we start, it is instructive to give more details of the structure of the electromagnetic
field  of  a  microstrip  line.  In  the  direction  perpendicular  to  the  microstrip  surface  the
electromagnetic field is evanescent in nature [Fig. 6(a)]. It is (quasi)–transverse (TE) with respect to
the direction of propagation of the microwave signal (along the microstrip). The transverse electric
field of a typical microstrip line used in BFMR measurements is essentially electrostatic in nature.
The distribution of this field resembles the one of a capacitor formed by the microstrip and the
ground plane [91]. In the space above the microstrip this field represents a stray field of a non–ideal
capacitor; this evanescent field does not vanish because of a finite width of the microstrip. The
evanescent dynamic magnetic field of the microstrip line represents a superposition of the Oersted
fields of the current in the microstrip and of the return (mirror) current in the ground plane. If the
Ohmic resistance of the microstrip is negligible, in the quasi–static approximation [91] the magnetic
and electric fields are independent of each other. However, the magnetic field is dual to the electric
field [175], which results in a specific value of the characteristic impedance for a microstrip line. As
the width of the microstrip determines the structure of the fields, calculation of microstrip dynamic
fields taking into account displacement currents is an intrinsically two–dimensional (2D) problem,
which is difficult to solve in a general case [176].

To  circumvent  this  problem  and  to  get  a  valid  insight  into  the  structure  of  the
electromagnetic fields of a stripline loaded with a conducting film, in Ref. [90] it was suggested to
consider a number of simplified 1D layered geometries which mimic a stripline [Fig. 22(a, b)]. In
this analysis, the ferromagnetism of the film is neglected and the film is considered as metallic non–
magnetic. Two of the considered geometries [B and C in Fig. 22(a, b)] – are also characterised by
evanescent fields and therefore represent more appropriate models than A, which is the case of a
transverse electromagnetic wave incident on a metallic magnetic film. However,  below we will
concentrate on the model A, because it results in simple and explicit analytical equations.

In  the  geometry  A,  the  incident  electromagnetic  field  is  not  evanescent  in  nature.  It
represents  a  plane  electromagnetic  wave  incident  normally  onto  the  surface  of  a  single–layer
metallic non–magnetic film.  This  simple model is  adequate to  our purposes because,  as shown
experimentally in Ref. [177], ferromagnetic metallic films demonstrate the same behaviour in the
conditions of the plane electromagnetic wave transmission/reflection experiment and the conditions
of the stripline BFMR setup.

The situation of a transverse electromagnetic wave incident on a metallic magnetic film can
be analysed using an approach from the field of infra–red optics. This is because the properties of
thin non–magnetic conducting films with thicknesses smaller than the classical skin depth for infra–
red  applications  were  extensively  discussed  in  the  past  [178,  179]  (see  also  [180]).  However,
whereas in optics the attention was not paid to the distribution of the electromagnetic field across
the film thickness, this distribution is of immediate relevance to the topics of this review article and
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it will be discussed below.
The system of equations which follows from the Maxwell's equations for the geometry A is

simple and is given by Eqs. (B1) in Ref. [90]. The solution of this system of equations is shown in
Fig. 21(a). One sees that most of the electric–field component of the wave is  reflected from the
front  film  surface,  but  this  surface  is  fully  transparent  to  the  magnetic  component  of  the
electromagnetic field. The microwave magnetic field penetrates through this surface and forms a
very peculiar asymmetric and highly non–uniform field profile inside the film.  The strong profile
asymmetry is due to almost total internal reflection of the magnetic field from the far film surface.
Because  of  a  very  large  difference  in  the  microwave  refractive  indices  for  the  metal  (

0/ ( )ie s we= )  and the space surrounding the film (air)  the phase of field reflection is  180

degree, which results in destructive interference of the forward–propagating and reflected wave at
the far interface. The (almost) total reflection implies that the amplitudes of the incident and the
reflected wave are (almost) the same. This results in an (almost) vanishing amplitude of the total
microwave magnetic field at the far film surface.

The linear profile of the standing wave inside the metallic film of a thickness L 

( )x 2
L y

h y
L

-
=

, (47)

seen in the right panel to Fig. 21(a) represents the interference pattern of the two waves. The wave

number  0/ ( )cw e for this wave is complex because the dielectric permittivity  e  for metals is a

complex  value.  (Here,   is  the  microwave  angular  frequency  and  c0 is  the  speed  of  light  in
vacuum.) Therefore, given the node at the far film surface, the interference pattern is essentially a
hyperbolic sine function whose Taylor expansion for ky << 1 is given by Eq. (47).
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FIG. 21 (a) Left panel: Simulated electric field wave (green line) and magnetic field wave (blue
line) of an electromagnetic wave normally incident on a sub–skin–depth–thick metallic film. Right
panel: Close–up of the microwave magnetic field wave inside the metallic film. Note the difference
between the units of the x–axes of the left and right panels. The microwave frequency is 8 GHz. (b)
Explanation of the formation of the profile of the microwave magnetic field wave inside the film.

Alternatively, the formation of the field profile in the inset to Fig. 21(a) may be thought as a
combination  of  the  two profiles  in  Fig. 21(b):  the  uniform one  of  the  microwave  field  of  the
incident electromagnetic wave (perfectly uniform on the length scale of the film thickness) and of
the perfectly anti–symmetric Oersted field of the perfectly uniform eddy current flowing in the film.

The result in Eq. (47) is valid for the conductivity of metals and for thin films of sub–skin–
depth thickness, since only for them the eddy current density is uniform (the eddy current density
scales as the first derivative of Eq. (47) with respect to y). For thicker films (Im{kL} > 1) the usual
skin effect is recovered, since the forward propagating wave cannot reach the far film surface and
thus no back reflection from that surface is present.

Let us now find out for which set of material parameters Eq. (47) is valid. For this purpose
let us assume that the amplitude of the microwave magnetic field at the front film surface is 1, and
that |kL| is always less than one, which implies that we are interested only in the films with sub–
skin–depth thicknesses.  Then  hx(y)  is  always  a  linear  function.  Therefore,  the amplitude of the
microwave magnetic field at  the far film surface  Afar (“transmitted field”) can be regarded as a
measure of the asymmetry of the h(x) profile.

It has been shown [90, 179] that Arear depends on the thickness and conductivity of the film
as follows

rear
0

1

1
2

A
Z L

r

=
+

, (48)

where  = 1/ is the electrical resistance of the film, Z0 = 377  is the characteristic impedance of
free  space.  In  Fig. 22(c),  which  was  calculated  for  the  standard  conductivity  of  Permalloy
(4.5×106 S/m),  one sees that  for  L = 25 nm the amplitude of the microwave field at  the rear
boundary is  Arear = 0.04. Thus, starting from this minimum film thickness the shielding is nearly
perfect. (For comparison, the classical skin depth for a non–magnetic metal with the conductivity of
Permalloy is  1.2 m).  Remarkably,  the  frequency term does  not  enter  Eq. (48).  Importantly,  as
follows from Fig. 22(c), even for a 100 nm thick film the law Eq. (47) and the boundary condition

hx(y = L) = 0 (49)

which follows from Eq. (48) for L<< Z0  are valid approximations.
To include ferromagnetism into the discussion one might neglect the exchange interaction

and introduce an effective relative scalar microwave permeability using the Almeida–Mills formula
[170]

2 2
a

v

m m
m

m
-

=
, (50)

where  v and  a are  the  diagonal  and  off–diagonal  components  of  the  microwave  magnetic
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permeability  tensor,  respectively.  However,  it  can  be  shown that  in  this  case  Eq. (48)  remains
unchanged because v cancels out in the final expression.

The characteristic impedance of microstrip lines is usually 50 , which is much smaller than
the characteristic impedance of vacuum. If one replaces Z0 = 377  with Z0 = 50 in Eq.(4.2) one
obtains  a  larger  transmission  as  shown in  Fig. 22(c)  by a  thin  solid  line.  However,  it  remains
considerably smaller than that follows from the magnetic skin depth law  hx(L)/hx(0) = exp(–/L)
[dotted line in Fig. 22(c)], where hx is the in–plane component of the dynamic magnetic field [90].

FIG. 22 (a) Geometry of case A. The areas (1) and (3) are dielectric half-spaces, and the area (2) is
a metallic magnetic layer. (b) Geometry of cases B and C. Case B: the area (0) is an area with a
characteristic impedance of 50  in which a TM wave propagates along the x–axis. This wave is
given by a microwave current at the surface  y = −d. (1) and (3) are insulating layers and (2) is a
magnetic metallic layer. Case C: (1) and (3) are insulating layers, (2) is a metallic magnetic layer,
and the space y < −d is an ideal conductor. (c) Ratio of the amplitude of the dynamic magnetic field
at  the  rear  surface  of  the  film  to  its  value  at  the  front  surface  of  the  film  hx(L)/hx(0).  The
conductivity of the film is 4.5×106 S/m, the effective scalar microwave permeability v = i360 at the
driving  microwave  frequency  7.5 GHz.  Black  thick  solid  line  –  the  case  of  a  transverse
electromagnetic wave incident on a metallic magnetic film; the film is surrounded by two layers
with  the  dielectric  permittivity   = 1.  Black  thin  solid  line  –  the  same  magnetic  film,  but  the
characteristic impedance of the surrounding space is  set  to  50 .  Red dashed line – multilayer
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structure driven by a wave of current over an ideally conducting surface. Green dash–dotted line –
dielectric waveguide with one surface metallised. Dotted line – the magnetic skin depth law. From
[90].

In the framework of another “equivalent layered structure” – a multilayer structure driven by
a wave of current over an ideally conducting surface – one sees a similar trend as in the case of the
excitation with a plane wave [Fig. 22(c)]. For magnetic films which are thicker than 30 nm the
microwave  magnetic  field  behind  the  film has  a  negligibly  small  amplitude.  Furthermore,  the
profile of the dynamic magnetic field inside the ferromagnetic film is given by the same equation,
Eq. (47).

Finally, in the case of the dielectric waveguide with one surface metallised one needs to
considerably  increase  the  thickness  of  the  insulating  layer  between  the  metallisation  and  the
ferromagnetic film in order to ensure the guided–wave propagation. The typical suitable thickness is
d = 3.5 mm  and  larger.  The  results  in  Fig. 22(c)  are  for  d = 3.5 mm,  which  results  in  the
characteristic impedance 58  for the film thickness  L = 100 nm. One sees that in this case the
Oersted field of eddy currents shows the same strong inhomogeneity across the film thickness as in
the previous examples, which model to some extend a thin metallic film on top of a wide stripline.

