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Abstract

This paper proposes the use of repetitive broadcast as a way of
augmenting the memory hierarchy of clients in an asymmetric
communication environment. \e describe a new technique called
“Broadcast Disks’ for structuring the broadcast in a way that
provides improved performance for non-uniformly accessed data.
The Broadcast Disk superimposes multiple disks spinning at
different speedson asingle broadcast channel —ineffect creating an
arbitrarily fine-grained memory hierarchy. In additionto proposing
and defining the mechanism, a main result of this work is that
exploiting the potential of the broadcast structure requires a re-
evaluation of basic cachemanagement policies. Weexamine several
“pure’” cache management policies and develop and measure
implementable approximationsto these policies. These results and
othersare presentedin a set of simulation studiesthat substantiates
the basic idea and devel ops some of the intuitionsrequiredto design
a particular broadcast program.

1 Introduction

1.1 Asymmetric Communication Environments

In many existing and emerging application domains the
downstream communication capacity from serversto clients
is much greater than the upstream communication capacity
from clients back to servers. For example, in a wireless
mobilenetwork, serversmay havearel atively high bandwidth
broadcast capability while clients cannot transmit or can do
so only over a lower bandwidth (e.g., cellular) link. Such
systems have been proposed for many application domains,
including traffic information systems, hospital information
systems, public safety applications, and wireless classrooms
(eg.,[Katz94, Imiedda]). We refer to these environments as
Asymmetric Communications Environments.
Communications asymmetry can arise in two ways. the
first is from the bandwidth limitations of the physical com-
munications medium. An example of physica asymmetry
is the wireless environment as described above; stationary
servers have powerful broadcast transmitters while mobile
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clients have little or no transmission capability. Perhaps less
obviously, communications asymmetry can aso arise from
the patterns of informationflowin the application. For exam-
ple, an information retrieval system in which the number of
clientsisfar greater than the number of serversisasymmetric
because thereisinsufficient capacity (either inthe network or
at the servers) to handle the simultaneous requests generated
by the multipleclients.

Because asymmetry can arise due to either physica
devices or workload characteritics, the class of asymmetric
communications environments spans a wide range of
important systems and applications, encompassing both
wired and wireless networks. Examplesinclude:

o Wireless networks with stationary base stations and
mobile clients.

o Information dispersal systemsfor volatile, time-sensitive
information such as stock prices, weather information,
traffic updates, factory floor information, etc.

o Cable or satellite broadcast television networks with set-
top boxes that alow viewers to communicate with the
broadcasting home office, and video-on-demand servers.

o Information retrieval systems with large client popula-
tions, such as mail-order catalog services, mutua fund
information services, software help desks, etc.

1.2 Broadcast Disks

In traditiona client-server information systems, clients
initiate data transfers by sending requests to a server. Such
systemsare pull-based; theclients* pull” datafromthe server
in order to provide data to locally running applications.
Pull-based systems are a poor match for asymmetric
communications environments, as they require substantia
upstream communications capabilities. To address this
incompatibility, we have proposed a new information
system architecture that exploits the relative abundance
of downstream communication capacity in asymmetric
environments. This new architecture is caled Broadcast
Disks. The centra idea is that the servers exploit ther
advantage in bandwidth by broadcasting data to multiple
clients. We refer to this arrangement as a push-based
architecture; datais pushed from the server out to the clients.

In this approach, a server continuously and repeatedly
broadcasts data to the clients. In effect, the broadcast
channel becomes a “disk” from which clients can retrieve



data as it goes by. Broadcasting data has been proposed
previousy [Herm87, Giff90, Imie9db]. Our technique
differs, however, in two ways. First, we superimpose
multiple disks of different sizes and speeds on the broadcast
medium, in effect, creating an arbitrarily fine-grained
memory hierarchy.  Second, we exploit client storage
resources as an integral part of this extended memory
hierarchy.

The broadcast is created by assigning data items to
different “disks' of varying sizes and speeds, and then
multiplexing thedisks onthe broadcast channel. Itemsstored
on faster disks are broadcast more often than items on slower
disks. This approach creates a memory hierarchy in which
data on the fast disks are “closar” to the clientsthan data on
slower disks. The number of disks, their sizes, and relative
speeds can be adjusted, in order to more closely match the
broadcast with the desired access probabilitiesat the clients.
If the server has an indication of the client access patterns
(e.g., by watchingtheir previousactivity or fromadescription
of intended future use from each client), then hot pages (i.e,
those that are more likely to be of interest to alarger part of
the client community) can be brought closer while cold pages
can be pushed further away.

1.3  Scope of the Paper

In this paper, we focus on arestricted broadcast environment
in order to make an initial study of the broadcast disk
approach feasible. The restrictionsinclude:

e The client population and their access patterns do not
change. Thisimpliesthat the content and the organization
of the broadcast program remains static.

o Dataisread-only; thereareno updateseither by theclients
or a the servers.

o Clientsretrieve dataitemsfrom the broadcast on demand;
there is no prefetching.

o Clients make no use of their upstream communications
capability, i.e., they provide no feedback to servers.

In this environment, there are two main interrelated issues
that must be addressed:

1. Given a client population and a specification of their
accessprobabilitiesfor thedataitems, how doestheserver
construct a broadcast program to satisfy the needs of the
clients?

2. Given that the server has chosen a particular broadcast
program, how does each client manageitslocal datacache
to maximize its own performance?

