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Broadband teleportation
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Quantum teleportation of an unknown broadband electromagnetic field is investigated. The continuous-
variable teleportation protocol by Braunstein and Kimble@Phys. Rev. Lett.80, 869 ~1998!# for teleporting the
quantum state of a single mode of the electromagnetic field is generalized for the case of a multimode field
with finite bandwith. We discuss criteria for continuous-variable teleportation with various sets of input states
and apply them to the teleportation of broadband fields. We first consider as a set of input fields~from which
an independent state preparer draws the inputs to be teleported! arbitrary pure Gaussian states with unknown
coherent amplitude~squeezed or coherent states!. This set of input states, further restricted to an alphabet of
coherent states, was used in the experiment by Furusawaet al. @Science282, 706~1998!#. It requires unit-gain
teleportation for optimizing the teleportation fidelity. In our broadband scheme, the excess noise added through
unit-gain teleportation due to the finite degree of the squeezed-state entanglement is just twice the~entangle-
ment! source’s squeezing spectrum for its ‘‘quiet quadrature.’’ The teleportation of one half of an entangled
state~two-mode squeezed vacuum state!, i.e., ‘‘entanglement swapping,’’ and its verification are optimized
under a certain nonunit gain condition. We will also give a broadband description of this continuous-variable
entanglement swapping based on the single-mode scheme by van Loock and Braunstein@Phys. Rev. A61,
10 302~2000!#.

PACS number~s!: 03.67.2a, 03.65.Bz, 42.50.Dv
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I. INTRODUCTION

Teleportation of an unknown quantum state is its dise
bodied transport through a classical channel, followed by
reconstitution, using the quantum resource of entanglem
Quantum information cannot be transmitted reliably via
classical channel alone, as this would allow us to replic
the classical signal and so produce copies of the initial st
thus violating the no-cloning theorem@1#. More intuitively,
any attempted measurement of the initial state only obta
partial information due to the Heisenberg uncertainty pr
ciple and the subsequently collapsed wave packet for
information gain about the original state from further inspe
tion. Attempts to circumvent this disability with more gene
alized measurements also fail@2#.

Quantum teleportation was first proposed to transport
unknown state of any discrete quantum system, e.g., a s
1
2 particle@3#. In order to accomplish the teleportation, cla
sical and quantum methods must go hand in hand. A pa
the information encoded in the unknown input state is tra
mitted via the quantum correlations between two separa
subsystems in an entangled state shared by the sende
the receiver. In addition, classical information must be s
via a conventional channel. For the teleportation of a sp
1
2 -particle state, the entangled state required is a pair of s
in a Bell state@4#. The classical information that has to b
transmitted contains two bits in this case.

Important steps toward the experimental implementat
of quantum teleportation of single-photon polarization sta
have already been accomplished@5,6#. However, a complete
realization of the original teleportation proposal@3# has not
been achieved in these experiments, as either the state
1050-2947/2000/62~2!/022309~18!/$15.00 62 0223
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teleported is not independently coming from the outside@6#
or destructive detection of the photons in the teleported s
is employed as part of the protocol@5#. In the latter case, a
teleported state did not emerge for subsequent examina
or exploitation. This situation has been termed ‘‘a posteriori
teleportation,’’ being accomplished via post selection of ph
toelectric counting events@7#. Without postselection, the fi
delity would not have exceeded the value2

3 required.
The teleportation of continuous quantum variables such

position and momentum of a particle@8# relies on the en-
tanglement of the states in the original Einstein, Podols
and Rosen~EPR! paradox@9#. In quantum optical terms, the
observables analogous to the two conjugate variables p
tion and momentum of a particle are the quadrature am
tudes of a single mode of the electromagnetic field@10#. By
considering the finite~nonsingular! degree of correlation be
tween these quadratures in a two-mode squeezed state@10#, a
realistic implementation for the teleportation of continuo
quantum variables was proposed@11#. Based on this pro-
posal, in fact, quantum teleportation of arbitrary coher
states has been achieved with a fidelityF50.5860.02 @12#.
Without using entanglement, by purely classical communi
tion, an average fidelity of 0.5 is the best that can
achieved if the set of input states contains all coherent st
@13#. The scheme with continuous quadrature amplitudes
single mode enables ana priori ~or ‘‘unconditional’’! tele-
portation with high efficiency@11#, as reported in Refs
@14,12#. In this experiment, three criteria necessary for qu
tum teleportation were achieved:~1! An unknown quantum
state enters the sending station for teleportation.~2! A tele-
ported state emerges from the receiving station for sub
quent evaluation or exploitation.~3! The degree of overlap
©2000 The American Physical Society09-1
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between the input and the teleported states is higher than
which could be achieved if the sending and the receiv
stations were linked only by a classical channel.

In continuous-variable teleportation, the teleportation p
cess acts on an infinite-dimensional Hilbert space instea
the two-dimensional Hilbert space for the discrete spin v
ables. However, an arbitrary electromagnetic field has an
finite number of modes, or in other words, a finite bandwid
containing a continuum of modes. Thus, the teleportation
the quantum state of a broadband electromagnetic field
quires the teleportation of a quantum state which is defi
in the tensor product space of an infinite number of infini
dimensional Hilbert spaces. The aim of this paper is to
tend the treatment of Ref.@11# to the case of a broadban
field, and thereby to provide the theoretical foundation
laboratory investigations as in Refs.@14,12#. In particular,
we demonstrate that the two-mode squeezed state outpu
nondegenerate optical parametric amplifier~NOPA! @15# is a
suitable EPR ingredient for the efficient teleportation o
broadband electromagnetic field.

In the three above mentioned teleportation experiments
Innsbruck@5#, in Rome@6#, and in Pasadena@12#, the non-
orthogonal input states to be teleported were single-pho
polarization states~qubits! @5,6# and coherent states@12#.
From a true quantum teleportation device, however,
would also require the capability of teleporting the entang
ment source itself. This teleportation of one half of an e
tangled state~entanglement swapping@16#! means to en-
tangle two quantum systems that have never dire
interacted with each other. For discrete variables, a dem
stration of entanglement swapping with single photons
been reported by Panet al. @17#. For continuous variables
experimental entanglement swapping has not yet been
ized in the laboratory, but there have been several theore
proposals of such an experiment. Polkinghorne and Ra
@18# suggested teleporting polarization-entangled states
single photons using squeezed-state entanglement wher
output correlations are verified via Bell inequalities. Tan@19#
and van Loock and Braunstein@20# considered the uncondi
tional teleportation~without postselection of ‘‘successful’
events by photon detections! of one half of a two-mode
squeezed state using different protocols and verificat
Based on the single-mode scheme of Ref.@20#, we will also
present a broadband description of continuous-variable
tanglement swapping.

II. TELEPORTATION OF A SINGLE MODE

In the teleportation scheme of a single mode of the e
tromagnetic field~for example, representing a single pulse
wave packet!, the shared entanglement is a two-mo
squeezed vacuum state@11#. For infinite squeezing, this stat
contains exactly analogous quantum correlations as doe
state described in the original EPR paradox, where
quadrature amplitudes of the two modes play the roles
position and momentum@11#. The entangled state is sent
two halves: one to ‘‘Alice’’~the teleporter or sender! and the
other one to ‘‘Bob’’ ~the receiver!, as illustrated in Fig. 1. In
order to perform the teleportation, Alice has to couple
02230
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input mode she wants to teleport with her ‘‘EPR mode’’ a
beam splitter. The ‘‘Bell detection’’ of thex quadrature at
one beam splitter output, and of thep quadrature at the othe
output, yields the classical results to be sent to Bob vi
classical communication channel. In the limit of an infinite
squeezed EPR source, these classical results contain n
formation about the mode to be teleported. This is analog
to the Bell-state measurement of the spin-1

2 -particle pair by
Alice for the teleportation of a spin-1

2 -particle state. The
measured Bell state of the spin-1

2 -particle pair determines
whether the particles have equal or different spin projectio
The spin projection of the individual particles, i.e., Alice
EPR particle and her unknown input particle, remains co
pletely unknown@3#. According to this analogy, we call Al-
ice’s quadrature measurements for the teleportation of
state of a single mode~and of a multimode field in the fol-
lowing sections! ‘‘Bell detection.’’ Due to this Bell detec-
tion, the entanglement between Alice’s ‘‘EPR mode’’ an
Bob’s ‘‘EPR mode’’ means that suitable phase-space d
placements of Bob’s mode convert it into a replica of Alice
unknown input mode~a perfect replica for infinite squeez
ing!. In order to perform these displacements, Bob needs
classical results of Alice’s Bell measurement.

The previous protocol for the quantum teleportation
continuous variables used the Wigner distribution and
convolution formalism@11#. The teleportation of a single
mode of the electromagnetic field can also be recast in te
of Heisenberg equations for the quadrature amplitude op
tors, which is the formalism that we employ in this pap
For that purpose, the Wigner functionWEPR describing the
entangled state shared by Alice and Bob@11# is replaced by
equations for the quadrature amplitude operators of a t
mode squeezed vacuum state. Two independently sque
vacuum modes can be described by@10#

FIG. 1. Teleportation of a single mode of the electromagne
field as in Ref.@11#. Alice and Bob share the entangled state
modes 1 and 2. Alice combines the mode ‘‘in’’ to be teleport
with her half of the EPR state at a beam splitter. The homod
detectorsDx and Dp yield classical photocurrents for the quadr
turesxu andpv , respectively. Bob performs phase-space displa
ments of his half of the EPR state depending on Alice’s class
results.
9-2
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x̂̄15er x̂̄1
(0) , p̂̄15e2r p̂̄1

(0) ,
~1!

x̂̄25e2r x̂̄2
(0) , p̂̄25er p̂̄2

(0) ,

where a superscript (0) denotes initial vacuum modes ar
is the squeezing parameter. Superimposing the two sque
modes at a 50/50 beam splitter yields the two output mo

x̂15
1

A2
er x̂̄1

(0)1
1

A2
e2r x̂̄2

(0) ,

p̂15
1

A2
e2r p̂̄1

(0)1
1

A2
er p̂̄2

(0) ,

~2!

x̂25
1

A2
er x̂̄1

(0)2
1

A2
e2r x̂̄2

(0) ,

p̂25
1

A2
e2r p̂̄1

(0)2
1

A2
er p̂̄2

(0) .