From the discussion above one sees that an efficient shielding of the microwave magnetic
field is  not a property of some particular geometry,  but is rather typical in the cases when the
dynamic magnetic  field is  applied only from one side of  the film.  The difference between the
electrical  resistance  of  the  film  and  the  characteristic  impedance  of  neighbouring  layers  is
important. If this difference is large, an efficient shielding occurs [see Eq. (48)]. In these conditions
the dynamic magnetic field easily penetrates inside the film from the side of field concentration.
However,  it  undergoes  almost  a  total  reflection  back  into  the  film at  the  second film surface.
Importantly, the presence of another conducting layer [in the cases B and C in Fig. 22] and thus the
capacitance between the film and the conducting layer do not modify this effect.

Finally, a short comment on the applicability of Eqs. (47–49) is appropriate. Above we noted
that frequency did not enter Eq. (48). This means that this shielding works for any field frequency,
excluding the absolute zero frequency. This is in contradiction with the common sense, as the latter
suggests a gradual decrease in this effect with a decrease in the frequency. However, this result just
evidences that some important parameter potentially takes a limiting value of zero or infinity in the
model. This parameter is the length of the ferromagnetic film in the direction z of the microwave
current.  The model  implicitly assumes  that  the  sample  length  in  this  direction  is  infinite.  This
assumption ensures the continuity of the eddy current in the film. The electromagnetic induction
law tells us that eddy currents will exist in a material for any non-zero frequency as long as the
eddy-current lines are continuous. For the present geometry this leads to the requirement of an
infinite length of the sample in the z direction.

This observation allows one to conclude that this  model is valid for real geometries for
which the eddy current loops can be closed without inserting considerable extra impedance. In real
films of finite lengths along the z direction, the continuity of the eddy current may be ensured due to
the capacitance between the two opposite film edges which are along x and/or between the film and
the signal line of the coplanar line or the microstrip of the microstrip line. In both cases the extra
impedance in the form of capacitive reactance increases with a decrease in the frequency. Thus, one
cannot  expect  a  noticeable  shielding  at  frequencies  below the  microwave  range.  Indeed,  from
literature on electromagnetic shielding [181, 182], one finds that at small frequencies closed (e.g.,
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spherical) shielding enclosures are necessary to ensure the continuity of eddy currents.

5.2.1 Inclusion of the finite width of the stripline transducer

So far, we discussed results obtained using a simple analytical approach, which assumes that
the stripline transducer has an infinite width in the sample plane. However, real striplines have finite
widths.  This  may  have  implications  to  their  operation  as  BFMR  transducers.  One  of  these
implications  has  already been  discussed  in  Section  4  where  it  has  been  shown that  the  finite
transducer width may lead to travelling spin wave contribution to the resonance line width. In this
section,  we  show  that  the  finite  transducer  width  may  also  modify  the  microwave  magnetic
shielding effect.

Similarly to the preceding two sections, to keep the analysis simple, we treat the metallic
film as  non–magnetic.  This  analysis  follows the theory from [183].  It  uses  an approach in  the
Fourier space because this approach allows one to obtain simple analytical formulas. 

For the stripline Fig. 6 and a non–magnetic metallic film from the Maxwell's equations one
obtains
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where  /(2)  is  the  driving  microwave  frequency,   is  the  conductivity  of  the  film,  and  all
components of the microwave fields h and e are represented as Fourier expansions in the in–plane
direction x as
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By differentiating Eq. (51) and combining it with Eqs. (52, 53) one obtains
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where 2 2
0K i kswm= +  inside the film. 

Outside the film =0 and 2K  reduces to 2k . We require that the magnetic field vanishes in

the regions far behind and in front of the film where  = 0. Then, from the conditions of continuity
of hx and ez at the surfaces of the film one obtains the following conditions at the surfaces of the
film from inside the film:
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where kj  is the linear current density for a current sheet of width w and infinitely small thickness

which mimics the stripline. The sheet is located at y = 0 which is right on the film surface, i.e. no
spacer between the stripline and the film is assumed in the calculation.

The solution of Eq. (55) satisfying the boundary conditions Eq. (57) reads:
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where K is the principal square root of the complex value 2
0i kswm + .

Figure 23 demonstrates a result of the calculation using the formulae Eq. (58). From Fig. 23
one sees that for k = 0 the microwave shielding is perfect, but it drops quickly with an increase in k.
Recall that the spectrum of spatial Fourier amplitudes of a stripline geometry is located in the range
|k| < 2/w, where w is the characteristic width of the stripline. Thus, from Fig. 23 one may expect
that the shielding efficiency should decrease with a decrease in w. Indeed, this is confirmed by the
numerical inverse Fourier transform of Eq. (58) with jk in the form which corresponds to a uniform

distribution of the current density over the stripline width:  
sin( / 2)

2 / 2k

w kw
j

kwp
= .  Figure 24 shows

two examples of this calculation. One of them is for w = 300 m, which corresponds to the width of
the  signal  line  of  the  coplanar  BFMR  transducer  investigated  numerically  by  M. Bailleul
(Section 5.1), and also to the width of a microstrip line largely used in our experiments [86, 184].
From Fig. 24 one sees that the eddy current density is uniform across the film thickness for both
values of  w.  For  w = 300 m the eddy currents leads to an almost perfect shielding effect:  The
amplitude of both field components is small at the far film surface (y = L). Furthermore, hx(y=0)/j is
close to 1. This is very similar to hxk (y=0)/jk  = 1 for k = 0 or, equivalently for w =  given by the
first equation of Eqs. (58). For w = 30 m, both hx(y=0)/j and hx(y=L)/j are close to 0.5. The latter
value is characteristic of an insulating film with L<<w.

Thus, a 300 m–wide stripline may be considered as one which produces a strong shielding
effect, but the 30 m–wide one is essentially microwave-magnetic–shielding–free. This conclusion
is in good agreement with experiment. Experimentally, one sees strong evidence of the shielding
contribution to  FMR amplitudes  for  300 m–wide microstrip  and coplanar  transducers.  But  no
evidence of this effect has been observed so far in the experiments on excitation of travelling spin
waves in metallic ferromagnetic films with stripline transducers with w << 10 m (see, e.g., [185]).

As a final remark to this section, we note an analytical exchange-free theory presented in the
appendix  to  Ref. [88].  Being  similar  to  Eqs. (51–58)  above,  this  theory  additionally  takes  into
account the ferromagnetism of metallic films. We stress that results produced by this theory are in
full agreement with the simple analysis above. For instance, it shows that for a typical coplanar
stripline transducer with w = 1.1 mm [whose Fourier spectrum is shown in Fig. 25(a)] the shielding
effect should be strong, as seen from Fig. 25(b). This is in full agreement with our experimental
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data (Fig. 3 in Ref. [88]).
The results above have been also confirmed by recent 2D numerical simulations for single-

layer ferromagnetic films [161]. Both dipole-dipole and exchange interactions were included into
the calculation. These simulations showed that for L = 50 and 100 nm, the FMR response at 15 GHz
for  w = 350  and  1500 m  is  the  same  as  for  w = ,  but  below  w = 100 m  the  eddy-current
contribution to the FMR amplitudes gradually disappears.

FIG. 23 Profiles of the  hxk– and  hyk– Fourier components of the microwave magnetic field as a
function of the Fourier wave vector k at the surfaces of the film: (a) y = 0 (i.e. at the surface of the
film which faces the microstrip line) and (b) y = L (i.e. at the film surface which faces away from
the  microstrip  line).  Note  that  in  (b)  |hyk| = |hxk|  for  all  k–values.  The  microwave  frequency is
15 GHz. From [183].
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FIG. 24. (a, d) Eddy current density, (b, e) in–plane components (hx) of the microwave magnetic
field,  and (c,  f)  perpendicular–to–plane components  (hy)  of  the microwave magnetic  field  as  a

51



function of the x–coordinate (the coordinate along the in – plane direction in Fig. 6). (a), (b) and (c):
Microstrip width is 300 m. (d), (e) and (f): Microstrip width is 30 m. The fields are normalised to
the microwave current density in the microstrip.  Solid lines – field amplitude at the front film
surface (y = 0). Dashed lines – field amplitude at the far film surface (y = L). Note that the solid and
dashed lines coincide to graphical accuracy in the panels (d) and (f). The microwave frequency is
10 GHz

FIG. 25 (a) Spatial  Fourier transform of the microwave current density of a coplanar line.  The
width of the central conductor (the signal line) is  w = 1.1 mm and the slot width is   = 0.24 mm.
From [94]  (b)  Red  solid  line  –  relative  amplitude  of  the  in–plane  Fourier–component  of  the
microwave magnetic field hxk(y = L)/hxk(y = 0) at the far film surface y = L for a conducting film as
a function of the in–plane Fourier wave vector k. Blue dashed line – the same but for an insulating
film. From [88].

5.3  Experimental  evidence  of  strong  contribution  of  microwave  shielding  effect  to

magnetisation dynamics

Importantly,  the  results  in  Fig. 21(b) and  24(b)  are  characterised  by  lack  of  inversion
symmetry in the y-direction. This lack of the symmetry is due to the incidence (or concentration) of
electromagnetic fields from (at) one side of the magnetic film. Another important aspect is that the
BFMR spectroscopy setup is known to excite and detect not only the FMR mode, but also the
higher–order SSWMs [96].

From the first of these observations it follows that if there is any impact of the eddy currents
and microwave shielding on the magnetisation dynamics of metallic ferromagnetic films, it should
be best seen for materials lacking inversion symmetry.

Below we review the results of three separate measurements whose combination delivers
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unambiguous  experimental  evidence  of  the  eddy–current  contribution  to  the  magnetisation
dynamics. Historically, these experiments were reported in a sequence different from the one in
which we present them below. We believe that the order, in which we discuss them here, is more
appropriate from the pedagogical point of view. In all three experiments, materials lacking inversion
symmetry were used.