The remainder of the paper is organized as follows.
Section 2 discusses the way in which we structure the
broadcast program and Section 3 showshow theclient’ scache
management policy should be designed to complement this
choice. Section 4 describes our simulationmode! and Section
5 develops the main experimental results derived from this
model. Section 6 compares our work to previous work on
repetitive broadcast. Section 7 summarizes our results and
describes our future work.

2  Structuring the Broadcast Disk

2.1 Properties of Broadcast Programs

In apush-based information system, the server must construct
a broadcast “program” to meet the needs of the client
population. In the simplest scenario, given an indication
of the data items that are desired by each client listening to
the broadcast, the server would simply take the union of the
requests and broadcast theresulting set of dataitemscyclicly.
Such a broadcast is depicted in Figure 1.
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Figure1: A Flat Broadcast Program

When an application running on a client needs a data
item, it first attempts to retrieve that item from the local
memory or disk. If the desired item is not found, then
the client monitors the broadcast and waits for the item to
arrive!  With the flat broadcast, the expected wait for an
item on the broadcast is the same for al items (namely, half
a broadcast period) regardless of their relative importance
to the clients. This “flat” approach has been adopted in
earlier work on broadcast-based database systems such as
Datacycle[Bowe92] and [Imie94a)].

Alternatively, the server can broadcast different items
with differing frequency.  Such a broadcast program
can emphasize the most popular items and de-emphasize
the less popular ones. Theoretically, the generation of
such non-flat broadcast programs can be addressed as a
bandwidth allocation problem; given al of the client access
probabilities, the server determines the optimal percentage
of the broadcast bandwidth that should be allocated to each
item. Thebroadcast program can then begenerated randomly
according to those bandwidth alocations, such that the
average inter-arrival time between two instances of the same
item matches the needs of the client population. However,
such a random broadcast will not be optima in terms of
minimizing expected delay due to the variance in the inter-
arrival times.

A simple example demonstrating these points is shown
in Figure 2. The figure shows three different broadcast
programs for a data set containing three equal-length items
(e.g., pages). Program (a) is aflat broadcast, while (b) and
(c) both broadcast page A twice as often as pages B and
C. Program (b) is a skewed broadcast, in which subsequent
broadcasts of page A are clustered together. In contrast,
program (c) is regular; there is no variance in the inter-
arrival time for each page. The performance characteristics
of program (c) arethe same asif page A was stored on adisk
that is spinning twice as fast as the disk containing pages B
and C. Thus, werefer to program (c) asaMulti-disk broadcast.
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1This discussion assumes that broadcast items are self-identifying.
Another option isto providean index, asis discussed in [Imie94b].
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Figure 2: Three Example Broadcast Programs

Access Probability Expected Delay
(in broadcast units)
A B C Flat | Skewed | Multi-disk
@ (b) ©
0.333 | 0.333 | 0.333 || 1.50 1.75 167
050 | 025 | 025 || 150 1.63 1.50
075 | 0.125 | 0.125 || 1.50 144 125
090 | 005 | 005 || 150 1.33 1.10
1.0 0.0 0.0 1.50 1.25 1.00

Table 1: Expected Delay For Various Access Probabilities

Table 1 shows the expected delay for page reguests
given various client access probability distributions, for the
three different broadcast programs. The expected delay is
calculated by multiplying the probability of access for each
page times the expected delay for that page and summing the
results. There are three mgjor pointsthat are demonstrated
by this table. The first point is that for uniform page
access probabilities (1/3 each), a flat disk has the best
expected performance. Thisfact demonstratesafundamental
congtraint of the Broadcast Disk paradigm, namely, that due
to fixed bandwidth, increasing the broadcast rate of one
item must necessarily decrease the broadcast rate of one
or more other items. The second point, however, is that
as the access probabilities become increasingly skewed, the
non-flat programs perform increasingly better.

The third point demonstrated by Table 1 is that the
Multi-disk program always performs better than the skewed
program. This behavior is the result of the so-caled Bus
Stop Paradox. If theinter-arrival rate (i.e., broadcast rate) of
apageisfixed, then the expected delay for arequest arriving
at arandom time is one-half of the gap between successive
broadcasts of the page. In contrast, if thereisvariancein the
inter-arrival rate, then the gaps between broadcasts will be
of different lengths. In this case, the probability of arequest
arriving during a large gap is greater than the probability of
the request arriving during a short gap. Thus the expected
delay increases asthe variance in inter-arrival rate increases.

In additionto performance benefits, aMulti-disk broadcast
has severa other advantages over a random (skewed)
broadcast program. First, the randomness in arrivals can
reduce the effectiveness of some prefetching techniques that
require knowledge of exactly when a particular item will

next be broadcast [Zdon94]. Second, the randomness of
broadcast disallows the use of “deeping” to reduce power
consumption (asin [Imie94b]). Finaly, thereisno notion of
“period” for such abroadcast. Periodicity may be important
for providing correct semanticsfor updates (e.g., aswasdone
inDatacycle[Herm87, Bowe92]) andfor introducing changes
to the structure of the broadcast program. For these reasons,
we arguethat a broadcast program should have the following
features:

o Theinter-arrival times of subsequent copiesof adataitem
should be fixed.

e There should be a well defined unit of broadcast after
which the broadcast repests (i.e., it should be periodic).

e Subject to the above two constraints, as much of the
availabl e broadcast bandwidth should be used aspossible.