The output modes 1 and 2 are now entangled to a fi
degree in a two-mode squeezed vacuum state. In the lim
infinite squeezing,r→`, both output modes become infi
nitely noisy, but also the EPR correlations between th
become ideal: (x̂12 x̂2)→0, (p̂11 p̂2)→0. Now mode 1 is
sent to Alice and mode 2 is sent to Bob. Alice’s mode is th
superimposed at a 50/50 beam splitter with the input m
‘‘in’’:

x̂u5
1

A2
x̂in2

1

A2
x̂1 , p̂u5

1

A2
p̂in2

1

A2
p̂1 ,

~3!

x̂v5
1

A2
x̂in1

1

A2
x̂1 , p̂v5

1

A2
p̂in1

1

A2
p̂1 .

Using Eqs.~3! we will find it useful to write Bob’s mode 2
as

x̂25 x̂in2~ x̂12 x̂2!2A2x̂u5 x̂in2A2e2r x̂̄2
(0)2A2x̂u ,

~4!

p̂25 p̂in1~ p̂11 p̂2!2A2p̂v5 p̂in1A2e2r p̂̄1
(0)2A2p̂v .

Alice’s Bell detection yields certain classical valuesxu and
pv for x̂u and p̂v . The quantum variablesx̂u and p̂v become
classically determined, random variables. We indicate this
turning x̂u and p̂v into xu and pv . The classical probability
distribution ofxu andpv is associated with the quantum st
tistics of the previous operators@11#. Now, due to the en-
tanglement, Bob’s mode 2 collapses into states that for
→` differ from Alice’s input state only in~random! classi-
cal phase-space displacements. After receiving Alice’s c
sical resultsxu andpv , Bob displaces his mode
02230
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x̂2→ x̂tel5 x̂21GA2xu ,
~5!

p̂2→ p̂tel5 p̂21GA2pv ,

thus accomplishing the teleportation@11#. The parameterG
describes a normalized gain for the transformation from c
sical photocurrent to complex field amplitude. ForG51,
Bob’s displacement eliminatesxu and pv appearing in Eqs.
~4! after the collapse ofx̂u and p̂v due to the Bell detection
The teleported field then becomes

x̂tel5 x̂in2A2e2r x̂̄2
(0) ,

~6!
p̂tel5 p̂in1A2e2r p̂̄1

(0) .

For an arbitrary gainG, we obtain

x̂tel5G x̂in2
G21

A2
er x̂̄1

(0)2
G11

A2
e2r x̂̄2

(0) ,

~7!

p̂tel5G p̂in1
G21

A2
er p̂̄2

(0)1
G11

A2
e2r p̂̄1

(0) .

Note that these equations take no Bell detector inefficien
into account.

Consider the caseG51. For infinite squeezingr→`,
Eqs.~6! describe perfect teleportation of the quantum state
the input mode. On the other hand, for the classical cas
r 50, i.e., no squeezing and hence no entanglement, eac
the teleported quadratures hastwo additional units of
vacuum noise compared to the original input quadratu
These two units are so-called quantum duties or ‘‘qudutie
which have to be paid when crossing the border betw
quantum and classical domains@11#. The two quduties rep-
resent the minimal tariff for every ‘‘classical teleportation
scheme@13#. One quduty, the unit of vacuum noise due
Alice’s detection, arises from her attempt to simultaneou
measure the two conjugate variablesxin andpin @21#. This is
the standard quantum limit for the detection of both quad
tures @22# when attempting to gain as much information
possible about the quantum state of a light field@23#. The
standard quantum limit yields a product of the measurem
accuracies which is twice as large as the Heisenberg m
mum uncertainty product. This product of the measurem
accuracies contains the intrinsic quantum limit~Heisenberg
uncertainty of the field to be detected! plus an additional unit
of vacuum noise due to the detection@22#. The second
quduty arises when Bob uses the information of Alice’s d
tection to generate the state at amplitudeA2xu1 iA2pv @11#.
It can be interpreted as the standard quantum limit impo
on state broadcasting.

III. TELEPORTATION CRITERIA

The teleportation scheme with Alice and Bob is comple
without any further measurement. The quantum state t
ported remains unknown to both Alice and Bob and need
be demolished in a detection by Bob as a final step. Ho
9-3
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ever, maybe Alice and Bob are cheating. Instead of using
EPR channel, they try to get away without entanglement
use only a classical channel. In particular, for the realis
experimental situation with finite squeezing and inefficie
detectors where perfect teleportation is unattainable, h
may we verify that successful quantum teleportation
taken place? To make this verification we shall introduc
third party, ‘‘Victor’’ ~the verifier!, who is independent o
Alice and Bob ~Fig. 2!. We assume that he prepares t
initial input state ~drawn from a fixed set of states! and
passes it on to Alice. After accomplishing the supposed t
portation, Bob sends the teleported state back to Victor. V
tor’s knowledge about the input state and detection of
teleported state enable Victor to verify if quantum telepor
tion has really taken place. For that purpose, however, Vic
needs some measure that helps him to assess when the
larity between the teleported state and the input state exc
a boundary that is only exceedable with entanglement.

A. Teleporting Gaussian states with a coherent amplitude

The single-mode teleportation scheme from Ref.@11#
works for arbitrary input states, described by any Wign
function Win . Teleporting states with a coherent amplitu
as reliably as possible requires unit-gain teleportation~unit
gain in Bob’s final displacement!. Only in this case, the co
herent amplitudes of the teleported mode always match th
of the input mode when Victor draws states with differe
amplitudes from the set of input states in a sequence of tr
For this unit-gain teleportation, the teleported stateWtel is a
convolution of the inputWin with a complex Gaussian o
variancee22r . Classical teleportation withr 50 then means

FIG. 2. Verification of quantum teleportation. The verifi
‘‘Victor’’ is independent of Alice and Bob. Victor prepares th
input states which are known to him, but unknown to Alice a
Bob. After a supposed quantum teleportation from Alice to Bob,
teleported states are given back to Victor. Due to his knowledg
the input states, Victor can compare the teleported states with
input states.
02230
n
d
c
t
w
s
a

e-
-
e
-
r

imi-
ds

r

se
t
ls.

the teleported mode has an excess noise of two units
vacuum1

2 1 1
2 compared to the input, as also discussed in

previous section. Anyr .0 beats this classical scheme, i.e
if the input state is always recreated with the right amplitu
and less than two units of vacuum excess noise, we may
this already quantum teleportation. Let us derive this res
using the least noisy model for classical communication.
the input quadratures of Alice’s sending station and the o
put quadratures at Bob’s receiving station, the least no
~linear! model if Alice and Bob are only classically commu
nicating can be written as

x̂out,j5Gxx̂in1Gxsa
21x̂a

(0)1sb, j
21x̂b, j

(0) ,
~8!

p̂out,j5Gpp̂in2Gpsap̂a
(0)1sb, j p̂b, j

(0) .

This model takes into account that Alice and Bob can o
communicate via classical signals, since arbitrarily ma
copies of the output mode can be made by Bob where
subscriptj labels thej th copy. In addition, it ensures that th
output quadratures satisfy the commutation relations

@ x̂out,j ,p̂out,k#5~ i /2!d jk ,
~9!

@ x̂out,j ,x̂out,k#5@ p̂out,j ,p̂out,k#50.

Since we are only interested in one single copy of the out
we drop the labelj. The parametersa is given by Alice’s
measurement strategy and determines the noise penalty
to her homodyne detections. The gainsGx and Gp can be
manipulated by Bob as well as the parametersb determining
the noise distribution of Bob’s original mode. The set
input states may contain pure Gaussian states with a cohe
amplitude, described byx̂in5^x̂in&1sv

21x̂(0) and p̂in5^ p̂in&
1svp̂(0), where Victor can choose in each trial the cohere
amplitude and if and to what extent the input is squee
~parametersv). Since Bob always wants to reproduce t
input amplitude, he is restricted to unit gain, symmetric
both quadraturesGx5Gp51. First, after obtaining the outpu
states from Bob, Victor verifies if their amplitudes match t
corresponding input amplitudes. If not, all the following co
siderations concerning the excess noise are redundant
cause Alice and Bob can always manipulate this noise
fiddling the gain ~less than unit gain reduces the exce
noise!. If Victor finds overlapping amplitudes in all trials~at
least within some error range!, he looks at the excess noise
each trial. For that purpose, let us define the normalized v
ance

Vout,in
x̂ [

^D~ x̂out2 x̂in!2&

^D x̂2&vacuum

, ~10!

and analogouslyVout,in
p̂ with x̂→ p̂ throughout @^D0̂2&

[var(0̂)#. Using Eqs.~8! with unit gain, we obtain the prod
uct

Vout,in
x̂ Vout,in

p̂ 5~sa
221sb

22!~sa
21sb

2!. ~11!
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It is minimized forsa5sb , yieldingVout,in
x̂ Vout,in

p̂ 54. The op-
timum value of 4 is exactly the result we obtain for what w

may call classical teleportationVtel,in
x̂ (r 50)Vtel,in

p̂ (r 50)54,
using Eqs.~6! with subscript out→tel in Eq. ~10!. Thus, we
can write our first ‘‘fundamental’’ limit for teleporting state
with a coherent amplitude as

Vout,in
x̂ Vout,in

p̂ >Vtel,in
x̂ ~r 50!Vtel,in

p̂ ~r 50!54. ~12!

If Victor, comparing the output states with the input stat
always finds violations of this inequality, he may alrea
have big confidence in Alice’s and Bob’s honesty~i.e., that
they indeed have used entanglement!. Equation ~12! may
also enable us already to assess if a scheme or protoc
capable of quantum teleportation. Alternatively, instead

looking at the productsVout,in
x̂ Vout,in

p̂ , we could also use the

sumsVout,in
x̂ 1Vout,in

p̂ 5sa
221sb

221sa
21sb

2 that are minimized

for sa5sb51. Then we find the classical boundaryVout,in
x̂

1Vout,in
p̂ >4.