5.3.1 Transmission/reflection experiment

The first experiment we would like to mention is from Ref. [177]. In this work, transmission
of a microwave electromagnetic wave through a rectangular microwave waveguide filled with a
metallic magnetic bi–layer film was investigated [Fig. 26(a)]. A number of exchange–coupled Co–
Permalloy (Py) films were grown using rf magnetron sputtering. The layer ordering was as follows:
first a 5 nm–thick Ta seed layer was grown on a 0.9 mm–thick Si substrate. Then a thick (50 to
70 nm) Permalloy layer was grown on top of it. It was covered by a 20 nm–thick Co layer and the
whole stack  was capped by 5 nm of  Ta.  Important  for  the experiment  was a  large  area of  the
substrate – 10 × 22 mm2; it was needed to tightly fit the cross–section of the waveguide fixture with
the sample.
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FIG. 26 (a) Sketch of the cross–section of the microwave rectangular waveguide with a magnetic
sample (grey parallelepiped).  The dimensions of the sample are 10 × 22 mm2.  The wave in  the
waveguide propagates along the y-axis, which is perpendicular to the plane of the sample. The same
frame of reference was used in the theoretical work Ref. [174]. (b) Microwave magnetic absorption
measured with the stripline BFMR on Ta[5 nm]/Co[20 nm]/Py[70 nm]/Ta[5 nm]/Si multilayer at the
microwave frequency of 10.6 GHz. The inset below the Panel (b) sketches the theoretical profiles of
the fundamental mode (A) and the 1st SSW mode (B) across the film thickness.  Experimental (c)
and  theoretical  (d)  data  for  the  transmission  (solid  line)  and  reflection  (dashed  line)  in  the
waveguide  experiment.  The  film  faces  the  microwave  flux.  The  microwave  frequency  is
11.184 GHz. (e) Comparison of waveguide data in reflection. Solid line: film faces the incident
flux; dashed line: film substrate faces the incident flux. The microwave frequency is 8.865 GHz.
From [177].

Figures 26(c,  d)  show  the  transmission  |S21|  and  reflection  |S11|  characteristics  of  the
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waveguide fixture with an inserted magnetic sample. The film faces the incident flux. Panel (c)
shows the experimental result and Panel (d) shows the theoretical prediction. The measurements
were  taken  in  the  applied  field–resolved  configuration  and  at  a  given  frequency.  Panel  (e)
demonstrates similar experimental data in reflection, but for two sample orientations: with the film
facing the incident microwave flux and the film substrate facing the flux. In all experimental data
one observes three peaks: the fundamental mode – the upper–field resonance corresponding to the
quasi–uniform precession and the 1st and 2nd SSWMs across the film thickness (the middle and the
lower–field  resonance,  respectively).  In  Fig. 26,  the  inset  below  the  Panel  (b)  sketches  the
theoretical  profiles  of  the  fundamental  mode  [A in  Fig. 26(b)]  and  the  1st SSW mode  [B  in
Fig. 26(b)]  across  the  film  thickness.  Essentially,  these  profiles  demonstrate  that  the  resonant
dynamics is localised in the Permalloy layer and the magnetisation precession in the Co layer is
forced; it is driven by the exchange coupling through the interface of the two layers.

Several important observations follow from Figs. 26(c–e):

 The shapes of the traces taken in transmission and reflection are very different;

 The shape of the response in reflection strongly depends on the film orientation, but the
shape of the trace taken in transmission is not;

 When the film (essentially the Co layer, since the electrical conductivity of Ta is low as
compared with that of Co) faces the incident flux, the amplitude the 1 st SSWM measured in
reflection  is  extremely  strong  with  respect  to  the  response  of  the  fundamental  mode.
However, when the substrate (i.e. the Permalloy layer) faces the microwave flux, the relative
amplitude of the response of the 1st SSWM is significantly smaller; 

 The trace taken in reflection [Fig. 26(c)] and with the film facing the incident flux is very
similar to the reference stripline BFMR trace [Fig. 26(b)].

5.3.2. Film–flip FMR of metallic bi–layer materials

The  last  conclusion  of  Section  5.3.1  is  important  for  understanding  of  the  second  separate
experiment we wish to mention in this section. Fig. 27 shows experimental data from Ref. [88].
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FIG. 27. (a) Cavity FMR data for the magnetic Si/Co/Py and Si/Py/Co bi–layers. Red solid line –
Si/Co/Py, blue dashed line: Si/Py/Co. (b, c) BFMR traces for Si/Py/Co and Si/Co/Py, respectively.
Red solid lines in (b, c) – film faces the transducer; blue dashed lines in (b, c) – substrate faces the
transducer. Frequency is 9.47 GHz. From [88].

In Ref. [88], similar bi–layer Co/Permalloy structures were characterised, but now with the
stripline BFMR. A wide (w = 1.5 mm) microstrip transducer  was used. As shown in Fig. 7,  the
microwave field of the microstrip line is largely uniform above the microstrip over the distance w
from its  surface.  Thus,  given  the  substrate  thickness  of  0.9 mm,  using  a  microstrip  line  with
w = 1.5 mm allows one to study the same sample orientation dependence on the FMR response.

Measurements  were  taken  on  bilayer  samples  with  similar  composition:
Si\Ta[5nm]\Py[80nm]\Co[10nm]\Ta[5nm]  [denoted  as  Si\Py\Co  in  Fig. 27(b)]  and
Si\Ta[5nm]\Co[10nm]\Py[80nm]\Ta[5nm] [denoted as Si\Co\Py in Fig. 27(c)]. From these panels
one  sees  that  the  stripline  FMR  responses  of  the  Si\Co\Py  and  Si\Py\Co  structures  are
fundamentally  different.  This  is  in  contrast  to  results  of  the  reference  microwave  cavity
measurements [Fig. 27(a)], which suggest that the two samples are magnetically very similar to
each other. Hence, what is important for the FMR response is the orientation of the layers with
respect to the stripline. Similarly to the waveguide data in Fig. 26, each time the Co layer faces the
stripline,  the  1st SSWM dominates  in  the  spectrum.  On the  contrary,  this  peak is  of  negligible
amplitude when the Permalloy layer faces the transducer. One also notices that the amplitude of the
FMR response of the 1st SSWM taken with the cavity FMR is smaller than in the “Co facing” cases
but larger than in the “Permalloy facing” cases.
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Figure 28 demonstrates the absorption traces measured  for  two sets of similar Co–Py bi–
layer films. The differences between the samples from one set was the thickness of the Py layer and
the difference between the sets was the layer ordering. As seen from Fig. 28, similar to Fig. 27, each
time the Co layer faces the stripline, the amplitude of the 1st SSWM is very strong. However, when
the Co layer  faces the microwave field the amplitude of the 1st SSWM is negligible.  One also
notices that the amplitude of the 1st SSWM for the “Co facing configuration” strongly depends on
the frequency such that this mode becomes dominant in the spectrum at the largest frequency in this
experiment – 18 GHz.

FIG. 28 Broadband FMR absorption spectra for single–layer Permalloy films (a,  e)  and Co–Py
bilayers on Si substrates (b–d, f–h). The driving microwave frequency is (a–d) 7.5 GHz and (e–h)
18 GHz. Panels (a, e): results for 80 nm–thick (solid line) and 40 nm–thick (dashed line) single–
layer Permalloy films are given for comparison. Panels (b–d, f–h): red solid line – Co layer faces
the stripline, dashed blue line – Py layer faces the stripline. In all cases the thickness of the Co layer
is 10 nm; the thickness of the Py layer is indicated in the panels. From [88].

5.3.3 Film–flip FMR of a weakly–conducting bi–layer film

The  third  and  the  last  experiment  that  has  to  be  highlighted  is  the  stripline  BFMR
measurement of a weakly conducting bi–layer material La1–xSrxMnO3/BiFeO3 (LSMO/BFO) film
grown with pulsed laser deposition technique on a strontium oxide substrate [186]. LSMO is a
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weakly conducting half–metal and BFO is a multiferroic antiferromagnet. No difference in FMR
responses was observed for the two film orientations: the film facing the stripline and substrate
facing  the  stripline.  Furthermore,  both  in–plane  and  perpendicular–to–plane  FMR  traces
demonstrated negligible amplitudes of the 1st higher–order SSWM (Fig. 29).

FIG. 29 Raw in–plane VNA–BFMR data for a LSMO (38.86 nm) film in the 0o
 orientation (see the

upper inset) with a 3 GHz driving microwave film. The bottom inset displays perpendicular–to–
plane field–modulated BFMR data on a LSMO(54.8 nm)/BFO(23 nm) sample at a 14 GHz driving
frequency. From [186].

5.3.4 Qualitative explanation of transmission/reflection and film–FMR experiments

The  fact  that  the  film with  a  small  electric  conductivity  shows  completely  different
behaviour compared to highly–conductive films suggests that the electric conductivity of metals is
important for explaining the data in Figs. 26 and 27. While placed on top of a microwave line,
metallic  magnetic  films  behave  similar  to  the  same  films  but  exposed  to  a  normally  incident
electromagnetic  wave  [Fig. 26(b,  c,  e)].  In  the  waveguide  experiment,  the  direction  of  the
microwave flux is well defined: it is from the microwave generator towards the film surface. Hence,
the difference between the traces in Fig. 26(e) is due to single–surface incidence of the microwave
flux on the film surface. The comparison of Fig. 26 and Fig. 27 suggests that in Fig. 27 we are also
dealing with the exposure of just one surface of the films to the microwave magnetic field. This
field is the microwave Oersted field of the microwave current in the stripline. 

As  already  discussed  above,  the  microwave  magnetic  field  of  a  stripline  induces  a
microwave eddy current inside a metallic film sitting on top of the stripline. For the films with sub–
skin–depth  thicknesses  the  density  of  the  eddy  current  is  perfectly  uniform  across  the  film
thickness. This also explains the qualitatively different behaviour seen for the same samples in the
cavity FMR [Fig. 27(a)]. For simplicity, let us consider a stripline of an infinite width. Then the
eddy–current density distribution in the film plane is also uniform. Importantly, the phase of the
current changes by 180 degree when the sample surface, onto which the microwave magnetic field
is  incident,  is  changed  to  the  opposite  one  [Fig. 30(a, b)].  This  result  follows  from symmetry
reasons and also can be easily obtained from the circulation law for the magnetic field (i.e. from the
respective Maxwell's equation in integral presentation).
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FIG. 30 Schematic picture explaining the excitation of eddy currents j in conducting samples. The
directions of the currents are indicated by the red dot representing the arrowhead and the red cross,
which represents the tail of the arrow. (a) and (b) the microwave field hinc is incident only on one of
the film surfaces.  (c)  The microwave field  hinc is  incident on both film surfaces. Note that this
picture is valid for metal layers with sub–skin–depth thicknesses only.