2.2 Broadcast Program Generation

In this section we present a modd for describing the
structure of broadcast programs and describe an algorithm
that generates broadcast programs with the desired features
listed in the previous section. The agorithm imposes a
Multi-disk structure on the broadcast medium in a way that
allows substantial flexibility in fitting the relative broadcast
frequencies of dataitemsto the access probabilitiesof aclient
population.

The algorithm has the following steps (for simplicity,
assume that data items are “pages’, that is, they are of a
uniform, fixed length):

1. Order the pages from hottest (most popular) to coldest.

2. Partitionthelist of pagesinto multipleranges, whereeach
range contains pages with similar access probabilities.
These ranges are referred to as disks.

3. Choose the relative frequency of broadcast for each of
the disks. The only restriction on the relative frequencies
is that they must be integers. For example given two
disks, disk 1 could be broadcast three timesfor every two
times that disk 2 is broadcast, thus, rel_freq(1) = 3, and
rel _freq(2) = 2.

4. Split each disk into a number of smaller units. These
units are celled chunks (Cj; refers to the 3t chunk in
disk ). Firgt, calculate max_chunksasthel east Common
Multiple (LCM) of the relative frequencies. Then, split
each disk 7 into num_chunks(i) = max_chunks/ rel _freq(i)
chunks. In the previous example, num_chunks(1) would
be 2, while num_chunks(2) would be 3.

5. Create the broadcast program by interleaving the chunks
of each disk in the following manner:

01 for 7 := 0to max_chunks - 1
02 for j := 1tonum.disks

03 Broadcast chunk Cj,(i mod num_chunks(j)
04 endfor
05 endfor
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Figure 3: Deriving a Server Broadcast Program

Figure 3 shows an example of broadcast program
generation. Assume alist of pages that has been partitioned
into three disks, in which pagesin disk 1 are to be broadcast
twice as frequently as pages in disk 2, and four times as
frequently as pages in disk 3. Therefore, rel _freq(l) = 4,
rel_freq(2) = 2, and rel _freq(3) = 1. These disks are split
into chunks according to step 4 of the algorithm. That is
max_chunks is 4, so num_chunks(1) = 1, num_chunks(2) = 2,
and num.chunks(3) = 4. Note that the chunks of different
disks can be of differing sizes. The resulting broadcast
consists of 4 minor cycles (containing one chunk of each
disk) which is the LCM of the relative frequencies. The
resulting broadcast has a period of 16 pages. This broadcast
produces athree-level memory hierarchy inwhichdisk oneis
the smallest and fastest level and disk threeisthe largest and
sowest level. Thus, the multi-level broadcast correspondsto
the traditiona notion of a memory hierarchy.

Theagorithm produces a periodic broadcast program with
fixed inter-arrival times per page. Some broadcast slots may
be unused however, if it is not possible to evenly divide
a disk into the required number of chunks (i.e, in Step 4
of the algorithm). Of course, such extra sots need not be
wasted, they can be used to broadcast additional information
such as indexes, updates, or invalidations; or even for extra
broadcasts of extremely important pages. Furthermore, it is
anticipated that the number of disks will be smal (on the
order of 2 to 5) and the number of pages to be broadcast
will be substantially larger, so that unused dots (if any) will
be only a small fraction of the total number of dots; also,
the relative frequencies can be adjusted dightly to reduce the
number of unused dots, if necessary.

The disk model, while being fairly simple, alowsfor the
creation of broadcast programs that can be fine-tuned to
support a particular access probability distribution. There
are three inter-related types of knobs that can be turned to
vary the shape of the broadcast. First, the number of disks
(num_disks) determines the number of different frequencies
with which pages will be broadcast. Then, for each disk,
the number of pages per disk, and its relative frequency of
broadcast (rel _freq(i)) determine the size of the broadcast,
and hence the arriva rate (in real, rather than relative time)
for pages on each disk. For example, adding a page to a

fast disk can significantly increase the delay for pages on the
dower disks. Intuitively, we expect that fast disks will be
configured to have many fewer pages than the slower disks,
although our model does not enforce this constraint.

Recall that the only constraint on the relative broadcast
frequencies of the disksisthat they be expressed as positive
integers.  Thus, it is possible to have arbitrarily fine
distinctionsin broadcasts such as adisk that rotates 141 times
for every 98 times adower disk rotates. However, thisratio
resultsin abroadcast that has a very long period (i.e., nearly
14,000 rotations of the fast disk). Furthermore, thisrequires
that the dower disk be of a size that can be split into 141
fairly equa chunks. In addition, it is unlikely that such fine
tuning will produce any significant performance benefit (i.e.,
compared to a 3 to 2 ratio). Therefore, in practice, relative
frequencies should be chosen with care and when possible,
approximated to simpler ratios.

While the algorithm specified above generates broadcast
programs with the properties that we desire, it does not help
in the selection of the various parameter val uesthat shape the
broadcast. The automatic determination of these parameters
for agiven access probability distributionisavery interesting
optimization problem, and is one focus of our on-going
work. Thisissue is beyond the scope of the current paper,
however. In this paper we focus on examining the basic
properties of this new paradigm of broadcast disks. The
broadcast disk changes many basic assumptions on which
traditiona pull-based memory hierarchies are founded. As
a result, it is imperative to first develop an understanding
of the fundamental tradeoffs that affect the performance of
a broadcast system. The performance study described in
Section 5 presents an initia investigation of these issues.