However, taking into account all the assumptions ma
for the derivation of Eq.~12!, this boundary appears to b
less fundamental. First, we have only assumed a lin
model. Secondly, we have only considered the variance
two conjugate observables and a certain kind of meas
ment of these. An entirely rigorous criterion for quantu
teleportation should take into account all possible variab
measurements and strategies that can be used by Alice
Bob. Another ‘‘problem’’ of our boundary Eq.~12! is that
the variancesVout,in are not directly measurable, because
input state is destroyed by the teleportation process. H
ever, for Gaussian input states, Victor can combine
knowledge of the input variancesVin with the detected vari-
ancesVout in order to inferVout,in. With a more specific se
of Gaussian input states, namely coherent states, the
noisy model for classical communication allows us to det
mine the directly measurable ‘‘fundamental’’ limit for th
normalized variances of the output states

Vout
x̂ Vout

p̂ >9. ~13!

But still we need to bear in mind that we did not consider
possible strategies of Alice and Bob. Also for arbitrarysv
~set of input states contains all coherent and squeezed sta!,
Eq. ~13! represents a classical boundary, as

Vout
x̂ Vout

p̂ 5~sv
221sa

221sb
22!~sv

21sa
21sb

2! ~14!

is minimized for sv5sa5sb , yielding Vout
x̂ Vout

p̂ 59. How-
ever, sincesv is unknown to Alice and Bob in every trial
they can attain this classical minimum only by accident. F
sv fixed, e.g.,sv51 ~set of input states contains ‘‘only’
coherent states!, Alice and Bob knowing thissv can always

satisfyVout
x̂ Vout

p̂ 59 in the classical model. Alternatively, th

sums Vout
x̂ 1Vout

p̂ 5sv
221sa

221sb
221sv

21sa
21sb

2 are mini-
mized with sa5sb51. In this case, we obtain th

sv-dependent boundaryVout
x̂ 1Vout

p̂ >sv
221sv

214. Without
knowingsv , Alice and Bob can always attain this minimu
02230
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in the classical model. In every trial, Victor must combin
his knowledge ofsv with the detected output variances
order to find violations of this sum inequality.

Ralph and Lam@24# define the classical boundaries

Vc
x̂1Vc

p̂>2 ~15!

and

Tout
x̂ 1Tout

p̂ <1, ~16!

using the conditional variance

Vc
x̂[

^D x̂out
2 &

^D x̂2&vacuum
S 12

u^D x̂outD x̂in&u2

^D x̂out
2 &^D x̂in

2 &
D , ~17!

and analogously forVc
p̂ with x̂→ p̂ throughout, and the trans

fer coefficient

Tout
x̂ [

S out
x̂

S in
x̂

, ~18!

and analogouslyTout
p̂ with x̂→ p̂ throughout. Here,S denotes

the signal to noise ratio for the square of the mean am

tudes, namelyS out
x̂ 5^x̂out&

2/^D x̂out
2 &.

Alice and Bob using only classical communication are n
able to violateeitherof the two inequalities Eq.~15! and Eq.
~16!. In fact, these boundaries are two independent lim
each of them unexceedable in a classical scheme. Howe

Alice and Bob can simultaneously approachVc
x̂1Vc

p̂52 and

Tout
x̂ 1Tout

p̂ 51 using either an asymmetric classical detect
and transmission scheme with coherent-state inputs o
symmetric classical scheme with squeezed-state inputs@24#.
For quantum teleportation, Ralph and Lam@24# require their

classical limits be simultaneously exceeded,Vc
x̂1Vc

p̂,2 and

Tout
x̂ 1Tout

p̂ .1. This is only possible using more than 3 d
squeezing in the entanglement source@24#. Apparently, these
criteria determine a classical boundary different from ours
Eq. ~12!. For example, in unit-gain teleportation, our in
equality Eq.~12! is violated for any nonzero squeezingr
.0. Let us briefly explain why we encounter this discre
ancy. We have a priori assumed unit gain in our scheme
achieve outputs and inputs overlapping in their mean valu
This assumption is, of course, motivated by the assessm
that good teleportation means good similarity between in
and outputstates~here, to be honest, we already have som
thing in mind similar to the fidelity, introduced in the nex
section!. First, Victor has to check the match of the amp
tudes before looking at the variances. Ralph and Lam pe
arbitrary gain, because they are not interested in the sim
ity of input and outputstates, but in certain correlations tha
manifest separately in the individual quadratures@25#. This
point of view originates from the context of quantum no
demolition~QND! measurements@26#, which are focused on
a single QND variable while the conjugate variable is not
interest. For arbitrary gain, an inequality as in Eq.~16!, con-
taining the input and output mean values, has to be adde
9-5
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an inequality only for variances as in Eq.~15!. Ralph and
Lam’s best classical protocol permits output states co
pletely different from the input states, e.g., via asymme
detection where the lack of information in one quadrat
leads on average to output states with amplitudes comple
different from the input states. The asymmetric sche
means that Alice isnot attempting to gain as much informa
tion about thequantum stateas possible, as in an Arthurs
Kelly measurement@21#. The Arthurs-Kelly measuremen
however, is exactly what Alice should do in ourbestclassi-
cal protocol, i.e., classical teleportation. Therefore, our b
classical protocol always achieves output states alre
pretty similar to the input states. Apparently, ‘‘the best’’ th
can be classically achieved has a different meaning fr
Ralph and Lam’s point of view and from ours. Then it is n
surprise that the classical boundaries differ as well. Ap
from these differences, however, Ralph and Lam’s criteria
have something in common with our criterion given by E
~12!: they also do not satisfy the rigor we require from c
teria for quantum teleportation taking into account eve
thing Alice and Bob can do. By limiting the set of inpu
states to coherent states, we are able to present such a
ous criterion in the next section.

B. The fidelity criterion for coherent-state teleportation

The rigorous criterion we are looking for to determine t
best classical teleportation and to quantify the distinction
tween classical and quantum teleportation relies on the fi
ity F, for an arbitrary input stateuc in& defined by@13#

F[^c inur̂outuc in&. ~19!

It is an excellent measure for the similarity between the in
and the output state and equals one only ifr̂out5uc in&^c inu.
Now Alice and Bob know that Victor draws his statesuc in&
from a fixed set, but they do not know which particular sta
is drawn in a single trial. Therefore, an average fide
should be considered@13#,

Fav5E P~ uc in&)^c inur̂outuc in&duc in&, ~20!

where P(uc in&) is the probability of drawing a particula
stateuc in&, and the integral runs over the entire set of inp
states. If the set of input states contains simply all poss
quantum states in an infinite-dimensional Hilbert space~i.e.,
the input state is completely unknown apart from the Hilbe
space dimension!, the best average fidelity achievable wit
out entanglement is zero. If the set of input states is restric
to coherent states of amplitudea in5xin1 ip in and F

5^a inur̂outua in&, on average, the fidelity achievable in
purely classical scheme~when averaged across the ent
complex plane! is bounded by@13#

Fav<
1

2
. ~21!
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Let us illustrate these nontrivial results with our single-mo
teleportation equations. Up to a factorp, the fidelity F

5^a inur̂ telua in& is the Q function of the teleported mode
evaluated fora in :

F5pQtel~a in!5
1

2Asxsp

expF2~12G!2S xin
2

2sx
1

pin
2

2sp
D G ,
~22!

whereG is the gain from the previous sections andsx and
sp are the variances of theQ function of the teleported mode
for the corresponding quadratures. These variances are
cording to Eqs. ~7! for a coherent-state input an

^D x̂2&vacuum5^D p̂2&vacuum5
1
4 given by

sx5sp5
1

4
~11G2!1

e2r

8
~G21!21

e22r

8
~G11!2.

~23!

For classical teleportation (r 50) and G51, we obtainsx

5sp5 1
2 1 1

4 Vtel,in
x̂ (r 50)5 1

2 1 1
4 Vtel,in

p̂ (r 50)5 1
2 1 1

2 51 and
indeedF5Fav5

1
2 . In order to obtain a better fidelity, en

tanglement is necessary. Then, ifG51, we obtainF5Fav
. 1

2 for any r .0. For r 50, the fidelity drops to zero asG
→` since the mean amplitude of the teleported state d
not match that of the input state and the excess noise
creases. Forr 50 and G50, the fidelity becomesF
5exp(2uainu2). Upon averaging over all possible coheren
state inputs, this fidelity also vanishes. Assuming nonu
gain, it is crucial to consider the average fidelityFavÞF.
When averaging across the entire complex plane, any n
unit gain yieldsFav50. This is exactly why Victor should
first check the match of the amplitudes for different inp
states. If Alice and Bob are cheating and fiddle the gain i
classical scheme, a sufficiently large input amplitude reve
the truth. These considerations also apply to the asymme
classical detection and transmission scheme with a cohe
state input@24# discussed in the previous section. Of cour
the asymmetric scheme does not provide an improvemen
the fidelity. In fact, the average fidelity drops to zero, if Alic
detects only one quadrature~and gains complete informatio
about this quadrature! and Bob obtains the full information
about the measured quadrature, but no information abou
second quadrature. In an asymmetric classical scheme, A
and Bob stay far within the classical domainFav,

1
2 . The

best classical scheme with respect to the fidelity is the s
metric one~‘‘classical teleportation’’! with Fav5

1
2 .

The supposed limitation of the fidelity criterion that th
set of input states contains ‘‘only’’ coherent states is co
pensated by having an entirely rigorous criterion. Of cour
the fidelity criterion does not limit the possible input stat
for which the presented protocol works. It does not mean
can only teleport coherent states~as we will clearly see in the
next section!. However, so far, it is the only criterion tha
enables the experimentalist to rigorously verify quantu
teleportation. That is why Furusawaet al. @12# were happy to
have used coherent-state inputs, because they could rely
9-6



nt
p

h
t

p

e
u
a

m

n
e-
p

he

-
t,
e

gl
tio

-
ha
nt
an

un
e
re
ce
in
ly
,
gl
no

tep

n

-

d on
se
not

ay

re
s

ed

nt
n

or
cri-

I A,
nt
en-
ode

, as
lph
n-

ired
ctly

om-
de-
ion.

ity
er
to

er-
r

il-

the

-

wo

BROADBAND TELEPORTATION PHYSICAL REVIEW A62 022309
strict and rigorous criterion~and not only because cohere
states are the most readily available source for the state
parer Victor!.