In the cavity FMR experiment, a sample is placed in a microwave cavity, right in its centre
where the microwave magnetic field is perfectly uniform. This implies that the microwave magnetic
field  is  incident  on  both  sample  surfaces  with  the  same  amplitude  and  phase  [Fig. 30(c)].
Consequently, the two partial eddy currents excited by the fields, incident onto the right–hand and
left–hand film surfaces, cancel each other. Thus, in the cavity FMR experiment the metallic films of
sub–skin–depth thicknesses behave as magneto–insulators and the experimental FMR response in
Fig. 27(a) is essentially a response of a magnetically insulating bi–layer film.

6. Theory of the broadband stripline FMR of highly conducting films

In this  section,  we overview the  theory of  eddy current  contribution  to  the  stripline  FMR
response of metallic ferromagnetic materials. As has been mentioned in Section 5.3.4, an important
peculiarity of the stripline FMR is the single–surface incidence of the microwave magnetic field on
the sample.

Our analysis  will  be based on the semi–analytical approach from [90] since it  is  the most
suitable for understanding of the experiment on the bi–layer films lacking inversion symmetry. It
also makes it possible to extend the theory onto other practically important cases of films which are
non–uniform across their thickness, for instance films with surface and interface anisotropies. Such
an extension is a significant problem for other methods, especially for analytical ones. However,
before we start presenting this theory, it is useful to mention previous analytical theories. One of
them  is  the  work  [187]  in  which  the  authors  derived  an  analytical  expression  for  a  surface
impedance  of  a  single–layer  metallic  ferromagnetic  film  placed  in  a  microwave  field  whose
amplitudes are different at the two film surfaces. Basically, as follows from the previous section, by
setting the amplitude of the field at one of the surfaces to zero one should retrieve the case of a strip
line of an infinite width. This has been realised very recently by the authors of Ref. [188] who used
this theory to explain their experimental results.

One more theoretical paper which is worth mentioning in this regard is Ref. [189]. In this work,
an approximate theory of transmission of a plane electromagnetic wave through a tri–layer metallic
ferromagnetic film was developed. The final formulae implicitly demonstrate a strong impact of the
microwave eddy–currents  on the  microwave magnetisation  dynamics  in  these materials.  Again,
because the aim of this work was quite different, the authors do not discuss possible implications of
their result for the stripline FMR.

The paper  which consistently addressed the  theory of  the eddy–current  contribution  to  the
stripline FMR response of metallic ferromagnetic materials is Ref. [90]. The main finding of this
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paper is the importance of the boundary condition for the microwave magnetic field at the surface
of  the  film  facing  away  from  the  stripline  [see  Eq. (49)].  Indeed,  in  order  to  eliminate  the
contribution of travelling spin waves to the FMR line width (see Fig. 17 and its discussion), the
stripline width should be macroscopic. As we have shown in Fig. 24, a strong shielding effect by
microwave eddy currents takes place in this case, and Eq. (49) is a good approximation for the
microwave magnetic field at  y = L (i.e. at the film surface facing away from the stripline, see the
frame of reference in Fig. 6(a)). On the other hand, Eq. (49) represents an exact result for k = 0 [see
Eq. (57)]. Recall, the case of k = 0 is equivalent to a stripline of an infinite width (w → ∞). Thus, as
long as the stripline is wide enough such that the strong shielding by the eddy currents in metallic
ferromagnetic films takes place, one can use the approximation of an infinitely wide stripline. This
assumption reduces the problem to one dimension and justifies the use of the simple boundary
condition Eq. (49).

Note that Eq. (51) and, consequently, Eq. (49) implicitly imply a film substrate made from a
highly  insulating  material  with  the  usual  value  of  dielectric  permittivity,  e.g.  intrinsic  silicon
(= 11),  gadolinium–gallium garnet (= 14),  or glass (= 6).  If  the substrate  is  conducting,  e.g.,
made of highly doped Si, due to its significant thickness (typically 0.5–1 mm) it might be important
to  include  its  complex  permittivity  into  the  boundary  condition.  (This  was  the  case  in  the
experiment [188]). In this case the boundary condition from [174] 
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is  more appropriate,  where   is  the complex electric conductivity of the substrate  and   is  the
conductivity of the ferromagnetic layer. For  = 0 Eq. (59) reduces to Eq. (49).

The  presence  of  the  microwave  magnetic  field  of  the  stripline  transducer  is  taken  into
account in a way, similar to the derivation of Eq. (49): the transducer is modelled as an infinitely
thin  sheet  carrying  a  microwave  current  with  the  current  density  j,  and  located  at  y = 0,  i.e.
infinitesimally close to  the surface of the film,  but  not  in  a direct  electric  contact  to  the film.
(Obviously, in real experimental situations this approximation is valid for  d << w,  where  d is the
sample separation from the stripline surface.) This boundary condition reads

x z( 0 )h y j+= = - .  (60)

Importantly, the boundary conditions Eqs. (59, 60) are for the fields  inside the film. This
excludes the areas in front of the film and behind it from consideration and makes the numerical
code very simple and extremely fast.

The physical  description of  the problem is  given by Maxwell's  equations  in  1D for  the
microwave fields and the LLG equation for the magnetisation vector. Within the film we have 

sÑ´ =h e ,

Ñ× = -Ñ ×h m ,

( )0iwmÑ´ = - +e h m
, (61)

where  m is the dynamic magnetisation,  h and  e are the microwave magnetic and electric fields,
respectively,  is the electric conductivity, and  is the angular frequency. To obtain Eqs. (61), we
have assumed that all dynamic fields and the dynamic magnetisation have the time dependence in
the form exp(it).

In  the  one–dimensional  case  and  the  frame  of  reference  from  Fig.  6(a)  one  finds
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/x = /z = 0, and Eq. (61) reduces to 
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where  = (0)1/2 and √2/ is the classical skin depth. One sees that for a non–magnetic film this
equation reduces to Eq. (55) for k=0. This evidences that all the eddy–current analysis of the non–
magnetic films should be largely applicable to the ferromagnetic ones (see above).

Equation (62)  is  solved  numerically  together  with  the  linearised  Landau–Lifshitz–Gilbert
(LLLG) equation 
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(63)

and the  equation  hy = –my,  which  follows  from the  second equation  of  the  system Eq. (61).  In
Eq. (63), Ms is the saturation magnetisation, A is the exchange constant, HC = H + iG/, being G

the Gilbert  magnetic damping, and  i are the unit  vectors along the coordinate axes.  (The static
magnetic field H and the equilibrium magnetisation point along the z–axis). Different ferromagnetic
layers of the multi–layered structures may have different Ms, A and G.

The boundary conditions Eq. (60) and Eq. (49) are applied at the front and far surfaces of the
film  (y = 0  and  y = L respectively).  For  instance,  for  the  case  of  a  bi–layer  film  from  [90]
L = L1 + L2,  where  L1 and  L2 are  the  thicknesses  of  the  ferromagnetic  layers.  One  also  needs
electromagnetic boundary conditions at the interface of two metallic ferromagnetic magnetic layers.
The interface is located at y = L1. From the condition of continuity of hx and ez at the interface one
finds
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where the indices '1' and '2' denote the layer numbers. On top of this, the presence of the differential
operator of the effective exchange field in Eq. (63) requires application of boundary conditions for
the dynamic magnetisation at the two surfaces of the film and also at the interfaces between the
ferromagnetic layers. The interface boundary conditions are given by Eqs. (6–10).

The approach from [90] to the numerical solution of Eqs. (62,  63) is  based on a finite–
difference discrete  model.  Whereas Eq. (62) is  discretised using a standard three–point  formula
[190], the implementation of the aforementioned boundary conditions and the exchange operator
2A/Ms

2∂2m/∂y2 requires special attention since such peculiarities are often overlooked in textbooks
on finite–difference methods. For more details we refer the interested reader to the original paper
[90].

The  numerical  solution  delivers  the  amplitudes  of  the  two components  of  the  dynamic
magnetisation – mx(y) and my(y) – and of the microwave magnetic field hx(y) on an equidistant mesh
along y. The stripline response is derived from hx(y = 0). To some extent, the procedure is similar to
the practical situation of the parameter extraction from experimental FMR data (Section 3). The
complex linear impedance  Zr of a stripline loaded with a ferromagnetic film is the quantity that
characterises the efficiency of microwave absorption in the BFMR. We recall that the width of the
stripline is assumed to be infinite in the calculation above. However, the technique outlined below
allows  one  to  treat  the  finite–width  striplines,  too,  based  on  the  numerical  value  of  hx(y = 0)
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obtained in the approximation of  w = . According to Ref. [166], for the in–plane homogeneous
microwave electric field

( )
r *
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=
=

. (65)

where  w is  the width of the stripline.  The microwave electric field is  easily obtained from the

numerical solution of the equation  
1

/z xe h y
s

= - ¶ ¶ .  The value of  Zr has to be transformed into

values of the scattering coefficient S21. The film sample has the length l along the z–axis and sits on
top  of  the  stripline.  Usually  the  sections  of  the  stripline  (“unloaded  stripline”),  which  are  not
covered  by  the  sample,  have  the  characteristic  impedance  z0 = 50 .  Zf is  the  characteristic
impedance of the section of the stripline loaded by the sample (“loaded stripline”)
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where  Z0 and  Y0 are the complex series resistance and the complex parallel conductance of the
unloaded stripline. f is the complex propagation constant of the loaded stripline

( )f 0 r 0Z Z Yg = +
. (67)

The transmission matrix T of the loaded stripline is 
( ) ( ) ( )1 2 3

T T T Té ù= ë û , (68)

where  T(1)  and  T(3) are the transmission matrices of the junctions of the loaded stripline with the
unloaded stripline. These matrices account for losses that are inserted due to partial reflection of the
incident  electromagnetic  wave  back.  These  reflections  are  defined  via  the  complex  reflection
coefficient
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where the positive sign is for the front edge and the negative sign is for the rear edge of the sample.
After some algebra the scattering parameter S21 of the whole loaded stripline is
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FIG. 31 The  ratio  S21/S210 for  a  bi–layer  Co–Permalloy  (Co–Py)  ferromagnetic  metallic  film
one centimetre long. The microwave frequency is (a) 4 GHz, (b) 7.5 GHz, and (c) 18 GHz. Thick
lines: real parts of  S21/S210 (left axis), thin lines: imaginary parts of  S21/S210 (right axis). Solid
lines: the Co layer faces the stripline, dashed lines: the Py layer faces the stripline. From [90].