3  Client Cache Management

The shared nature of the broadcast disk, while in principle
allowing for nearly unlimited scalability, in fact gives rise
to a fundamenta tradeoff: tuning the performance of the
broadcast is a zero-sum game, improving the broadcast
for any one access probability distribution will hurt the
performance of clients with different access distributions.
The way out of thisdilemma s to exploit theloca memory
and/or disk of the client machines to cache pages obtained
from the broadcast. This observation leads to a novel and
important result of thiswork: namely, that theintroduction of
broadcast fundamentally changestherole of client cachingin
aclient-server information system. In traditional, pull-based
systems clients cache their hottest data (i.e.,, the items that
they are most likely to access in the future). In the push-
based environment, this use of the cache can lead to poor
performance if the server’s broadcast is poorly matched to
the client’s page access distribution. This difference arises
because of the serial natureof the broadcast disk — broadcast
pages are not al equidistant from the client.

If the server can tailor the broadcast program to the needs
of a particular client, then the client can simply cache its
hottest pages. Once the client has loaded the hottest pages
in its cache, then the server can place those pages on a
dower spinning disk. This frees up valuable space in the
fastest spinning disks for additional pages. In generd,
however, therearesevera factorsthat could causetheserver’s
broadcast to be sub-optimal for a particular client:



e The access distribution that the client gives the server
may be inaccurate.

¢ A client’saccess distribution may change over time.

o Theserver may give higher priority to the needs of other
clientswith different access distributions.

e The server may have to average its broadcast over the
needs of a large client population. Such a broadcast
program is likely to be sub-optima from the point of
view of any one client.

For these reasons, in a push-based system clients must use
their cache not to store simply their hottest pages, but rather,
to storethose pagesfor which thelocal probability of accessis
significantly greater than the page's frequency of broadcast.
For example, if thereis a page P that is accessed frequently
only by client C and no other clients, then that pageislikely
to be broadcast on a dow disk. To avoid long waits for the
page, client C must keep page P cached locally. In contrast, a
page Q that is accessed frequently by most clients (including
client C), will be broadcast on a very fast disk, reducing the
value of caching it.

The above argument leads to the need for cost-based page
replacement. That is, the cost of obtaining a page on a
cache miss must be accounted for during page replacement
decisions. A standard page replacement policy tries to
replace the cache-resident page with the lowest probability
of access (e.g., thisis what LRU tries to approximate). It
can be shown that under certain assumptions, an optimal
replacement strategy is one that replaces the cache-resident
page having thelowest ratio between its probability of access
(P) and itsfrequency of broadcast (X). We refer to thisratio
(PIX) as PZX (P Inverse X). As an example of the use of
PIX, consider two pages. One page is accessed 1% of the
time at a particular client and is also broadcast 1% of the
time. A second pageisaccessed only 0.5% of thetime at the
client, butisbroadcast only 0.1% of thetime. Inthisexample,
the former page has a lower PZX" value than the latter. As
a result, a page replacement policy based on PZX would
replace the first page in favor of the second, even though the
first page is accessed twice as frequently.

While PZX can be shown to be an optima policy
under certain conditions, it is not a practical policy to
implement because it requires: 1) perfect knowledge of
access probabilities and 2) comparison of PZX vaues for
all cache-resident pages a page replacement time. For
this reason we have investigated implementable cost-based
algorithmsthat are intended to approximatethe performance
of PZX. One such agorithm, adds frequency of broadcast
to an LRU-style policy. Thisnew policy iscaled £ZX and
is described and analyzed in Section 5.4.

4  Moddingthe Broadcast Environment

In order to better understand the properties of broadcast
program generation and client cache management we have
constructed a simulation model of the broadcast disk
environment. The simulator, which is implemented using
CSIM [Schw86], models a single server that continuously
broadcasts pages and a single client that continuously
accesses pages from the broadcast and from its cache. In

CacheSze
ThinkTime

Client cachesize (in pages)

Time between client page accesses

(in broadcast units)

AccessRange | # of pagesin range accessed by client

4 Zipf distribution parameter

RegionSize # of pagesper region for Zipf distribution

Table 2: Client Parameter Description

the simulator, the client generates requests for logical pages.
These logical pages are then mapped to the physical pages
that are broadcast by the server.

The mapping of logical pages to physical pages allows
the server broadcast to be varied with respect to the client
workload. Thisflexibility allows the simulator to model the
impact of a large client population on the performance of
a single client, without having to model the other clients.
For example, having the client access only a subset of the
pages models the fact that the server is broadcasting pages
for other clients as well. Furthermore, by systematically
perturbing the client’s page access probabilitieswith respect
to the server’s expectation of those probahilities, we are able
to vary the degree to which the server broadcast favors the
particular client that we are modeling. The simulation model
is described in the following sections.

4.1 Client Execution Modél

The parameters that describe the operation of the client are
shown in Table 2. The simulator measures performance
in logical time units called broadcast units. A broadcast
unit is the time required to broadcast a single page. In
genera, the results obtained from the simulator are valid
across many possible broadcast media. The actua response
times experienced for a given medium will depend on the
amount of real time required to broadcast a page.