C. Teleporting entangled states: entanglement swapping

From a true quantum teleportation device, we require t
it can not only teleport nonorthogonal states very similar
classical states~such as coherent states!, but also extremely
nonclassical states such as entangled states. When tele
ing one half of an entangled state~‘‘entanglement swap-
ping’’ !, we are certainly much more interested in the pres
vation of the inseparability than in the match of any inp
and output amplitudes. We can say that entanglement sw
ping is successful, if the initially unentangled modes beco
entangled via the teleportation process~even, if this is ac-
companied by a decrease of the quality of the initial e
tanglement!. In Ref. @20# has been shown, that the singl
mode teleportation scheme enables entanglement swap
for any nonzero squeezing (r .0) in the two initial entangled
states~of which one provides the teleporter’s input and t
other one the EPR channel or vice versa!.

Let us introduce ‘‘Claire’’ who performs the Bell detec
tion of modes 2 and 3~Fig. 3!. Before her measuremen
mode 1~Alice’s mode! is entangled with mode 2, and mod
3 is entangled with mode 4~Bob’s mode! @20#. Due to
Claire’s detection, mode 1 and 4 are projected on entan
states. Entanglement is teleported in every single projec
~for every measured value ofxu andpv) without any further
local displacement@27#. How can we verify that entangle
ment swapping was successful? Simply, by verifying t
Alice and Bob, who initially did not share any entangleme
are able to perform quantum teleportation using mode 1
4 after entanglement swapping@20#. But then we urgently
need a rigorous criterion for quantum teleportation that
ambigously recognizes when Alice and Bob have used
tanglement and when they have not. Now, again, we can
on the fidelity criterion for coherent-state teleportation. Ali
and Bob again have to convince Victor that they are us
entanglement and are not cheating. Of course, this is on
reliable verification scheme of entanglement swapping
one can be sure that Alice and Bob did not share entan
ment prior to entanglement swapping and that Claire is
allowed to perform unit-gain displacements~or that Claire is

FIG. 3. Entanglement swapping using the two entangled t
mode squeezed vacuum states of modes 1 and 2~shared by Alice
and Claire! and of modes 3 and 4~shared by Claire and Bob! as in
Ref. @20#.
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not allowed to receive any classical information!. Otherwise,
Victor’s coherent-state input could be teleported step by s
from Alice to Claire~with unit gain! and from Claire to Bob
~with unit gain!. This protocol, however, requires more tha
3 dB squeezing in both entanglement sources~if equally
squeezed! to ensureFav.

1
2 @20#. Using entanglement swap

ping, Alice and Bob can achieveFav.
1
2 for any squeezing,

but one of them has to perform local displacements base
Claire’s measurement results. Any gain is allowed in the
displacements, since in entanglement swapping, we are
interested in the transfer of coherent amplitudes~and the two
initial two-mode squeezed states are vacuum states anyw!.
But only the optimum gainGswap5tanh 2r ensuresFav.

1
2

for any squeezing and provides the optimum fidelity@20#.
Unit gainGswap51 in entanglement swapping would requi
more than 3 dB squeezing in both entanglement source~if
equally squeezed! to achieveFav.

1
2 @20#, or to confirm the

teleportation of entanglement via detection of the combin
entangled modes@19#.

We will also give a broadband protocol of entangleme
swapping as a ‘‘nonunit-gain teleportation.’’ The verificatio
of entanglement swapping via the fidelity criterion f
coherent-state teleportation demonstrates how useful this
terion is. Less rigorous criteria, as presented in Sec. II
cannot reliably tell us if Alice and Bob use entangleme
emerging from entanglement swapping. Furthermore, the
tanglement swapping scheme demonstrates that a two-m
squeezed state enablestrue quantum teleportation for any
nonzero squeezing. Requiring more than 3 dB squeezing
it is necessary for quantum teleportation according to Ra
and Lam@24#, is not necessary for the teleporation of e
tanglement.

IV. BROADBAND ENTANGLEMENT

In this section, we demonstrate that the EPR state requ
for broadband teleportation can be generated either dire
by nondegenerate parametric down conversion or by c
bining two independently squeezed fields produced via
generate down conversion or any other nonlinear interact

First, we review the results of Ref.@15# based on the
input-output formalism of Collett and Gardiner@28# where a
nondegenerate optical parametric amplifier in a cav
~NOPA! is studied. We will see that the upper and low
sidebands of the NOPA output have correlations similar
those of the two-mode squeezed state in Eqs.~2!. The optical
parametric oscillator is considered polarization nondegen
ate but frequency ‘‘degenerate’’~equal center frequency fo
the orthogonally polarized output modes!. The interaction
between the two modes is due to the nonlinearx (2) medium
~in a cavity! and may be described by the interaction Ham
tonian

ĤI5 i\k~ â1
†â2

†e22iv0t2â1â2e2iv0t!. ~24!

The undepleted pump field amplitude at frequency 2v0 is
described as ac number and has been absorbed into
couplingk which also contains thex (2) susceptibility. With-
out loss of generalityk can be taken to be real. The dynam

-

9-7
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ics of the two cavity modesâ1 and â2 are governed by the
above interaction Hamiltonian, and input-output relatio
can be derived relating the cavity modes to the exter
vacuum input modesb̂1

(0) and b̂2
(0) , the external output

modesb̂1 andb̂2, and two unwanted vacuum modesĉ1
(0) and

ĉ2
(0) describing cavity losses~Fig. 4!. Recall, the superscrip

(0) refers to vacuum modes. We define uppercase opera
in the rotating frame about the center frequencyv0,

Ô~ t !5ô~ t !eiv0t, ~25!

with Ô5@Â1,2;B̂1,2;B̂1,2
(0) ;Ĉ1,2

(0)# and the full Heisenberg op

eratorsô5@ â1,2;b̂1,2;b̂1,2
(0) ; ĉ1,2

(0)#. By the Fourier transforma
tion

Ô~V!5
1

A2p
E dt Ô~ t !eiVt, ~26!

the fields are now described as functions of the modula
frequency V with commutation relation@Ô(V),Ô†(V8)#

5d(V2V8) for B̂1,2, B̂1,2
(0) and Ĉ1,2

(0) since @Ô(t),Ô†(t8)#
5d(t2t8). Expressing the outgoing modes in terms of t
incoming vacuum modes, one obtains@15#

B̂j~V!5G~V!B̂j
(0)~V!1g~V!B̂k

(0)†~2V!1Ḡ~V!Ĉj
(0)~V!

1ḡ~V!Ĉk
(0)†~2V!, ~27!

wherek532 j , j 51,2 ~so k refers to the opposite mode t
j ), and with coefficients to be specified later. The two cav
modes have been assumed to be both on resonance with
the pump frequency atv0.

Let us investigate the lossless case where the output fi
become

B̂j~V!5G~V!B̂j
(0)~V!1g~V!B̂k

(0)†~2V!, ~28!

FIG. 4. The NOPA as in Ref.@15#. The two cavity modesâ1 and

â2 interact due to the nonlinearx (2) medium. The modesb̂1
(0) and

b̂2
(0) are the external vacuum input modes,b̂1 and b̂2 are the exter-

nal output modes,ĉ1
(0) andĉ2

(0) are the vacuum modes due to cavi
losses,g is a damping rate andr is a loss parameter of the cavity
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with the functionsG(V) andg(V) of Eq. ~27! simplifying
to

G~V!5
k21g2/41V2

~g/22 iV!22k2
,

~29!

g~V!5
kg

~g/22 iV!22k2
.

Here, the parameterg is a damping rate of the cavity~Fig. 4!
and is assumed to be equal for both polarizations. Equa
~28! represents the input-output relations for a lossl
NOPA.

Following Ref. @29#, we introduce frequency resolve
quadrature amplitudes given by

X̂j~V!5
1

2
@B̂j~V!1B̂j

†~2V!#,

P̂j~V!5
1

2i
@B̂j~V!2B̂j

†~2V!#,

~30!

X̂j
(0)~V!5

1

2
@B̂j

(0)~V!1B̂j
(0)†~2V!#,

P̂j
(0)~V!5

1

2i
@B̂j

(0)~V!2B̂j
(0)†~2V!#,

providedV!v0. Using them Eq.~28! becomes

X̂j~V!5G~V!X̂j
(0)~V!1g~V!X̂k

(0)~V!,
~31!

P̂j~V!5G~V!P̂j
(0)~V!2g~V!P̂k

(0)~V!.

Here, we have usedG(V)5G* (2V) and g(V)
5g* (2V).

At this juncture, we show that the output quadratures o
lossless NOPA in Eqs.~31! correspond to two independentl
squeezed modes coupled to a two-mode squeezed state
beam splitter. The operational significance of this fact is t
the EPR state required for broadband teleportation can
created either by nondegenerate parametric down conver
as described by the interaction Hamiltonian in Eq.~24!, or by
combining at a beam splitter two independently squee
fields generated via degenerate down conversion@30# ~as
done in the teleportation experiment of Ref.@12#!.

Let us thus define the superpositions of the two out
modes~barred quantities!

B̂̄1[
1

A2
~B̂11B̂2!,

~32!

B̂̄2[
1

A2
~B̂12B̂2!,

and of the two vacuum input modes
9-8
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B̂̄1
(0)[

1

A2
~B̂1

(0)1B̂2
(0)!,

~33!

B̂̄2
(0)[

1

A2
~B̂1

(0)2B̂2
(0)!.

In terms of these superpositions, Eq.~28! becomes

B̂̄1~V!5G~V!B̂̄1
(0)~V!1g~V!B̂̄1

(0)†~2V!,
~34!

B̂̄2~V!5G~V!B̂̄2
(0)~V!2g~V!B̂̄2

(0)†~2V!.