The results of numerical calculations from [90] using this formalism for the frequencies /(2) = 4,
7.5,  and  18 GHz  are  shown  in  Fig. 31.  A Co–Permalloy  (Co–Py)  bilayer  film  with  the  same
parameters  as  in  the experimental  paper  [88]  was considered.  The width of  the microstrip  line
w = 1.5 mm,  and  the  relative  electric  permittivity  of  the  substrate  used  to  calculate  the
characteristics of the unloaded microstrip line [Eq. (66)] sub = 3.5. From Fig. 27 one sees that the
FMR absorption  when  the  Co  layer  faces  the  stripline  is  a  few times  smaller  than  when  the
Permalloy later faces it. One also sees that the amplitude of the 1st higher–order SSWM (the second
peak from the right) is visible only for Co facing the stripline. The amplitude of this peak grows
with frequency and becomes larger than that of the fundamental mode (the most right–hand peak) at
higher frequencies. This behaviour agrees well with the results of the microstrip BFMR experiment
in Fig. 28. Furthermore, this theory explains well the experimental data obtained with a coplanar
transducer too (see Fig. 4 in [88]).

This theory confirms that the strong dependence of the stripline FMR response of a metallic
ferromagnetic film lacking inversion symmetry on the sample orientation is due to the microwave
magnetic shielding by eddy currents. Indeed, the calculated profile hx(y) in Fig. 32 is similar to ones
in Figs. 21 and 24. Within each of the metallic layers it is linear and the field vanishes at y=L. The
only qualitative difference between Fig. 21 and Fig. 32(c) is a non–monotonic change in the slope at
the interface of the two layers. The abrupt change in the slope is due to the difference in the layer
conductivities:  Co = 4Py. Accordingly, the eddy current density in Co is larger by ~4 times than
that in Permalloy.
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The upper  panel  [Fig. 32(a)]  shows the  distribution of  the dynamic  magnetisation  mx(y)
across  the  bilayer  thickness.  One  observes  a  considerably  inhomogeneous  mx(y)–distribution
through the Py layer  for  the fundamental  mode with  the  minimum at  the  layer  interface.  This
represents a clear signature of partial pinning of magnetisation at the Py interface with Co. One also
sees that the first higher–order mode of the whole bilayer is a combination of the fundamental mode
of the Co layer and the first higher–order SSWM of the Py layer.

The  mx(y)–distribution in this panel is shown for the Co–facing film orientation. For the
surface current applied at  y = L1 + L2 (“Py–facing orientation”) one obtains the mirror image of
Fig. 32(a). The same profiles for the Co–facing configuration, but for 18 GHz are shown in the
middle panel. One sees that they are very similar to those in Fig. 32(a). The main observation from
these figures is that both m(y) and h(y) are strongly asymmetric functions of y. Furthermore, from
the r.h.s part of Eq. (63) one sees that the magnetisation precession in the film is driven by the total
microwave magnetic field in the material. The latter is a combination of the microwave Oersted
field of the stripline, which is uniform on the length scale of the film thickness, and the Oersted
field of the eddy current induced in the film by the stripline field (see the sketches in Fig. 21).

Since the driving field is strongly non–uniform it is not surprising that the FMR response
amplitude for  plain  materials  lacking  inversion  symmetry  strongly  depends  on  the  sample
orientation with respect to the stripline. A straightforward consequence of this conclusion is an idea
to try to solve Eq. (63) separately from Eq. (62) assuming that the profile of the microwave driving
field is given. A suitable candidate for the field profile is the one for a non–magnetic bi–layer film
with the same conductivities as for the ferromagnetic layers. This profile can be easily obtained
from the analytical solution of Eq. (62) with the vanishing r.h.s. and the boundary conditions on the
film surfaces Eqs. (49, 60, 64). The profile calculated in this way is actually quite similar to one in
Fig. 32(c). The only major difference between the two is the slight deviation from the straight lines
in the field profile seen in Fig. 32(c),  whereas the respective non–magnetic film would show a
profile consisting from two sections of perfectly straight lines. The solution of Eq. (63) assuming a
given  r.h.s  in  this  form results  in  a  qualitatively  similar  behaviour  to  one  shown  in  Fig . 31.
However, quantitatively the results of the rigorous calculation in Fig. 31 and of this approximate
approach are noticeably different.  Hence,  one  needs  to  solve the system of  Eqs. (62,  63)  self–
consistently to get good quantitative agreement with experiment. 
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FIG. 32 Distributions of the dynamic magnetisation and dynamic magnetic and electric fields. (a)
In–plane component of the dynamic magnetisation mx at 7.5 GHz. (b) The same, but for 18 GHz. (c)
In–plane dynamic magnetic field hx for the fundamental mode. (d) Dynamic electric field ez for the
fundamental mode. In all panels, the thick lines are for the fundamental mode and the thin lines are
for the first higher–order SSWM. The black solid lines are for the Co layer facing the stripline. The
dashed red line is for the Py layer facing the stripline. Blue lines – phase (right axis). From [88].

One more important question is the strength of coupling of the resonance in the sample to
the stripline. From the theory of the cavity FMR it is known that in order to measure an undistorted
FMR response it is necessary to ensure that coupling of the sample to the cavity is weak. If the
coupling is strong, one measures characteristics of a coupled system – sample/cavity instead. The
characteristics of the coupled oscillations are essentially different from the intrinsic FMR response
of the sample. For instance, the resonance frequency may be strongly shifted (see, e.g., [85]). For a
weaker but still considerable coupling one may expect the presence of extra FMR losses – “loaded-
resonance” losses. For this reason, in the cavity FMR it is important to keep the sample volume as
small  as  possible  and  the  cavity  volume  as  large  as  possible.  This  weakens  the  coupling  by
decreasing the filling factor of the cavity by the sample.

From this point of view, one may expect a very strong coupling of the sample to the probing
device – the stripline – in the stripline FMR. This is because the sample sits directly on top of the
stripline  and  may occupy a  significant  part  of  its  length.  However,  it  may be  shown that  the
excitation  of  the  eddy  currents  efficiently  decouples  the  FMR dynamics  from  the  microwave
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currents  in  the  stripline.  (For  a  relevant  discussion  also  see  Ref.  [191]).  Therefore,  for  highly
conducting  materials  of  sub–skin–depth  thicknesses,  such  as  metal  films,  the  coupling  of  the
ferromagnetic resonance is always weak and no loaded-resonance losses are expected to contribute
to the measured resonance line width [192]. However, for magneto–insulating films this mechanism
of decoupling is not present and one has to be careful while measuring responses of thick and low–
magnetic–loss materials in this case. 

As for the resonance frequency/field shift due to a strong coupling [85], this problem is
naturally absent in the stripline FMR due to the broadband nature of the probing device.

7. Possible applications of the strong microwave shielding effect contribution to the stripline

FMR response. 

As follows from the experiment and the theory above, the main effect of the excitation of the
eddy currents is the strong orientational dependence of the stripline FMR response for films lacking
inversion symmetry. On the other hand, the theory shows that the contribution of the eddy currents
to the mode eigen–frequencies/resonant fields and resonant line widths remains negligible as long
as the films are significantly thinner than the microwave skin depth.

Also  the  theory demonstrates  that  the  higher–order  standing spin  waves  in  single–layer
metallic films should be excited more efficiently in the stripline FMR than in the cavity FMR.
Indeed, if a film is magnetically uniform in the direction of its thickness, the higher–order SSWMs
are not excited in the highly uniform microwave magnetic field of a cavity [69]. As explained in
Section  5,  in  the  cavity  FMR experiments  the  metallic  films  with  sub–skin–depth  thicknesses
behave as the insulating ones. This is because the microwave magnetic field is incident with the
same amplitude on both surfaces of the films. This creates a highly symmetric situation, which
leads to the vanishing amplitudes of the higher–order modes. 

The single–side incidence of the microwave magnetic field on the film surface breaks this
symmetry. Hence, it becomes theoretically possible to excite the 1st SSWM and also the higher–
order  modes  for  a  perfectly  magnetically  uniform single–layer  film in  the  stripline  FMR.  The
possibility of excitation of higher–order modes is very important, since their frequency/resonant–
field positions carry information about the exchange constant for the material. The FMR is the best
way to extract this information, provided the higher–order modes are excited (see Ref. [186] and
references therein).  Thus,  with the stripline FMR one can potentially measure the value of  the
exchange constant for highly conducting ferromagnetic materials which do not display higher–order
peaks in the FMR traces taken with the traditional method – the cavity FMR.

Figure 33 shows results of the simulation of PP FMR absorption traces for a 40 nm–thick
single–layer  film  with  unpinned  surface  spins  for  three  different  values  of  material  electrical
conductivity:  Py/100,  Py/10,  and  Py,  where  Py = 4.5×106 S/m  is  the  standard  electrical
conductivity of Permalloy. From Fig. 33 one clearly sees that the amplitude of the 1st SSWM drops
with  a  decrease  in  the  material  electric  conductivity.  Thus,  it  should  be  possible  to  excite  the
higher–order  SSWMs  in  these  perfectly  thickness–uniform  materials,  provided  the  sample
conductivity is large enough.
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FIG. 33. Simulated stripline PP FMR responses for a 40 nm–thick film with magnetic parameters of
Permalloy for three different values of material electrical conductivity: (a) Py/100, (b) Py/10, and
(c) Py, where Py = 4.5×106 S/m is the standard electrical conductivity of Permalloy. Frequency is
10 GHz. 