The client runs a continuous loop that randomly requests
a page according to a specified distribution. The client has a
cache that can hold CacheS ze pages. If therequested pageis
not cache-resident, then the client waitsfor the page to arrive
on the broadcast and then brings the requested page into its
cache. Client cache management is done similarly to buffer
management in a traditiona system; if all cache dots are
occupied, then a page replacement policy is used to choose
avictim for replacement.? Once the requested page is cache
resident, the client waits ThinkTime broadcast units of time
and then makes the next request. The ThinkTime parameter
allowsthe cost of client processing rel ativeto page broadcast
time to be adjusted, thus it can be used to model workload
processing as well as the relative speeds of the CPU and the
broadcast medium.

The client chooses the pages to access from the range
0 to AccessRange—1, which can be a subset of the pages
that are broadcast. All pages outside of this range have
a zero probability of access at the client.  Within the
range the page access probabilitiesfollow a Zipf distribution
[Knut81, Gray94], with page O being the most frequently
accessed, and page AccessRange— 1 being thel east frequently
accessed. The Zipf distribution is typically used to model
non-uniformaccess patterns. It produces access patternsthat

2\Wediscussthe performanceof variousreplacement policiesin Section 5.



ServerDBSize | Number of distinct pagesto be broadcast
NumDisks Number of disks

DiskSze; Size of disk z (in pages)

A Broadcast shape parameter

Offset Offset from default client access

Noise % workload deviation

Table 3: Server Parameter Description

become increasingly skewed as 6 increases— the probability
of accessing any page numbered i is proportional to (1/7)°.
Similar to earlier models of skewed access [Dan90], we
partition the pages into regions of RegionSze pages each,
such that the probability of ng any pagewithinaregion
is uniform; the Zipf distribution is applied to these regions.
Regions do not overlap so there are AccessRange/RegionSze
regions.

4.2  Server Execution Modéd

The parameters that describe the operation of the server
are shown in Table 3. The server broadcasts pages in
the range of 0 to ServerDBSze—1, where ServerDBS ze >
AccessRange. These pages are interleaved into a broadcast
program according to the algorithm described in Section 2.
This program is broadcast repeatedly by the server. The
structure of the broadcast program is described by severa
parameters. NumDisksis the number of levels (i.e, “disks’)
inthemulti-disk program. By convention disksare numbered
from 1 (fastest) to N=NumDisks (sowest). DiskSze;, i €
[1..N], isthe number of pages assigned to each disk i. Each
pageisbroadcast on exactly onedisk, so thesum of DiskSize;
over al 7 isequa to the ServerDBS ze.

In additionto thesize and number of disks, the model must
also capture their relative speeds. Asdescribed in Section 2,
therelative speeds of the variousdisks can beany positivein-
tegers. In order to make experimentation tractable, however,
we introduce a parameter called A, which determines the
relative frequencies of the disks in a restricted manner. Us-
ing A, the frequency of broadcast rel_freq(i) of each disk
i, can be computed relative to rel_freq(N), the broadcast
frequency of the slowest disk (disk N) as follows:

::ll_ }f::qq((lil)) = (N - |) A+1

When A is zero, the broadcast isflat: all disks spin at the
same speed. As A isincreased, the speed differential samong
thedisksincrease. For example, for a3-disk broadcast, when
A =1, disk 1 spinsthree times as fast as disk 3, while disk
2 spins twice as fast as disk 3. When A = 3, the relative
speeds are 7, 4, and 1 for disks 1, 2, and 3 respectively. Itis
important to notethat A isused in the study only to organize
the space of disk configurations that we examine. It is not
part of the disk model as described in Section 2.

The remaining two parameters, Offset and Noise, are used
to modify the mapping between the logical pages requested
by the client and the physical pages broadcast by the server.
When Offset and Noiseare both set to zero, then thelogical to
physical mappingissimply theidentity function. Inthiscase,
the DiskSze; hottest pages from the client’s perspective (i.e.,
O to DiskSze; — 1) are placed on disk 1, the next DiskSze,
hottest pagesare placed ondisk 2, etc. However, asdiscussed
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Figure4: Using Offset to vary client access

in Section 3, this mapping may be sub-optimal due to client
caching. Some client cache management policiestend to fix
certain pages in the client’s buffer, and thus, those pages do
not need to be broadcast frequently. In such cases, the best
broadcast can be obtained by shifting the hottest pages from
the fastest disk to the dowest. Offset isthe number of pages
that are shifted in this manner. An offset of K shifts the
access pattern by K pages, pushing the K hottest pages to
the end of the slowest disk and bringing colder pages to the
faster disks. The use of offset isdemonstrated in Figure 4.

In contrast to Offset, which is used to provide a better
broadcast for the client, the parameter Noise is used to
introduce disagreement between the needs of the client and
the broadcast program generated by the server. Asdescribed
in Section 2, such disagreement can arise in many ways,
including dynamic client access patterns and conflicting
access requirements among a population of clients. Noise
determines the percentage of pages for which there may be
a mismatch between the client and the server. That is, with
probability Noise the mapping of a page may be switched
with a different page.

The generation of the server broadcast program works as
follows. First, the mapping from logical to physical pagesis
generated as the identity function. Second, this mapping is
shifted by Offset pages as described above. Third, for each
page in the mapping, a coin weighted by Noiseis tossed. If
based on the coin toss, a page i is selected to be swapped
then adisk d is uniformly chosen to be its new destination.®
To make way for ¢, an existing page j on d is chosen, and i
and j exchange mappings.