In Eqs. ~34!, the initially coupled modes of Eq.~28! are
decoupled, corresponding to two independent degene
parametric amplifiers.

In the limit V→0, the two modes of Eqs.~34! are each in
the same single-mode squeezed state as the two mod
Eqs. ~1!. More explicitly, by setting G(0)5coshr and
g(0)5sinhr, the annihilation operators

B̂̄15coshrB̂̄1
(0)1sinhrB̂̄1

(0)†,
~35!

B̂̄25coshrB̂̄2
(0)2sinhrB̂̄2

(0)†,

have the quadrature operators

X̂̄15er X̂̄1
(0) , P̂̄15e2r P̂̄1

(0) ,
~36!

X̂̄25e2r X̂̄2
(0) , P̂̄25er P̂̄2

(0) .

From the alternative perspective of superimposing two in
pendently squeezed modes at a 50/50 beam splitter to o
the EPR state, we must simply invert the transformation
Eqs.~32! and recouple the two modes

B̂15
1

A2
~ B̂̄11 B̂̄2!5

1

A2
@coshr ~ B̂̄1

(0)1 B̂̄2
(0)!

1sinhr ~ B̂̄1
(0)†2 B̂̄2

(0)†!#

5coshrB̂1
(0)1sinhrB̂2

(0)†,
~37!

B̂25
1

A2
~ B̂̄12 B̂̄2!5

1

A2
@coshr ~ B̂̄1

(0)2 B̂̄2
(0)!

1sinhr ~ B̂̄1
(0)†1 B̂̄2

(0)†!#

5coshrB̂2
(0)1sinhrB̂1

(0)†,

and
02230
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X̂15
1

A2
~ X̂̄11 X̂̄2!5

1

A2
~er X̂̄1

(0)1e2r X̂̄2
(0)!,

P̂15
1

A2
~ P̂̄11 P̂̄2!5

1

A2
~e2r P̂̄1

(0)1er P̂̄2
(0)!,

~38!

X̂25
1

A2
~ X̂̄12 X̂̄2!5

1

A2
~er X̂̄1

(0)2e2r X̂̄2
(0)!,

P̂25
1

A2
~ P̂̄12 P̂̄2!5

1

A2
~e2r P̂̄1

(0)2er P̂̄2
(0)!,

as the two-mode squeezed state in Eqs.~2!. The coupled
modes in Eqs.~37! expressed in terms ofB̂1

(0) and B̂2
(0) are

the two NOPA output modes of Eq.~28!, if V→0 and
G(0)5coshr, g(0)5sinhr.

More generally, forVÞ0, the quadratures correspondin
to Eqs.~34!,

X̂̄1~V!5@G~V!1g~V!# X̂̄1
(0)~V!,

P̂̄1~V!5@G~V!2g~V!# P̂̄1
(0)~V!,

~39!
X̂̄2~V!5@G~V!2g~V!# X̂̄2

(0)~V!,

P̂̄2~V!5@G~V!1g~V!# P̂̄2
(0)~V!,

are coupled to yield

X̂1~V!5
1

A2
@G~V!1g~V!# X̂̄1

(0)~V!

1
1

A2
@G~V!2g~V!# X̂̄2

(0)~V!,

P̂1~V!5
1

A2
@G~V!2g~V!# P̂̄1

(0)~V!

1
1

A2
@G~V!1g~V!# P̂̄2

(0)~V!,

~40!

X̂2~V!5
1

A2
@G~V!1g~V!# X̂̄1

(0)~V!

2
1

A2
@G~V!2g~V!# X̂̄2

(0)~V!,

P̂2~V!5
1

A2
@G~V!2g~V!# P̂̄1

(0)~V!

2
1

A2
@G~V!1g~V!# P̂̄2

(0)~V!.
9-9
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The quadratures in Eqs.~40! are precisely the NOPA outpu
quadratures of Eqs.~31! as anticipated. With the function
G(V) andg(V) of Eqs.~29!, we obtain

G~V!2g~V!5
g/22k1 iV

g/21k2 iV
,

~41!

G~V!1g~V!5
~g/21k!21V2

~g/22 iV!22k2
.

For the limitsV→0, k→g/2 ~the limit of infinite squeez-
ing!, we obtain @G(V)2g(V)#→0 and @G(V)1g(V)#
→`. If V→0, k→0 ~the classical limit of no squeezing!,
then @G(V)2g(V)#→1 and@G(V)1g(V)#→1. Thus for
V→0, Eqs.~40! in the above-mentioned limits correspon
to Eqs.~38! in the analogous limitsr→` ~infinite squeezing!
andr→0 ~no squeezing!. For large squeezing, apparently th
individual modes of the ‘‘broadband two-mode squeez
state’’ in Eqs. ~40! are very noisy. In general, the inpu
vacuum modes are amplified in the NOPA, resulting in o
put modes with large fluctuations. But the correlations
tween the two modes increase simultaneously, so

@X̂1(V)2X̂2(V)#→0 and@ P̂1(V)1 P̂2(V)#→0 for V→0
andk→g/2.

The squeezing spectra of the independently squee
modes can be derived from Eqs.~39! and are given by the
spectral variances

^D X̂̄1
†~V!D X̂̄1~V8!&5^D P̂̄2

†~V!D P̂̄2~V8!&

5d~V2V8!uS1~V!u2^DX̂2&vacuum,
~42!

^D X̂̄2
†~V!D X̂̄2~V8!&5^D P̂̄1

†~V!D P̂̄1~V8!&

5d~V2V8!uS2~V!u2^DX̂2&vacuum,

here with uS1(V)u25uG(V)1g(V)u2 and uS2(V)u2

5uG(V)2g(V)u2 (^DX̂2&vacuum5
1
4 ). In general, Eqs.~42!

may define arbitrary squeezing spectra of two statistic
identical but independent broadband squeezed states.
two corresponding squeezed modes

X̂̄1~V!5S1~V!X̂̄1
(0)~V!, P̂̄1~V!5S2~V! P̂̄1

(0)~V!,
~43!

X̂̄2~V!5S2~V!X̂̄2
(0)~V!, P̂̄2~V!5S1~V! P̂̄2

(0)~V!,

whereS2(V) refers to the quiet quadratures andS1(V) to
the noisy ones, can be used as EPR source for the follow
broadband teleportation scheme when they are combined
beam splitter:
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X̂1~V!5
1

A2
S1~V!X̂̄1

(0)~V!1
1

A2
S2~V!X̂̄2

(0)~V!,

P̂1~V!5
1

A2
S2~V! P̂̄1

(0)~V!1
1

A2
S1~V! P̂̄2

(0)~V!,

~44!

X̂2~V!5
1

A2
S1~V!X̂̄1

(0)~V!2
1

A2
S2~V!X̂̄2

(0)~V!,

P̂2~V!5
1

A2
S2~V! P̂̄1

(0)~V!2
1

A2
S1~V! P̂̄2

(0)~V!.

Before obtaining this ‘‘broadband two-mode squeez
vacuum state,’’ the squeezing of the two initial modes m
be generated by any nonlinear interaction, e.g., apart f
the OPA, also by four-wave mixing in a cavity@31#.

V. TELEPORTATION OF A BROADBAND FIELD

For the teleportation of an electromagnetic field with
nite bandwidth, the EPR state shared by Alice and B
should be a broadband two-mode squeezed state, as
cussed in the previous section. The incoming electrom
netic field to be teleportedÊin(z,t)5Êin

(1)(z,t)1Êin
(2)(z,t),

traveling in positive-z direction and having a single polariz
tion, can be described by the positive-frequency part

Êin
(1)~z,t !5@Êin

(2)~z,t !#†

5E
W

dv
1

A2p
S u\v

2cAtr
D 1/2

b̂in~v!e2 iv(t2z/c).

~45!

The integral runs over a relevant bandwidth W centered
v0 , Atr represents the transverse structure of the field anu
is a units-dependent constant~in Gaussian unitsu54p)
@29#. The annihilation and creation operatorsb̂in(v) and
b̂in

† (v) satisfy the commutation relations@ b̂in(v),b̂in(v8)#

50 and @ b̂in(v),b̂in
† (v8)#5d(v2v8). The incoming elec-

tromagnetic field may now be described in a rotating fra
as

B̂in~ t !5X̂in~ t !1 i P̂ in~ t !5@ x̂in~ t !1 i p̂ in~ t !#eiv0t5b̂in~ t !eiv0t,
~46!

as in Eq.~25! with

B̂in~V!5
1

A2p
E dtB̂in~ t !eiVt, ~47!

as in Eq.~26! and commutation relations@B̂in(V),B̂in(V8)#

50, @B̂in(V),B̂in
† (V8)#5d(V2V8).

Of course, the unknown input field is not completely a
bitrary. In the case of an EPR state from the NOPA, we w
9-10
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see that for successful quantum teleportation, the cente
the input field’s spectral rangeW should be around the
NOPA center frequencyv0 ~half the pump frequency of the
NOPA!. Further, as we shall see, its spectral width should
small with respect to the NOPA bandwidth to benefit fro
the EPR correlations of the NOPA output. As for the tran
verse structure and the single polarization of the input fie
we assume that both are known to all participants.

In spite of these complications, the teleportation proto
is performed in a fashion almost identical to the ze
bandwidth case. The EPR state of modes 1 and 2 is prod
either directly as the NOPA output or by the superposition
two independently squeezed beams, as discussed in the
ceding section. Mode 1 is sent to Alice and mode 2 is sen
Bob ~see Fig. 1! where for the case of the NOPA, thes
modes correspond to two orthogonal polarizations. Alice
ranges to superimpose mode 1 with the unknown input fi
at a 50/50 beam splitter, yielding for the relevant quadratu

X̂u~V!5
1

A2
X̂in~V!2

1

A2
X̂1~V!,

~48!

P̂v~V!5
1

A2
P̂in~V!1

1

A2
P̂1~V!.

Using Eqs.~48! we will find it useful to write the quadrature
operators of Bob’s mode 2 as

X̂2~V!5X̂in~V!2@X̂1~V!2X̂2~V!#2A2X̂u~V!