However, very often single–ferromagnetic–layer materials are not thickness uniform. One of
the possible reasons for this is the spontaneous development of surface magnetic anisotropy by
these  films.  Most  often  this  anisotropy  is  normal  uni–axial  (or  perpendicular)  –  often  called
“Perpendicular magnetic anisotropy (PMA)”. There are different reasons for the PMA formation.
One of them is a mechanical stress at an interface of a ferromagnetic layer with a non–magnetic
seed or capping layer. Interfaces with Pt, Pd or Ta are very known examples (see, e.g., [29, 41, 42,
47,  139]  and  references  therein).  Another  reason  for  the  PMA formation  is  oxidation  of  the
(uncapped) film surface in the ambient atmosphere [193].
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In  Ref. [121]  we  showed  that  the  stripline  FMR  is  an  excellent  tool  to  detect  hidden
magnetic non–uniformities in the ferromagnetic materials. Two possible FMR protocols – “Film–
flip Stripline” and “Stripline vs. Cavity” – were simultaneously demonstrated. In order to use these
protocols  to  detect  the  presence  of  a  magnetic  non–uniformity  one  has  to  compare  results  of
stripline FMR measurements of the material for the two film orientations – with the film facing the
stripline  (“unflipped”  orientation)  and  the  substrate  of  the  film  facing  the  stripline  ('flipped'
orientation).  This  protocol  is  “Film–flip  FMR (FF–FMR)”.  In  the  “Stripline  vs.  Cavity (SVC–
FMR)” method the measurement in the flipped configuration is replaced (or complemented) with a
FMR measurement taken with a microwave cavity.

If a film is uniform in both in–plane and perpendicular–to–plane directions, in the stripline
FMR traces one expects to observe at least two modes: the fundamental mode and the 1 st SSWM.
For symmetry reasons the amplitude of the 1st SSWM with the respect of the fundamental mode
amplitude should be the same for both flipped and unflipped configurations. However, as follows
from Fig. 30(c) the 1St SSWM will not be present at all in the cavity data. 

Importantly,  combining  this  method  with  the  SVC–FMR  protocol  will  allow  one  to
distinguish  between  a  perfectly  thickness–uniform  film  and  a  film  with  a  non–uniformity  of
magnetic parameters which is symmetric with respect to the film half–thickness plane. Indeed, in
the latter case, one may expect the presence of the 2nd SSWM in the cavity traces and of both 1st and
the 2nd SSWM in the stripline data.  Furthermore,  the stripline response will  not  depend on the
sample orientation in this case.

The SVC–FMR protocol alone works in a similar way. In this case, the measurement in the
flipped configuration is replaced with a cavity measurement. Difference in the relative amplitude of
the 1st SSWM observed in these two measurements will evidence the presence of a thickness non–
uniformity of the material. Furthermore, this method can be used to identify particular modes in the
FMR spectra, when the spectra have complicated character, as it often happens for nano–patterned
films. 

Since both protocols rely on the observation of the exchange standing wave modes across
the film thickness, the microwave frequency at which the data are taken should be high enough in
order for the 1st SSWM to exist for the magnetically saturated state of the material. For instance, for
a  30 nm–thick  Permalloy  film  the  1st SSWM  emerges  from the  zero  field  at  ~18 GHz  if  the
magnetic field is applied in the sample plane. At ~31 GHz it will appear in the respective spectrum
for a 20 nm–thick Permalloy film and for a 17 nm–thick film one will need to take measurements at
~40 GHz in order to observe this mode.

Below we overview several examples of applications of these two protocols.

7.1 FF–FMR and SVC–FMR as tools with which to study magnetically stratified films and

films with PMA

The FF–FMR and SVC–FMR protocols as the methods for the investigation of magnetic non–
uniformities in planar metallic ferromagnetic materials were proposed in Ref. [121]. A number of
single–layer Permalloy films with thicknesses 40–110 nm were investigated with this method in that
paper. Many of them did not show a signal of the 1st SSWM in the unflipped orientation at all,
which is not consistent with what is expected from the theory for a perfectly thickness uniform film
[see  Fig. 33(c)].  While  flipped  over,  these  films  showed  a  noticeable  response  of  this  mode.

68



Figure 34 shows data taken for a 100 nm–thick Permalloy film.

FIG. 34. Comparison of BFMR data with the cavity FMR data for a single–layer 100 nm Permalloy
film grown on a sapphire substrate and having 10 nm thick Au capping and seed layers. Dashed line
– film facing the broadband transducer. Dotted line – substrate facing the transducer. Solid line –
cavity FMR data. The graph shows anti–derivative of the raw data. Frequency – 9.527 GHz. Taken
from [121].

From Fig. 34 one sees a signal of the 1st SSWM in the traces taken with a cavity and with the
stripline BFMR for the flipped film orientation. The difference in the relative amplitudes of this
mode evidences that this film possesses some non–uniformity of its parameters in the direction of
the film thickness. Potentially, this uniformity is located at one of the film surfaces, because of the
strong differences in the responses for the flipped and unflipped orientations [compare Fig. 34 and
Fig. 27].

This  observation  was  explained  in  the  framework  of  a  model  of  the  presence  of  a
magnetically depleted layer at one of the film surfaces. By fitting the experimental data with the
numerical model from [90] it was found that the respective magnetically depleted layer should be
located at the film surface facing the external space (i.e. not at the film interface with the substrate).
Otherwise, the amplitude of the 1st SSWM would be larger for the unflipped orientation. Also, the
thickness and the saturation magnetisation for the depleted layer  were extracted from these fits
(10 nm and 4Ms = 4000 G, respectively). Once a suitable model for the film structure has been
found, the information delivered by the fits must be quite accurate, since one has to simultaneously
fit  not  only the relative amplitudes  of the modes for  the two sample orientations,  but  also the
resonant peak positions for all the observed modes.

Of  course,  the  extracted  information  strongly  relies  on  the  model.  Therefore,  some
independent information about the film structure would be beneficial for improving the accuracy of
the prediction by this method. In the absence of such, an alternative model for the data in Fig. 34 is
the  presence  of  the  PMA at  one  of  the  film  surfaces.  Figure  35  shows  results  of  numerical
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simulations  using  the  theory  from  [90]  for  a  single–layer  30 nm  Permalloy  film  with  PMA.
Frequency is 15 GHz.

FIG. 35 Results  of  numerical  simulations  using the theory from [90]  for  a  single–layer  30 nm
Permalloy  film  with  PMA.  Frequency  is  15 GHz.  Left  column:  Ku < 0  (easy–plane  surface
anisotropy), right panel: Ku > 0 (easy axis anisotropy). PMA is present at the film surface facing the
external space.

One sees that the spectra for the opposite signs of the surface anisotropy constant are the “mirror”
images of each other: whereas for Ku < 0 one observes two peaks for the unflipped geometry and
one peak for the flipped one, one will observe the opposite behaviour for Ku > 0. In this calculation,
it is assumed that the PMA is present at the film surface facing the external space. Obviously, if the
PMA is present at the film interface with the substrate, one will observe the opposite behaviour.

Thus, with this method it is possible either to determine the particular surface at which the
surface  anisotropy is  present  or  the  type  of  anisotropy  (easy  plane  or  easy  axis).  In  order  to
determine both simultaneously, additional information is needed. One of the possible options is to
look  at  the  peak  positions.  One  sees  that  the  resonant  fields  for  the  easy–axis  anisotropy are
noticeably higher. This is because the easy–plane anisotropy results in the pinning of the dynamic
magnetisation at the interface and the easy–axis one in “anti–“ or negative pinning (Fig. 4).

The most reliable determination of the type of the surface anisotropy present in a film can be
obtained if the anisotropy is repeatable from sample to sample. It is known that the impact of an
interface anisotropy scales as 1/L [194]. This is clearly seen from the simulation result in Fig. 36. As
follows from this figure, the sign of the slope of the resonance frequency or the field dependence on
1/L is determined by the type of anisotropy (easy-axis or easy-plane). This implies that the type of
the anisotropy present in a sample may be determined from the sign of the slope of the dependence
of the resonant field on the film thickness. The surface, at which the surface anisotropy is present, is
then found from the FF–FMR data.
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FIG 36. Simulated resonance field for a fundamental FMR mode in a single–layer Permalloy film
as a function of the inverse film thickness 1/L.

As a final note to this discussion we mention that the traditional cavity FMR method is also
able to determine if a film is thickness uniform or not. This is clearly seen from the solid line in
Fig. 34. Unfortunately, for symmetry reasons this method fails to deliver any information about the
location of this uniformity. The main advantage of the FF–FMR is its capability to determine how
symmetric this uniformity with respect to the half–thickness plane of a metallic ferromagnetic film
is. Furthermore, provided it is known which type of anisotropy to expect, the FF-FMR is able to
deliver an answer to the question “Closer to which of the two film surfaces is the non–uniformity
located?”.

An alternative possibility to identify the type of the surface/interface anisotropy was recently
confirmed with our film–flip FMR measurements of Si/Py/IrMn films [195]. This approach works
when  one  knows  the  location  of  the  surface/interface  where  this  anisotropy  is  present.  The
Si/Py/IrMn films  exhibit  an  exchange–bias  effect  [196,  197,  198,  199]  at  the  interface  of  the
ferromagnetic Permalloy and anti–ferromagnetic IrMn layers. The static field was applied in the
film plane and along the exchange–bias direction. As shown in [77], physically the exchange bias is
an in–plane uni–directional interface anisotropy leading to pinning of the dynamic magnetisation at
the interface of the two layers. The experiments demonstrated that when the applied field was co–
aligned with the exchange–bias field direction, the FMR spectra were of the type shown in the
right–hand column of Fig. 35. However, when the applied field was anti–aligned to the exchange–
bias field, the spectra taken in the flipped and unflipped orientations were of the type shown in the
left–hand  column  of  Fig. 35.  The  interface  of  the  Permalloy  layer,  at  which  the  interface
unidirectional anisotropy is present, is precisely known for these materials. Consequently, from the
FMR traces it is easy to infer that when the static field (and, consequently, the static magnetisation)
is co–aligned with the exchange bias direction, a regime of the easy–axis–like interface anisotropy
is implemented. In the case of the static magnetisation vector pointing to the direction opposite to
the exchange bias direction, the interface conditions are, however, of the easy–plane like. (This
plane is the film cross–section along the film thickness and perpendicular to the exchange–bias
field.) Note that this experiment also delivers direct experimental evidence that the exchange bias is
an interface effect.
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7.2 SVC–FMR as a tool to interpret complicated FMR spectra

It  has been shown that the SVC–FMR protocol is  a very useful  tool which enables the
interpretation  of  complicated  FMR  spectra.  Indeed,  FMR  spectra  may  look  very  complex,
especially  for  nano–patterned  films.  For  these  and  similar  materials  it  is  always  important  to
identify the standing–spin–wave modes, which give rise to particular absorption peaks seen in FMR
spectra.  Different selection rules for the mode excitation in the cavity FMR and stripline FMR
experiments may help to carry out the mode identification.