5 Experimentsand Results

In this section, we use the smulation model to explore
the performance characteristics of the broadcast disk. The
primary performance metric employed in this study is the
responsetime at the client, measured in broadcast units. The
server database size (Server DBS ze) was 5000 pages, and the
client access range AccessRange was 1000 pages. Theclient
cache size was varied from 1 (i.e,, no caching) to 500 (i.e.,
half of the access range). We studied several different two-
disk and three-disk configurationsof broadcast programs. All

3Note that a page may be swapped with a page on its own disk. Such
a swap does not affect performancein the steady state, so Noise represents
the upper limit on the number of changes.



ThinkTime 20
ServerDBSze | 5000
AccessRange | 1000

CacheSize 50(5%), 250(25%), 500(50%)
A 12,...7

0 0.95

Offset 0, CacheSze

Noise 0%, 15%, 30%, 45%, 60%, 75%

RegionSize 50
Table 4: Parameter Settings
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Figure5: Client Performance, Cache Size = 1, Noise = 0%

of the results presented in the paper were obtained once the
client performance reached steady state. The cache warm-up
effects were eliminated by beginning our measurements only
after the cache was full, and then running the experiment for
15,000 or more client page requests (until steady state).

Table 4 shows the parameter settings used in these
experiments. It should be noted that the results described
in this section are a very small subset of the results that
have been obtained. These results have been chosen because
they demonstrate many of the unique performance aspects
and tradeoffs of the broadcast disk environment, and because
they identify important areas for future study.

5.1 Experiment 1: No Caching, 0% Noise

The first set of results examine the case where the client
performs no caching (i.e., it has a cache size of one page).
Figure 5 shows the client response time vs. A for a number
of two and three disk configurations. In this graph, Noiseis
set to 0%, meaning that the server is providing preferentia
treatment to the client (i.e, it is giving highest priority to
this client’s pages). As A isincreased along the x-axis of
the figure, the skew in the relative speeds of the disks is
increased (as described in Section 4). Asshowninthefigure,
thegeneral trend in these casesisthat responsetimeimproves
withincreasing disk skew. When A = 0, the broadcast isflat
(i.e., dl disksrotate at the same speed). Inthiscase, aswould
be expected, all disksresult in aresponse time of 2500 pages
— half the ServerDBSize. As A isincreased, al of the disk
configurations shown provide an improvement over the flat
disk. The degree of improvement begins to flatten for most
configurationsaround a A value of 3 or 4.
Turningtothevariousdisk configurations, wefirst examine
the two-disk configurations: D1, D2, and D3. For D1, 500
pages fit on the first (i.e., fastest) disk. Because Noise and
Offset are both zero, the hottest half of the client’s access

range is on the fast disk, and the colder half is on the slower
disk. As A isincreased, performance improves until A = 3
because the hotter pages are brought closer. Beyond this
point, the degradation caused by the access to the slow pages
(which get pushed further away) beginsto hurt performance.
In contrast, D2, which places 90% of the client access range
(900 pages) on the fast disk improves with increasing A for
all values of A in this experiment. Because most of the
accessed pages are on thefast disk, increasing A pushes the
colder and unused pages further away, allowing the accessed
pages to arrive more frequently. At some point, however, the
penalty for slowing down the 10% will become so great that
the curve will turn up again asinthe previouscase. Thefina
two-disk configuration, D3, has equal sized disks. Although
all of the accessed datafits on the fast disk, the fast disk also
includes many unaccessed pages. The size of the fast disk
causes the frequencies of the pages on this disk to be lower
than the frequencies of pages on the fast disks of D2 and D1
at corresponding values of A. Asaresult, D3 has the worst
performance of the two-disk configurations for most of the
A values shown.

Turningto thethree-disk configurations: D4 and D5, it can
be seen that configuration D4, which has a fast disk of 300
pages has the best performance across the entire range. At
a A of 7, itsresponse time is only one-third of the flat-disk
response time. D5, whichis simply the D3 disk with itsfirst
disk split across two disks, performs better than its two-disk
counterpart. The extralevel of disk makesit easier to match
the broadcast program to the client’s needs. However, note
that responsetimefor D5istypically higher than thetwo-disk
D2, and thus, the extradisk level does not necessarily ensure
better performance.

5.2 Experiment 2: Noise and No Caching

Inthe previousexperiment, the broadcast program generation
was done giving our client’s access pattern the highest
priority. In this experiment we examine the performance
of the broadcast disk as the server shifts its priority away
fromthisclient (i.e.,, as Noiseisincreased). Theseresultsare
shownin Figures6 and 7, which show how theclient performs
in the presence of increasing noise for configurations D3
(two-disks) and D5 (three-disks) from Figure 5 respectively.
As expected, performance suffers for both configurations as
theNoiseisincreased; asthemismatch between the broadcast
and the client’s needs increases, the skew in disk speeds
gtarts to hurt performance. Ultimately, if the mismatch
becomes great enough, the multi-disk approach can have
worse performance than the flat disk. Thisis shown in the
performance disk of D3 (Figure 6). This susceptibility to a
broadcast mismatch is to be expected, as the client accesses
all of its data from the broadcast channel. Thus, it is clear
that if a client does not have a cache, the broadcast must be
well suited for that client’s access demands in order to gain
the benefits of the multi-disk approach.