5X̂in~V!2A2S2~V!X̂̄2
(0)~V!2A2X̂u~V!,

~49!

P̂2~V!5 P̂in~V!1@ P̂1~V!1 P̂2~V!#2A2P̂v~V!

5 P̂in~V!1A2S2~V! P̂̄1
(0)~V!2A2P̂v~V!.

Here we have used Eqs.~44!. How is Alice’s ‘‘Bell detec-
tion’’ which yields classical photocurrents performed? T
photocurrent operators for the two homodyne detectio
î u(t)}uELO

X uX̂u(t) and î v(t)}uELO
P uP̂v(t), can be written

~without loss of generality we assumeV.0) as

î u~ t !}uELO
X u E

W
dVhel~V!@X̂u~V!e2 iVt1X̂u

†~V!eiVt#,

~50!

î v~ t !}uELO
P u E

W
dVhel~V!@ P̂v~V!e2 iVt1 P̂v

†~V!eiVt#,

with a noiseless, classical local oscillator~LO! and hel(V)
representing the detectors’ responses within their electr
bandwidthsDVel : hel(V)51 for V<DVel and zero oth-
erwise. We assume that the relevant bandwidth
(;MHz) is fully covered by the electronic bandwidth of th
detectors (;GHz). Therefore,hel(V)[1 in Eqs.~50!. Con-
tinuously in time, these photocurrents are measured and
forward to Bob via a classical channel with sufficient R
02230
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bandwidth. Each of them must be viewed as complex qu
tities in order to respect the RF phase. The whole feed
ward process, continuously performed in the time dom
~i.e., performed every inverse-bandwidth time!, includes Al-
ice’s detections, her classical transmission and correspon
amplitude and phase modulations of Bob’s EPR beam. A
relative delays between the classical information convey
by Alice and Bob’s EPR beam must be such thatDt
!1/DV with the inverse bandwidth of the EPR source 1/DV
~for an EPR state from the NOPA:Dt!g21). Expressed in
the frequency domain, the final modulations can be descri
by the classical ‘‘displacements’’

X̂2~V!→X̂tel~V!5X̂2~V!1G~V!A2Xu~V!,
~51!

P̂2~V!→ P̂tel~V!5 P̂2~V!1G~V!A2Pv~V!.

The parameterG(V) is again a suitably normalized gai
~now, in general, depending onV).

For G(V)51, Bob’s displacements from Eqs.~51! ex-
actly eliminateX̂u(V) and P̂v(V) in Eqs. ~49!. The same
applies to the Hermitian conjugate versions of Eqs.~49! and
Eqs.~51!. We obtain the teleported field

X̂tel~V!5X̂in~V!2A2S2~V!X̂̄2
(0)~V!,

~52!

P̂tel~V!5 P̂in~V!1A2S2~V! P̂̄1
(0)~V!.

For an arbitrary gainG(V), the teleported field becomes

X̂tel~V!5G~V!X̂in~V!2
G~V!21

A2
S1~V!X̂̄1

(0)~V!

2
G~V!11

A2
S2~V!X̂̄2

(0)~V!,

~53!

P̂tel~V!5G~V!P̂in~V!1
G~V!21

A2
S1~V! P̂̄2

(0)~V!

1
G~V!11

A2
S2~V! P̂̄1

(0)~V!.

In general, these equations contain non-Hermitian opera
with nonreal coefficients. Let us assume an EPR state f
the NOPA, S6(V)5G(V)6g(V). In the zero-bandwidth
limit, the quadrature operators are Hermitian and the coe
cients in Eqs.~52! and Eqs.~53! are real. ForV→0 and
G(V)51, the teleported quadratures computed from
above equations are, in agreement with the zero-bandw
results, given byX̂tel5X̂in and P̂tel5 P̂in , if k→g/2 and
hence @G(V)2g(V)#→0 ~infinite squeezing!. Thus, for
zero bandwidth and an infinite degree of EPR correlatio
Alice’s unknown quantum state of mode ‘‘in’’ is exactl
reconstituted by Bob after generating the output mode ‘‘te
through unit-gain displacements. However, we are parti
larly interested in the physical case of finite bandwidth. A
9-11
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parently, in unit-gain teleportation, the complete disappe
ance of the two classical quduties for perfect teleportat
requiresV50 ~with an EPR state from the NOPA!. Does
this mean an increasing bandwidth always leads to dete
rating quantum teleportation? In order to make quantita
statements about this issue, we consider input states w
coherent amplitude~unit-gain teleportation! and calculate the
spectral variances of the teleported quadratures fo
coherent-state input to obtain a ‘‘fidelity spectrum.’’

A. Teleporting broadband Gaussian fields
with a coherent amplitude

Let us employ teleportation equations for the real a
imaginary parts of the non-Hermitian quadrature operat
In order to achieve a nonzero average fidelity when telep
ing fields with a coherent amplitude, we assumeG(V)51.
According to Eqs.~52!, the real and imaginary parts of th
teleported quadratures are

ReX̂tel~V!5ReX̂in~V!2A2 Re@S2~V!#ReX̂̄2
(0)~V!

1A2 Im@S2~V!#Im X̂̄2
(0)~V!,

ReP̂tel~V!5ReP̂in~V!1A2 Re@S2~V!#ReP̂̄1
(0)~V!

2A2 Im@S2~V!#Im P̂̄1
(0)~V!,

~54!

Im X̂tel~V!5Im X̂in~V!2A2 Im@S2~V!#ReX̂̄2
(0)~V!

2A2 Re@S2~V!#Im X̂̄2
(0)~V!,

Im P̂tel~V!5Im P̂in~V!1A2 Im@S2~V!#ReP̂̄1
(0)~V!

1A2 Re@S2~V!#Im P̂̄1
(0)~V!.

Their only nontrivial commutators are

@ReX̂j~V!,ReP̂j~V8!#5@ Im X̂j~V!,Im P̂j~V8!#

5~ i /4!d~V2V8!, ~55!

where we have used Eqs.~30! and @B̂j (V),B̂j
†(V8)#5d(V

2V8).
We define spectral variances similar to Eq.~10!,

^D@ReX̂tel~V!2ReX̂in~V!#D@ReX̂tel~V8!2ReX̂in~V8!#&

^D ReX̂2&vacuum

[d~V2V8!Vtel,in
ReX̂~V!. ~56!

We analogously defineVtel,in
Re P̂(V), Vtel,in

Im X̂(V), and Vtel,in
Im P̂(V)

with ReX̂→ReP̂, etc., throughout.
From Eqs.~54!, we obtain

Vtel,in
ReX̂~V!5Vtel,in

Re P̂~V!5Vtel,in
Im X̂~V!5Vtel,in

Im P̂~V!52uS2~V!u2.
~57!
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Here we have used that

^D ReX̂̄ j
(0)~V!D ReX̂̄ j

(0)~V8!&5d~V2V8!^D ReX̂2&vacuum

5^D Im X̂̄ j
(0)~V!D Im X̂̄ j

(0)~V8!&5d~V2V8!

3^D Im X̂2&vacuum, ~58!

and analogously for the other quadrature, and

^D ReX̂̄ j
(0)~V!D Im X̂̄ j

(0)~V8!&

5^D ReP̂̄ j
(0)~V!D Im P̂̄ j

(0)~V8!&50. ~59!

Thus, for unit-gain teleportation at all frequencies, it tur
out that the variance of each teleported quadrature is g
by the variance of the input quadrature plus twice the sque
ing spectrum of the quiet quadrature of a decoupled mod
a ‘‘broadband squeezed state’’ as in Eqs.~43!. The excess
noise in each teleported quadrature after the teleporta
process is, relative to the vacuum noise,twice the squeezing
spectrumuS2(V)u2 from Eqs.~42!.

We also obtain these results by directly defining

^D@X̂tel
† ~V!2X̂in

† ~V!#D@X̂tel~V8!2X̂in~V8!#&

^DX̂2&vacuum

[d~V2V8!Vtel,in
X̂ ~V!. ~60!

We analogously defineVtel,in
P̂ (V) with X̂→ P̂ throughout. Us-

ing Eqs.~52!, these variances become forG(V)51

Vtel,in
X̂ ~V!5Vtel,in

P̂ ~V!52uS2~V!u2. ~61!

We calculate some limits forVtel,in
X̂ (V) of Eq. ~61!, assuming

an EPR state from the NOPA,S2(V)5G(V)2g(V). Since

Vtel,in
X̂ (V)5Vtel,in

P̂ (V) andG(V)51, we can name the limits
according to the criterion of Eq.~12!.

Classical teleportation, k→0. Vtel,in
X̂ (V)52, which is in-

dependent of the modulation frequencyV.
Zero-bandwidth quantum teleportation, V→0, k.0.

Vtel,in
X̂ (V)52@122kg/(k1g/2)2#, and in the ideal case o

infinite squeezingk→g/2: Vtel,in
X̂ (V)50.

Broadband quantum teleportation, V.0, k.0.

Vtel,in
X̂ (V)52$122kg/@(k1g/2)21V2#%, and in the ideal

casek→g/2: Vtel,in
X̂ (V)52@V2/(g21V2)#. So it turns out

that also for finite bandwidth ideal quantum teleportation c
be approached providedV!g.

We can expressVtel,in
X̂ (V) in terms of experimental pa

rameters relevant to the NOPA. For this purpose, we use
dimensionless quantities from Ref.@15#,

e5
2k

g1r
5APpump

Pthres
, v5

2V

g1r
5

V

2p

2Fcav

nFSR
. ~62!

Here,Ppump is the pump power,Pthres is the threshold value
Fcav is the measured finesse of the cavity,nFSR is its free
9-12
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spectral range, and the parameterr describes cavity losse
~see Fig. 4!. Note that we now usev as a normalized modu
lation frequency in contrast to Eq.~45! and the following
commutators where it was the frequency of the field ope
tors in the nonrotating frame.

The spectral variances for the lossless case (r50) can be
written as a function ofe andv, namely,

Vtel,in
X̂ ~e,v!5Vtel,in

P̂ ~e,v!52F12
4e

~e11!21v2G . ~63!