FIG.  37 (a)  SEM  image  of  the  80 nm–thick  anti–dot  nanostructure  made  of  Permalloy.  (b)
Experimental absorption traces for the nanostructure. Thin solid line: stripline BFMR at 9.5 GHz;
thick solid line: cavity FMR at 9.529 GHz. From [184].

Figure 37(b) shows two FMR traces from Ref. [184]. These traces were registered for a 80 nm–
thick anti–dot  structure magnetised perpendicular  to plane [Fig. 37(a)].  The  trace shown by the
thinner line was taken with a stripline BFMR and the thicker line is the result of a cavity FMR
measurement.  One  sees  that  the  mode  in  the  stripline  BFMR  spectrum  (denoted  as  H2)  is
completely missing in the cavity spectrum. The mode H1 displays significantly smaller relative
amplitude (with respect to the largest peak in each respective spectrum) in the cavity data. This
identifies the peaks H1 and H2 as thickness non–uniform modes which are counterparts of the 1 st

SSWM of the parent continuous films. The peaks, which do not show a significant reduction in the
amplitude in the cavity data, are then the responses of the modes which are standing spin waves in
the sample plane formed on the basis of the fundamental mode (of uniform precession) of the parent
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continuous film.

7.3 Effect of eddy–currents in non–magnetic metallic layers on the stripline FMR response of

metallic multi–layered materials

Combinations of metallic ferromagnetic and non–magnetic layers are building blocks for the
nascent  novel  platform  of  electronics  called  spintronics  [1,  33].  Many  spintronic  devices
demonstrated so far operate at microwave frequencies and they are made of multi–layers consisting
of non–magnetic metal (NM) and ferromagnetic metal (FM) thin films. A large amount of literature
is devoted to the investigation of magnetisation dynamics and spin transport parameters of such
multi–layers (e.g.,  [1, 14,  29, 34,  35, 41,  42, 47,  188, 200, 201, 202] to cite just  a few recent
articles). NM materials often used in these devices are Pt, Pd, Cu, Au, and Ta.

The effect of the presence of NM capping and/or seed layers on the FMR response of the
multi–layered films was investigated theoretically in Ref. [203]. A layered structure of the type used
in the experimental paper [88] was considered. The model assumed that the stack contains 5 to
10 nm–thin Cu or Ta seed and capping layers between which either a single Py layer or a pair of
exchange coupled Co and Py layers is sandwiched.

Finite-Difference  Time-Domain  (FDTD)  simulations  were  carried  out  to  reveal
magnetisation dynamics in this case. General information about the FDTD method can be found in
Ref. [173]. The simulations predicted a crucial impact of the NM layers on the results of broadband
FMR measurements of Co–Py bilayers. Figure 38 shows the simulated microwave absorption in the
Co–Py bilayer  from Ref. [88] without including the capping/seed layers into the simulation.  In
agreement with the experiment, one sees that the amplitude of the 1st higher–order SSWM is larger
than that of the fundamental mode. When one adds the Ta layers to the model, the amplitude of both
fundamental (the first peak from the right) and 1st higher–order SSWM increases. The gain in the
amplitude of the fundamental mode is larger than that of the 1st higher–order SSWM (the second
peak from the right).

Dramatic changes in the response occur when Ta is replaced with Cu in the model. The
conductivity of Cu is 5.95×107 S/m that is almost eight times higher than the conductivity of Ta and
three times higher  than that  of  Co. The resonant  absorption by the fundamental  mode and the
SSWMs increases and, most significantly, the intensity of the fundamental mode becomes larger
than that of the 1st higher–order SSWM (Fig. 38).
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FIG. 38 FMR response of the Co–Permalloy (Co/Py) bi–layer structure with the stripline facing the
Co side. Solid lines – no Ta layers, dashed lines – with 5 nm Ta layers from both sides of the Co/Py
bilayer, and dotted lines – 5 nm of Cu is used instead of Ta. From [203].

The investigation of the distributions of the dynamic magnetic field across the film thickness
helps to better understand the origin of the effect of the conductivity of the capping layer. As shown
in Fig. 39, the magnetic field decreases through the Co–Permalloy bi–layer and vanishes at the rear
surface  of  the  Permalloy  film.  This  result  is  in  good  agreement  with  the  analytically  derived
boundary  conditions  Eq. (49)  and  numerical  results  in  Fig. 32.  We  note  that  the  slope  of  the
magnetic field curve in Fig. 39 depends on the value of the conductivity: it is maximum in Co,
because Co has a larger conductivity than Permalloy. However, the magnetic field profile becomes
more homogeneous when the Co–Permalloy structure is sandwiched by the Ta or Cu layers. As
shown in Fig. 39, the slope of the magnetic field curve decreases in Co and Permalloy layers in
order to satisfy the condition that the field vanishes at the rear surface of the last metallic film. One
also sees that the field slope increases as the conductivity of the film is increased. A decrease in the
magnetic  field slope (i.e.,  the field distribution becomes more homogeneous)  explains why the
intensity of the fundamental mode becomes higher than that of the 1 st higher–order SSWM when
the Co–Py bilayer is surrounded by the two Cu films.
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FIG. 39 In–plane dynamic magnetic field profiles across the thickness of Co–Permalloy bilayers.
Frequency is 18 GHz. The profiles correspond to the 1st higher–order SSWM. Solid lines – no Ta
layers, dashed lines – with 5 nm Ta layers on both side of the Co/Py structure; dotted lines: Cu is
used instead of Ta. The thin dashed lines denote the interface between the films. From [203].

Theoretical predictions made in Ref. [203] were confirmed experimentally by conducting
BFMR measurements of Cu[d]/Ni80Fe20[70nm]/Cu[10nm]/Si multilayers, where  d is the thickness
of the capping layer [172]. The samples are placed on top of a 0.33 mm–wide microwave stripline
(the capping layer side faces the stripline) and the FMR absorption is measured with a VNA. (We
recall that in the case of a 0.33 mm–wide microwave stripline the eddy current shielding should be
very strong.) One sees that the capping layer strongly diminishes the absorption amplitude (Fig. 40).
It  quickly  drops  with  an  increase  in  the  Cu  capping  layer  thickness  d.  We  stress  that  in  this
experiment d << Cu, where Cu is the classical skin depth of Cu. This result has direct implications
for the correct interpretation of raw broadband FMR data of highly conducting metallic multilayers
and  for  measurements  of  spin  current  injection  through  interfaces  implemented  by  placing  a
conducting multilayer on top of a microstrip or coplanar line.

Flovik et. al. [191] also experimentally investigated the effect of eddy currents on the FMR
in  FM–NM  bilayers.  Their  experiments  were  conducted  on  Permalloy–Au  and  Permalloy–Cu
samples, and they employed a cavity FMR setup. They demonstrated that the FMR response of the
investigated bilayers is determined by the interaction between the microwave fields and the eddy–
current fields and that this interaction is tuneable through changing the sample geometry and the
thickness of the NM layers. As the authors claim, the eddy currents were circulating along the edges
of the rectangular sample. Indeed, as follows from Fig. 30, the eddy currents should be strongly
suppressed in the bulk of the sample due to the symmetry of the microwave fields of the cavity.
However, they may not be completely vanishing in the bulk due to the difference in conductivities
for the two layers which breaks the symmetry. Similarly, the reason why the currents are present
along the edges, is a break in translational symmetry which is introduced by the finite in-plane
sample sizes.
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FIG. 40 Measured (symbols) and simulated (curves) amplitudes of the microstrip BFMR response
for Cu[d]/‍Permalloy[70nm]/Cu[10nm]/Si samples.

7.4 Microwave eddy current contribution to the stripline FMR response of nano–patterned

films

Presently,  a  large  number  of  experimental  and  theoretical  works  are  concerned  with
measuring and understanding the FMR response of nano–patterned films (see, e.g., [1, 14, 16, 122,
184,  204,  205]).  One of  the  popular  methods  of  FMR measurements  of  these  materials  is  the
stripline FMR (see, e.g., [106, 112, 120, 122, 184, 205, 206,  207, 208, 209, 210, 211]). It is natural
to suppose that the microwave eddy–current effects due to the single–side incidence of microwave
field also exist for these materials.

A  trivial  consequence  of  the  single–surface  microwave  field  incidence  on  plane
ferromagnetic nanostructures has been already discussed in Section 7.2. We have shown that similar
to continuous films the single–surface incidence leads to efficient excitation of standing spin wave
modes  across  the  material  thickness (Fig. 37).  However,  the  main  goal  of  nano–patterning  of
ferromagnetic films is to make the magnetisation dynamics non–uniform in the material  plane by
introducing geometrical confinement in the plane. In this case, the resonant eigen–modes represent
spin  waves  which  are  standing  in  the  film  plane.  The  geometrical  confinement  introduces  an
effective dipole magnetisation pinning at the edges of the nano–patterned structure [212].  Most
often one is interested in the modes which are uniform in the direction of the material thickness, i.e.
formed on the basis of the fundamental FMR mode of the parent continuous film.

The impact of microwave eddy currents on the FMR response of nanostructures has been
recently demonstrated for model geometry which is very convenient for the studies of the effect of
nano–confinement  on  the  magnetisation  dynamics.  This  geometry  is  a  periodic  array  of  long
parallel metallic ferromagnetic nanostripes with a rectangular cross–section. The static magnetic
field is applied along the stripes. This produces a single–domain state for each individual stripe with
the static magnetisation vector pointing perfectly along the stripes all across the stripe cross–section
[213]. Also, often the stripe size in the array plane (“stripe width” w) is significantly larger than its
thickness  L  (w >> L).  This  allows  reducing  the  mathematical  description  of  the  magnetisation
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dynamics in this medium to a simple one–dimensional model [212].

In the experiment [120] a periodic array of Permalloy 4 mm–long nanostripes was fabricated
using a deep ultraviolet lithography followed by a lift–off process [214]. The fabricated stripes have
the width  w = 300 nm. The edge–to–edge separation of the neighbouring elements is  d = 115 nm.
The thickness of the elements is h = 25 nm. BFMR measurements were taken by applying the static
magnetic field along the stripe length. The width of the microstrip line used in measurements was
0.3 mm.

Figure 41(a) shows a scanning electron micrograph of a typical magnetic nanostripe array.
Figure 41(b) shows the position of the sample on top of a 0.3 mm–wide microstrip line transducer
used to take these measurements.