5.3 Experiment 3: Caching and Noise

The previous experiments showed that even in the absence of
caching, amulti-level disk scheme can improve performance,
but that without a cache, performance can suffer if the
broadcast program is poorly suited to the client’s access
demands. In this experiment we introduce the use of a
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client cache, to reduce the expected page access delay and to
increase the client’ stol erance to mismatches in the broadcast
program. We use an idealized page replacement policy called
P, which keeps the pages with the highest probability of
access in the cache. P, however, it is not an implementable
policy, asit requires perfect knowledge of accessprobabilities
and agreat deal of local computation.* We use P, therefore,
to gain an understanding of the performance in a simplified
setting and as a point-of-referencefor other (implementabl €)
policies.

In steady state, aclient using the P replacement policy will
have the CacheS ze hottest pagesin its cache. Consequently,
broadcasting these cache-resident pages on the fastest disk
is a waste of bandwidth. Thus, as stated in Section 4.2,
the best broadcast program will be obtained by shifting the
CacheS ze hottest pages from the fastest disk to the slowest.
Such shifting is accomplished in the simulation model by
setting Offset = CacheSize® Given this Offset, we now
examine the effectiveness of a cache (using the idealized P
replacement policy) in allowing a client to tolerate Noisein
the broadcast. Figure 8 showstheimpact of increasing Noise
on the performance of the three-disk configuration D5 as A
isvaried. In the case shown, CacheSze and Offset are both
set to 500 pages. Comparing these results with the results
obtained in the no caching case (see Figure 7), we see that
although as expected the cache greatly improves performance
in an absolute sense, surprisingly, the cache-based numbers
are if anything, somewhat more sensitive to the degree of
Noise than the non-caching numbers. For example, in the
caching case, when A is greater than 2, the higher degrees
of noise have multi-disk performance that is worse than the
flat disk performance, whereas this crossover did not occur
for similar A valuesin the non-caching case. The reason for
thisadditional sensitivity isthat when Noiseislow and Offset
= CacheSze, P does exactly what it should do — it caches
those hot pages that have been placed on the slowest disk,
and it obtains the remainder of the hottest pages from the
fastest disk. However, as noiseincreases, P caches the same
pages regardless of what disk they are stored on. Caching
a page that is stored on the fastest disk is often not a good
use of the cache, as those pages are broadcast frequently. As
noise increases, P’s cache hit rate remains the same, but its

4t istrivial to implement P in the smulator, as the probability of each
pageis known from the client access distribution.
5Theimpact the Offset parameter is discussed in moredetail in [Acha94].
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cache misses become more expensive, as it has to retrieve
some pages from the slower disks. These expensive cache
misses are the cause of P’s sensitivity to Noise.

54  Cost Based Replacement Algorithms

In the previous section, it was shown that while standard
caching can help improve performance in a multi-disk
broadcast environment, it can actually increase the client’'s
sengitivity to Noise. Recall that Noise represents the degree
to which the server broadcast deviates from what is best for
a particular client. It is likely, therefore, that some type of
“noise’” will be present in any application in which there
are multiple clients that access the broadcast disk. The
P replacement policy was found to be sensitive to noise
because it ignored the cost of re-acquiring a page when
choosing avictimfor replacement. To addressthisdeficiency,
we examine a second idedlized algorithm caled PZ X, that
extends P with the notion of cost. As stated in Section 3,
PIX awaysreplacesthepagewiththelowest ratio of access
probability to broadcast frequency. Thus, the cost of re-
accessing a replaced page is factored into the replacement
decision.

54.1 Experiment 4. PZX and Noise

Figure 9 shows the response time of the client using PZxX
for the same case that the previous experiment showed for
P (see Figure 8). Comparing the two figures it can be seen
that PZ.X is much more successful at insulating the client
response time from effects of Noise. Of course, an increase
in Noise still results in a degradation of performance; this
is to be expected. However, unlike the case with P, using
PIX the performance of the client remains better than the
corresponding flat disk performance for al values of Noise
and A in this experiment. Under PZ X, the performance
of the client for a given Noise value remains stable as A
is increased beyond a certain point. In contrast, under
P, in the presence of noise, the performance of the client
quickly degrades as A isincreased beyond a value of 1 or
2. This experiment demonstrates the potentia of cost-based
replacement for making the broadcast disk practica for a
wider range of applications.

Figure 10 showsresultsfrom the same set of experimentsin
adightlydifferentlight. Inthisfigure, theeffect of increasing
noise on the response time of the two algorithmsfor A = 3
and A = 5 isshown. The performance for the flat disk
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(A = 0) is given as a basdine® Note that P degrades
faster than PZX and eventually becomes worse than the
flat disk at around Noise = 45%. PZ X rises gradualy and
manages to perform better than the flat disk within these
parameters. Also, notice how P’s performance degrades for
A = 5; unlikePZ X it failsto adapt the cache contents with
increasing differences in disk speeds.

The performance differences between the two algorithms
result from the differences in the places from which they
obtain their pages (as shown in Figure 11 for the case where
Noise = 30%). It isinteresting to notethat PZ.X hasalower
cache hit rate than P. A lower cache hit rate does not mean
lower response times in broadcast environments; the key is
to reduce expected latency by caching important pages that
reside on the slower disks. PZX getsfewer pages from the
slowest disk than does P, even though it gets more pages
from the first and second disks. In this case, this tradeoff
resultsin a net performance win.