Now, the classical limit ise→0 (Vtel,in
X̂ 52, independent of

v) and the ideal case ise→1 @Vtel,in
X̂ (e,v)52v2/(4

1v2)#. Obviously, perfect quantum teleportation
achieved fore→1 andv→0. In fact, this limit can also be
approached for finiteVÞ0 providedv!1 or V!g. Note
that this condition is not specific to broadband teleportati
but is simply the condition for broadband squeezing, i.e.,
the generation of highly squeezed quadratures at non
modulation frequenciesV.

Let us now assume coherent-state inputs w

^DX̂in
† (V)DX̂in(V8)& 5 ^D P̂in

† (V)D P̂in(V8)& 5 1
4 d(V 2

V8) @^D ReX̂in(V)D ReX̂in(V8)&5 1
8 d(V2V8) etc.#, at all

frequenciesV in the relevant bandwidthW. In order to ob-
tain a spectrum of the fidelities in Eq.~22! with G→G(V)
51, we need the spectrum of theQ functions of the tele-
ported field with the spectral variancessx(V)5sp(V)5 1

2

1 1
4 Vtel,in

X̂ (V). We obtain the ‘‘fidelity spectrum’’

F~V!5
1

11uS2~V!u2
. ~64!

Finally, with the new quantitiese and v, the fidelity spec-
trum for quantum teleportation of arbitrary broadband coh
ent states using broadband entanglement from the NO
~r50! is given by

F~e,v!5F22
4e

~e11!21v2G21

. ~65!

For differente values, the spectrum of fidelities is shown
Fig. 5. From the single-mode protocol~with ideal detectors!,
we know that any nonzero squeezing enables quantum
portation and coherent-state inputs can be teleported witF
5Fav.

1
2 for any r .0. Correspondingly, the fidelity from

Eq. ~65! exceeds1
2 for any nonzeroe at all finite frequencies,

as, providede.0, there is no squeezing at all only whe
v→`. However, we had assumed@see after Eqs.~30!: V
!v0# modulation frequenciesV much smaller than the
NOPA center frequencyv0. In fact, for V→v0, squeezing
becomes impossible at the frequencyV @29#. But also within
the regionV!v0, effectively, the squeezing bandwith
limited and hence as well the bandwith of quantum telep
tation Dv[2vmax where F(v)' 1

2 (,0.51) for all v
.vmax andF(v). 1

2 (>0.51) for allv<vmax. According
to Fig. 5, we could say that the ‘‘effective teleportation ban
width’’ is just about Dv'5.8 (e50.1), Dv'8.6 (e
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50.2), Dv'12.4 (e50.4), Dv'15.2 (e50.6), andDv
'19.6 (e51). The maximum fidelities at frequencyv50
are Fmax'0.6 (e50.1), Fmax'0.69 (e50.2), Fmax
'0.84 (e50.4), Fmax'0.94 (e50.6), and, of course
Fmax51 (e51).

B. Broadband entanglement swapping

As discussed in Sec. III, we particularly want our telepo
tation device to be capable of teleporting entanglement.
will present now the broadband theory of this entanglem
swapping for continuous variables, as it was proposed in R
@20# for single modes. Before any detections~see Fig. 3!,
Alice ~mode 1! and Claire~mode 2! share the broadban
two-mode squeezed state from Eqs.~44!, whereas Claire
~mode 3! and Bob ~mode 4! share the corresponding en
tangled state of modes 3 and 4 given by

X̂3~V!5
1

A2
S1~V!X̂̄3

(0)~V!1
1

A2
S2~V!X̂̄4

(0)~V!,

P̂3~V!5
1

A2
S2~V! P̂̄3

(0)~V!1
1

A2
S1~V! P̂̄4

(0)~V!,

~66!

X̂4~V!5
1

A2
S1~V!X̂̄3

(0)~V!2
1

A2
S2~V!X̂̄4

(0)~V!,

P̂4~V!5
1

A2
S2~V! P̂̄3

(0)~V!2
1

A2
S1~V! P̂̄4

(0)~V!.

Let us interpret the entanglement swapping here as quan
teleportation of mode 2 to mode 4 using the entanglemen
modes 3 and 4. This means we want Bob to perform ‘‘d
placements’’ based on the classical results of Claire’s B

FIG. 5. Fidelity spectrum of coherent-state teleportation us
entanglement from the NOPA. The fidelities here are functions
the normalized modulation frequency6v for different parametere
(50.1, 0.2, 0.4, 0.6, and 1).
9-13
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detection, i.e., the classical determination ofX̂u(V)
5@X̂2(V) 2 X̂3(V)#/A2,P̂v(V) 5 @ P̂2(V) 1 P̂3(V)#/A2.
These final ‘‘displacements’’~amplitude and phase modula
tions! of mode 4 are crucial in order to reveal the entang
ment from entanglement swapping and, for verification,
finally exploit it in a second round of quantum teleportati
using the previously unentangled modes 1 and 4@20#. The
entire teleportation process with arbitrary gainG(V) that led
to Eqs.~53!, yields now, for the teleportation of mode 2
mode 4, the teleported mode 48 @where in Eqs.~53! simply
X̂tel(V)→X̂48(V), P̂tel(V)→ P̂48(V), X̂in(V)→X̂2(V),

P̂in(V)→ P̂2(V), X̂̄1
(0)(V)→ X̂̄3

(0)(V), P̂̄1
(0)(V)→ P̂̄3

(0)(V),

X̂̄2
(0)(V)→ X̂̄4

(0)(V), P̂̄2
(0)(V)→ P̂̄4

(0)(V), and G(V)
→Gswap(V)#,

X̂48~V!5
Gswap~V!

A2
@S1~V!X̂̄1

(0)~V!2S2~V!X̂̄2
(0)~V!#

2
Gswap~V!21

A2
S1~V!X̂̄3

(0)~V!

2
Gswap~V!11

A2
S2~V!X̂̄4

(0)~V!,

~67!

P̂48~V!5
Gswap~V!

A2
@S2~V! P̂̄1

(0)~V!2S1~V! P̂̄2
(0)~V!#

1
Gswap~V!11

A2
S2~V! P̂̄3

(0)~V!

1
Gswap~V!21

A2
S1~V! P̂̄4

(0)~V!.

Provided entanglement swapping is successful, Alice
Bob can use their modes 1 and 48 for a further quantum
teleportation. Assuming unit gain in this ‘‘second telepor
tion,’’ where the unknown input stateX̂in(V), P̂in(V) is to
be teleported, the teleported field becomes

X̂tel~V!5X̂in~V!1
Gswap~V!21

A2
S1~V!X̂̄1

(0)~V!

2
Gswap~V!11

A2
S2~V!X̂̄2

(0)~V!

2
Gswap~V!21

A2
S1~V!X̂̄3

(0)~V!

2
Gswap~V!11

A2
S2~V!X̂̄4

(0)~V!,
02230
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P̂tel~V!5 P̂in~V!1
Gswap~V!11

A2
S2~V! P̂̄1

(0)~V!

2
Gswap~V!21

A2
S1~V! P̂̄2

(0)~V!

1
Gswap~V!11

A2
S2~V! P̂̄3

(0)~V!

1
Gswap~V!21

A2
S1~V! P̂̄4

(0)~V!. ~68!

We calculate a fidelity spectrum for coherent-state inputs
obtain

F~V!5$11@Gswap~V!21#2uS1~V!u2/2

1@Gswap~V!11#2uS2~V!u2/2%21. ~69!

The optimum gain, depending on the amount of squeez
that maximizes this fidelity@20# at different frequencies turn
out to be

Gswap~V!5
uS1~V!u22uS2~V!u2

uS1~V!u21uS2~V!u2
. ~70!

Let us now assume that the broadband entanglement co
from the NOPA~two NOPA’s with equal squeezing spectra!,
uS2(V)u2→uS2(e,v)u25124e/@(e11)21v2#, uS1(V)u2
→uS1(e,v)u25114e/@(e21)21v2#. The optimized fidel-
ity then becomes

Fopt~e,v!5H 112
@~e11!21v2#@~e21!21v2#

@~e11!21v2#21@~e21!21v2#2J 21

.

~71!

The spectrum of these optimized fidelities is shown in Fig
for differente values. Again, we know from the single-mod
protocol@20# with ideal detectors that any nonzero squeez
in both initial entanglement sources is sufficient for entang
ment swapping to occur. In this case, mode 1 and 48 enable
quantum teleportation and coherent-state inputs can be
ported withF5Fav.

1
2 . The fidelity from Eq.~71! is 1

2 for
e50 and becomesFopt(e,v). 1

2 for anye.0, provided that
v does not become infinite~however, we had assumedV
!v0). In this sense, the squeezing or entanglement ba
width is preserved through entanglement swapping. At e
frequency where the initial states were squeezed and
tangled, also the output state of modes 1 and 48 is entangled,
but with less squeezing and worse quality of entanglem
~unless we had infinite squeezing in the initial states so
the entanglement is perfectly teleported! @32#. Correspond-
ingly, at frequencies with initially very small entanglemen
the entanglement becomes even smaller after entangle
swapping~but never vanishes completely!. Thus, the effec-
tive bandwidth of squeezing or entanglement decrea
through entanglement swapping. Then, compared to the
portation bandwidth using broadband two-mode squee
9-14
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states without entanglement swapping, the bandwidth of t
portation using the output of entanglement swapping is
fectively smaller. The spectrum of the fidelities from E
~71! is narrower and the ‘‘effective teleportation bandwidth
is now aboutDv'1.2 (e50.1), Dv'2.6 (e50.2), Dv
'4.2 (e50.4), Dv'5.2 (e50.6), andDv'6.8 (e51).
The maximum fidelities at frequencyv50 are Fmax
'0.52 (e50.1), Fmax'0.57 (e50.2), Fmax'0.74 (e
50.4), Fmax'0.89 (e50.6), and, still,Fmax51 (e51).