FIG. 41 (a) Scanning electron micrograph of a magnetic nanostripe array. (b) Sketch of microstrip
BFMR arrangement with the stripline parallel to the applied field. Note that the microstrip is shown
not to scale. From [86].

Nanostructuring of magnetic films strongly reduces the amplitude of the FMR response,
which becomes comparable with or falls below the noise level. This makes the observation of the
higher–order  resonance  modes  difficult.  Consequently,  in  order  to  increase  the  number  of  the
higher–order modes seen in the experiment, the field modulation method is used in combination
with a high–sensitivity FMR receiver (Section 2.5). Recall that in this case the registered FMR
signal takes the form of the first derivative of the Lorentzian curve with respect to the parameter
which is swept to register the absorption traces (so–called “differential absorption”).
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The result of measurements for the driving microwave frequency 15.004 GHz is shown in
Fig. 42(a)  [120].  The trace  taken with the  standard sensitivity is  shown by the solid  line.  One
observes a strong fundamental mode (the highest frequency mode) and a number of small additional
peaks at lower applied fields. The resonance modes in this case are spin waves with either odd
n = 1, 3, 5, … or even (n = 0, 2, 4, …) nodes of the standing spin wave in the x–direction (see Fig. 3
in [120]). Consequently, the fundamental mode (n = 0) and two higher–order even modes (n = 2 and
n = 4) have symmetric profiles and the profiles for the odd modes n = 1,3, and 5 are anti–symmetric
in the x–direction. The low–noise receiver allows taking measurements at a much higher sensitivity
level of the lock–in amplifier [dashed line in Fig. 42(a)]. The signal of the fundamental mode is
clipped in this case; however, up to five higher–order absorption peaks can easily be resolved.

For the symmetry reason only the even modes should be excited by the microwave magnetic
field of the stripline. However, in Fig. 42(a) one notices at least three higher–order modes with very
comparable amplitudes. Numerical simulations of the spectrum of eigen–modes identify the peaks
1, 3, and 5 as the anti–symmetric modes with the respective mode numbers. 

The microwave magnetic field of the stripline is highly uniform on the length scale of the
nanostripe width [see Fig. 7(a)]. This excludes a reason that the anti-symmetric modes are observed
because  of  the  spatial  non-uniformity  of  the  driving  field.  A second  possible  reason  for  the
excitation of these modes is non-equal strengths of magnetisation pinning at the two lateral stripe
edges. To exclude this possibility, in a separate experiment [215] the same sample was measured
with the static magnetic field applied perpendicular to the sample plane.  No signal of the anti-
symmetric modes was observed. Hence,  this  second experiment suggests that the magnetisation
pinning at the lateral edges is negligible or its strength is the same at both stripe edges.

The only plausible explanation for the presence of the anti-symmetric modes in the FMR
absorption spectrum is an effect of microwave eddy currents. As in the case of continuous films, the
eddy currents  in  the  nanostripes  are  excited  by the  microwave  magnetic  field  of  the  stripline
transducer. They flow in the direction opposite to the direction of the current in the stripline and
hence along the nanostripes. In this direction the sample length is 4 mm, which ensures the current
continuity and hence the existence of the currents (see the discussion in the end of Section 5.2).
Because the nanostripe cross–section is  much smaller than the microwave skin depth,  one may
expect  a  uniform distribution  of  the eddy current  density over  the cross–section.  The in–plane
component of the Oersted field of the eddy–current is trivial: it has an asymmetric thickness profile
of the type shown in the right–hand side panel of Fig. 21(b) along the stripe thickness L (i.e. in the y
– direction) and a quasi–uniform and symmetric profile in the x–direction.

Because of this type of symmetry this component is unable to couple to the standing spin
wave  modes,  which  are  anti–symmetric  in  the  x–direction  but  uniform  along  the  nanostripe
thickness. Importantly, the film nano–patterning produces one more component of the Oersted field
– the perpendicular–to–plane one. Its profile in the x–direction is shown in Fig. 43. One sees that it
is perfectly anti–symmetric. This type of symmetry is ideal for the excitation of the anti–symmetric
modes, provided the driving field couples efficiently to the dynamic magnetisation. When the static
field is applied in the sample plane along the stripes, as in Fig. 41(b), the x-component of the eddy-
current field is perpendicular to the vector of the static magnetisation. Hence, it can contribute to the
excitation of the magnetisation dynamics. However, if the static field is applied perpendicular to the
sample plane, as in Ref. [215], this microwave-field component is along the vector of the static
magnetisation and hence cannot couple to the dynamic magnetisation.
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This  explains  why  the  anti-symmetric  modes  were  seen  in  [120],  but  not  in  [215].
Furthermore,  the  experiment  from [120]  is  in  very good agreement  with  numerical  simulation
(Fig. 41). In this simulation, it was assumed that a PP component with the profile from Fig. 43 is
present in the driving microwave field. Importantly, it is easy to demonstrate that the PP component
of the eddy–current field exists only because of the single–side incidence of the microwave field
onto  the  nanostructure  plane  in  the  conditions  of  stripline  FMR.  In  the  case  of  the  two–side
incidence, as in a cavity FMR, the two partial eddy currents would cancel each other [see the sketch
in Fig. 30(c)] and this field component would not exist.

As stated in Ref. [120], the strength of the excitation of the anti–symmetric modes by the
eddy current field should be a function of the stripe magnetisation precession ellipticity  (see Sect.
4.2) and hence of the aspect ratio  p = w/L.  Indeed, in our recent work [215] we have observed a
decrease in the amplitudes of the n = 1, 3, ... modes with a decrease in p. This fact and the fact that
the anti-symmetric modes are not seen in the PP FMR geometry represent a strong experimental
evidence  of  the  eddy–current  contribution  to  the  stripline  FMR  dynamics  of  the  metallic
ferromagnetic  nanostripes.  Obviously,  if  the  direction  of  the  material  magnetisation  is  suitable,
similar effects may be seen for other planar nanostructures, for which the continuity of the eddy
currents may be ensured (e.g. rings, discs, anti–dots, etc.).

FIG. 42 Experimental (a) and theoretical (b) differential absorption traces for an array of parallel
nanostripes  made  of  Permalloy.  Microwave  frequency  is  15.004 GHz.  Solid  lines  –  standard
sensitivity/unzoomed, dashed lines – increased sensitivity/zoomed–in. Dotted line in (b) – result of
simulation not taking into account the contribution of eddy currents to magnetisation dynamics.
Numbers in (b) are the mode numbers identified by means of numerical simulations in [120]. From
[120].
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FIG. 43 The perpendicular–to–plane component of the microwave magnetic field of eddy currents
induced inside the stripes. Dashed line: single nanostripe. Solid line: periodical array of parallel
nanostripes. The stripe edges are located at ±150 nm. The sharp peaks of the solid line at ±265 nm
correspond to the nearest edges of the neighbouring stripes. From [120].

As a final  note to  this  paragraph,  we would like to mention that often broadband FMR
measurements  are taken on nanostructures  lithographically formed on top of  a  signal  line of  a
coplanar  waveguide  (see,  e.g.,  [216])  or  on  top  of  a  microstrip  line  (see,  e.g.,  [217]).  As  we
mentioned in Section 4.1, a decrease in the stripline width increases the microwave current density
in the stripline which improves the FMR signal.

Also, as explained in Section 5.2.1 for striplines of microscopic width (w < 30 m or so) the
contribution of eddy–current shielding effect to the FMR amplitudes is negligible. This explains the
fact that the eddy–current effects are usually not seen for the samples lithographically formed on
top  of  microscopic  striplines  [216].  This  observation  suggests  that  the  method  of  forming  the
nanostructures on top of a microscopic stripline may be very useful, when one wants to avoid the
shielding effect and to simultaneously boost the FMR signal.

8. Related topics 

Whereas  we have endeavoured to  introduce almost  every aspect  of  the stripline BFMR, a few
related areas could not be covered due to the large extent of this topic. For instance, we have not
presented the areas of magnetically tuneable microwave metamaterials (see, e.g., [53, 54, 218]) and
nonlinear metamaterials [219, 220], where the BFMR is also employed.

Also, often the stripline technique is used to drive magnetisation precession in ferromagnetic
materials, but the FMR absorption signal is read in a “non–microwave” way, for instance with an
MFM–tip (“MFM–FMR”, see, e.g., [221, 222, 223, 224, 225, 226]), with micro–focus Brillouin
Light Scattering (BLS) method (see, e.g., [227, 228]), or using the inverse Spin–Hall Effect (see,
e.g., [229, 230, 231, 232]) or similar electronic/spintronic methods (see, e.g., [86, 233, 234, 235,
236, 237]).

We also have not described the large areas of magnonics and spintronics in their entirety, but
addressed these topics only from a perspective of BFMR as such. Spin caloritronics, a research
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direction recently highlighted in The 2014 Magnetism Roadmap [1], might also be mentioned in the
context of the BFMR technique (see, e.g., [238]). Finally, we have not highlighted the emerging
area  of  magnetic  nanoparticles  for  biomedicine  [239,  240,  241],  also  mentioned  in  The  2014
Magnetism Roadmap, where the BFMR is employed, too [55, 56, 57].

Conclusions 

We have presented a critical overview of the rapid progress in the physics and applications of
stripline  BFMR  since  its  emergence  in  the  literature.  Results  from  more  than  240 articles,
textbooks, and technical reports have been presented, and many practical examples discussed in
detail.  We  believe  that  this  review  will  be  of  interest  to  both  general  physical  audience  and
specialists conducting research on various aspects of microwave nanomagnetism. It is clear that the
research area of the BFMR spectroscopy is yet to reach its peak and to provide a valuable overall
impact on the field of nanomagnetism.
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Appendix I – Magnetic units conversion factors

Symbol Gaussian & cgs emua Conversion
factor, Cb

SI & rationalised
mks

Magnetic flux density,
magnetic induction

B Gauss (G) 10–4 Tesla (T), Wb/m2

Magnetic field strength H Oersted (Oe) 103/(4) A/m

Magnetisation 4Ms G 103/(4) A/m

Permeability  dimensionless 4×10–7 H/m, Wb/(A·m)

Demagnetisation factor N dimensionless 1/(4) dimensionless

Interlayer exchange
constant

A12 erg/cm2 10–7 J/m2

aGaussian units and cgs emu are the same for magnetic properties. The defining relation is B = H + 4M.
bMultiply a number in Gaussian units by C to convert it to SI.
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