VI. CAVITY LOSSES AND BELL DETECTOR
INEFFICIENCIES

We extend the previous calculations and include los
for the particular case of the NOPA cavity and inefficienc
in Alice’s Bell detection. For this purpose, we use Eq.~27!
for the outgoing NOPA modes. We consider losses and
efficiencies for unit-gain teleportation~teleportation of
Gaussian states with a coherent amplitude!. For the case of
entanglement swapping~nonunit-gain teleportation!, detector
inefficiencies have been included in the single-mode tre
ment of Ref. @20#. By superimposing the unknown inpu
mode with the NOPA mode 1, the relevant quadratures fr
Eqs.~48! now become

X̂u~V!5
h

A2
X̂in~V!2

h

A2
X̂1~V!1A12h2

2
X̂D

(0)~V!

1A12h2

2
X̂E

(0)~V!,

~72!

P̂v~V!5
h

A2
P̂in~V!1

h

A2
P̂1~V!1A12h2

2
P̂F

(0)~V!

1A12h2

2
P̂G

(0)~V!.

FIG. 6. Fidelity spectrum of coherent-state teleportation us
the output of entanglement swapping with two equally squee
~entangled! NOPA’s. The fidelities here are functions of the no
malized modulation frequency6v for different parametere
(50.1, 0.2, 0.4, 0.6, and 1).
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The last two terms in each quadrature in Eqs.~72! represent
additional vacua due to homodyne detection inefficienc
~the detector amplitude efficiencyh is assumed to be con
stant over the bandwidth of interest!. Using Eqs.~72! it is
useful to write the quadratures of NOPA mode 2 correspo
ing to Eq.~27! as

X̂2~V!5X̂in~V!2@G~V!2g~V!#@X̂1
(0)~V!2X̂2

(0)~V!#

2@Ḡ~V!2ḡ~V!#@X̂C,1
(0)~V!2X̂C,2

(0)~V!#

1A12h2

h2
X̂D

(0)~V!1A12h2

h2
X̂E

(0)~V!

2
A2

h
X̂u~V!,

~73!
P̂2~V!5 P̂in~V!1@G~V!2g~V!#@ P̂1

(0)~V!1 P̂2
(0)~V!#

1@Ḡ~V!2ḡ~V!#@ P̂C,1
(0)~V!1 P̂C,2

(0)~V!#

1A12h2

h2
P̂F

(0)~V!1A12h2

h2
P̂G

(0)~V!

2
A2

h
P̂v~V!,

where now@15#

G~V!5

k21S g2r

2
1 iV D S g1r

2
2 iV D

S g1r

2
2 iV D 2

2k2

,

g~V!5
kg

S g1r

2
2 iV D 2

2k2

,

~74!

Ḡ~V!5

AgrS g1r

2
2 iV D

S g1r

2
2 iV D 2

2k2

,

ḡ~V!5
kAgr

S g1r

2
2 iV D 2

2k2

,

still with G(V)5G* (2V), g(V)5g* (2V), and also
Ḡ(V)5Ḡ* (2V), ḡ(V)5ḡ* (2V). The quadratures
X̂C, j

(0)(V) and P̂C, j
(0)(V) are those of the vacuum mode

Ĉj
(0)(V) in Eq. ~27! according to Eqs.~30!.

Again, X̂u(V) and P̂v(V) in Eqs.~73! can be considered
as classically determined quantitiesXu(V) and Pv(V) due
to Alice’s measurements. The appropriate amplitude a

g
d

9-15
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phase modulations of mode 2 by Bob depending on the c
sical results of Alice’s detections are described by

X̂2~V!→X̂tel~V!5X̂2~V!1G~V!
A2

h
Xu~V!,

~75!

P̂2~V!→ P̂tel~V!5 P̂2~V!1G~V!
A2

h
Pv~V!.

For G(V)51, the teleported quadratures become

X̂tel~V!5X̂in~V!2@G~V!2g~V!#@X̂1
(0)~V!2X̂2

(0)~V!#

2@Ḡ~V!2ḡ~V!#@X̂C,1
(0)~V!2X̂C,2

(0)~V!#

1A12h2

h2
X̂D

(0)~V!1A12h2

h2
X̂E

(0)~V!,

P̂tel~V!5 P̂in~V!1@G~V!2g~V!#@ P̂1
(0)~V!1 P̂2

(0)~V!#

1@Ḡ~V!2ḡ~V!#@ P̂C,1
(0)~V!1 P̂C,2

(0)~V!#

1A12h2

h2
P̂F

(0)~V!1A12h2

h2
P̂G

(0)~V!. ~76!

We calculate again spectral variances and obtain with
dimensionless variables of Eqs.~62!

Vtel,in
X̂ ~e,v!5Vtel,in

P̂ ~e,v!52F12
4eb

~e11!21v2G12
12h2

h2
,

~77!

whereb5g/(g1r) is a ‘‘cavity escape efficiency’’ which
contains losses@15#. With the spectralQ-function variances

of the teleported fieldsx(V)5sp(V)5 1
2 1 1

4 Vtel,in
X̂ (V), now

for coherent-state inputs, we find the fidelity spectrum~unit
gain!

F~e,v!5F22
4eb

~e11!21v2
1

12h2

h2 G21

. ~78!

Using the valuese50.77, v50.56, andb50.9, the mea-
sured values in the EPR experiment of Ref.@15# for maxi-
mum pump power~but still below threshold!, and a Bell
detector efficiencyh250.97 ~as in the teleportation exper

ment of Ref. @12#!, we obtainVtel,in
X̂ 5Vtel,in

P̂ 50.453 and a
fidelity F50.815. The measured value for the ‘‘normaliz
analysis frequency’’v50.56 corresponds to the measur
finesseFcav5180, the free spectral rangenFSR5790 MHz
and the spectrum analyzer frequencyV/2p51.1 MHz @15#.

In the teleportation experiment of Ref.@12#, the teleported
states described fields at modulation frequencyV/2p
52.9 MHz within a bandwidth6DV/2p530 kHz. Due to
technical noise at low modulation frequencies, the nonc
sical fidelity was achieved at these higher frequenciesV.
02230
s-

e

s-

The amount of squeezing at these frequencies was abo
dB. The spectrum of the fidelities from Eq.~78! is shown in
Fig. 7 for differente values.

VII. SUMMARY AND CONCLUSIONS

We have presented the broadband theory for quan
teleportation using squeezed-state entanglement. Our sch
allows the broadband transmission of nonorthogonal qu
tum states. We have discussed various criteria determin
the boundary between classical teleportation~i.e., measuring
the state to be transmitted as well as quantum theory per
and classically conveying the results! and quantum telepor
tation ~i.e., using entanglement for the state transfer!. De-
pending on the set of input states, different criteria can
applied that are best met with the optimum gain used by B
for the phase-space displacements of his EPR beam. G
an alphabet of arbitrary Gaussian states with unknown co
ent amplitudes, on average, the optimum teleportation fid
ity is attained with unit gain at all relevant frequencies. O
timal teleportation of an entangled state~entanglement
swapping! requires a squeezing-dependent, and he
frequency-dependent, nonunit gain. Effectively, also w
optimum gain, the bandwidth of entanglement becom
smaller after entanglement swapping compared to the ba
width of entanglement of the initial states, as the quality
the entanglement deteriorates at each frequency for fi
squeezing.

In the particular case of the NOPA as the entanglem
source, the best quantum teleportation occurs in the
quency regime close to the center frequency~half the NO-
PA’s pump frequency!. In general, a suitable EPR source f
broadband teleportation can be obtained by combining
independent broadband squeezed states at a beam s
~actually, even one squeezed state split at a beam splitt
sufficient to create entanglement for quantum teleporta

FIG. 7. Fidelity spectrum of coherent-state teleportation us
entanglement from the NOPA. The fidelities here are functions
the normalized modulation frequency6v for different parametere
(50.1, 0.2, 0.4, 0.6, and 1). Bell detector efficienciesh250.97
and cavity losses withb50.9 have been included here.
9-16
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@33,20#!. Provided ideal Bell detection, unit-gain teleport
tion will then in general produce an excess noise in e
teleported quadrature of twice the squeezing spectrum o
quiet quadrature in the corresponding broadband sque
state ~for the NOPA, cavity loss appears in the squeez
spectrum!. Thus, good broadband teleportation requires go
broadband squeezing. However, the entanglement sou
squeezing spectrum for its quiet quadrature need not b
minimum near the center frequency (V50) as for the opti-
cal parametric oscillator. In general, it might have large
cess noise there and be quiet atVÞ0 as for four-wave mix-
ing in a cavity@31#. The spectral range to be teleportedDV
always should be in the ‘‘quiet region’’ of the squeezin
spectrum.

The scheme presented here allows very efficient tele
tation of broadband quantum states: the quantum state a
input ~a coherent, a squeezed, an entangled or any o
state!, describing the input field at modulation frequencyV
within a bandwidthDV, is teleported on each and every tri
~where the duration of a single trial is given by the invers
bandwidth time 1/DV). Every inverse-bandwidth time,
quantum state is teleported with nonclassical fidelity or p
viously unentangled fields become entangled. Also the o
put of entanglement swapping can therefore be used fo
ficient quantum teleportation, succeeding every inver
bandwidth time.

In contrast, the discrete-variable schemes involving w
down conversion enable only relatively rare transfers
quantum states. For the experiment of Ref.@5#, a fourfold
coincidence~i.e., ‘‘successful’’ teleportation@7#! at a rate of
ett

pt

s
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1/40 Hz and a UV pulse rate of 80 MHz@34# yield an overall
efficiency of 3310210 ~events per pulse!. Note that due to
filtering and collection difficulties the photodetectors in th
experiment operated with an effective efficiency of 10
@34#.

The theory presented in this paper applies to the exp
ment of Ref.@12# where coherent states were teleported
ing the entanglement built from two squeezed fields gen
ated via degenerate down conversion. The experiment
determined fidelity in this experiment wasF50.5860.02
~this fidelity was achieved at higher frequenciesVÞ0 due to
technical noise at low modulation frequencies! which proved
the quantum nature of the teleportation process by excee
the classical limitF< 1

2 . Our analysis was also intended
provide the theoretical foundation for the teleportation
quantum states that are more nonclassical than cohe
states, e.g., squeezed states or, in particular, entangled s
~two-mode squeezed states!. This is yet to be realized in the
laboratory.
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