55 Implementing Cost Based Policies

The previous sections have shown that multi-disk broadcast
environments have specia characteristics which when
correctly exploited can result in significant performance
gains. They also demonstrated the need for cost-based page
replacement and examined a cost-based algorithm (PZ.X).
Unfortunately, like P, the policy on which it is based, PZX

5Note that at A = 0 (i.e, aflat disk), P and PZX areidentical, asall
pages are broadcast at the same frequency.
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is not an implementable algorithm. However, based on the
insight that we gained by examining P and PZX we have
designed and implemented an approximationof PZ X', which
wecal LZX.

LI X isamodification of LRU that takes into account the
broadcast frequency. LRU maintains the cache as a single
linked-list of pages. When apagein the cache is accessed, it
ismoved to the top of thelist. On a cache miss, the page at
the end of the chain is chosen for replacement.

In contrast, £Z.X maintains a number of smaller chains:
one corresponding to each disk of the broadcast (£LZ.X
reduces to LRU if the broadcast uses a single flat disk). A
page always enters the chain corresponding to the disk in
which it is broadcast. Like LRU, when a page is hit, it is
moved to the top of its own chain. When a new page enters
the cache, £LZ X evaluates a lix value (see next paragraph)
only for the page at the bottom of each chain. The page
with the smallest lix value is gected, and the new page is
inserted in the appropriate queue. Because this queue might
bedifferent than the queuefrom which the slot wasrecovered,
the chains do not have fixed sizes. Rather, they dynamically
shrink or grow depending on the access pattern at that time.
LIX performs a constant number of operations per page
replacement (proportional to the number of disks) which is
the same order as that of LRU. Figure 12 shows an example
of LZX for atwo-disk broadcast. Pages g and k are at the
bottom of each chain. Since g has a lower lix vaue it is
chosen asthevictim. The new page z, being picked from the
second disk, joins Disk2Q. Note the relative changes in the
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sizes of both the queues.

In order to compute the lix value, the a gorithm maintains
two data items per cached page i : a running probability
estimate (p;) and the time of the most recent access to the
page (t;). When the page i entersachain, p; isinitially set to
zero and t; isset tothe current time. If ¢ ishit again, the new
probability estimate for i is calculated using the following
formula

p; = A/ (CurrentTime-t;) + (1- A)p;

t; isthen subsequently updated to the current time. Aisa
constant used to appropriately weigh the most recent access
with respect to the running probability estimate; in these
experiments, it is set to 0.25. This formulais evaluated for
the least recently used pages of each chain to estimate their
current probability of access. Thisvalueis then divided by
the frequency for the page (which is known exactly) to get
the lix value. The page with the lowest lix value is gected
from the cache. £Z X is a smple approximation of PZX,
yet in spiteof this, it performs surprisingly well (asisshown
below). Better approximations of PZ.X, however, might be
devel oped using someof therecently proposed improvements
to LRU like 2Q[John94] or LRU-k[ONei93].

551 Experiment5: LZX vs. LRU

The next set of experiments are similar to those for P and
PIX and compare £LZX and LRU. However, unlike P, the
best performancefor LRU isn’t at an offset equal to the cache
size. Being only an approximation of P, LRU isn’t able to
retain al of the hot pages that are stored on the slowest disk
andthus, it performspoorly at thisoffset. For similar reasons,
LIX aso does not perform best at this offset. As aresult,
we also compared the performance of £ZX and LRU to a
modified version of £ZX caled £. £ behaves exactly like
LIX except that it assumes the same value of frequency for
all pages. Thus, thedifferencein performance between £ and
LRU indicates how much better (or worse) an approximation
of probability £ provides over LRU, and the performance
difference between £Z X' and £ showstherolethat broadcast
frequency plays (if any) in the performance of the caching
strategies.

Figure 13 shows the performance of the three algorithms
for different valuesof A. Theseresultsshow thesensitivity of
thealgorithmsto changing A for the samecaseasin Figure 10

(i.e., Offset=CacheS ze=500), with Noise set to 30%. Inthis
experiment, LRU performs worst and consistently degrades
as A isincreased. £ does better at A = 1 but then
degrades. The benefits of using frequency are apparent from
the difference in response time between £ZX and £. The
responsetimeof £Z A isonly between 25% to 50% that of L.
The solid lineon the bottom of the graph shows how theided
policy (PZX) performs; it does better than £Z X', but only
by a small margin. The factors underlying these results can
be seen in Figures 14, which shows the distribution of page
access locationsfor the results of Figure 13 when A isset to
3. Inthiscase, £ZX obtains a much smaller proportion of
its pages from the slowest disk than do the other algorithms.
Giventhat theal gorithmshaveroughly similar cachehit rates,
the differences in the distributions of access to the different
disksiswhat drives the performance results here.

Figure 15 shows the performance of the three algorithms
with varying Noise with A = 3. In this case, it can be
seen that £ performs only somewhat better than LRU. The
performance of £LZX degrades with noise as expected, but
it outperforms both £ and LRU across the entire region of
Noise values. These results demonstrate that the frequency-
based heuristic of £LZX can provideimproved performance
in the presence of noise.

6 Previous Work

While no previous work has addressed multilevel broadcast
disksand therel ated cache management techni ques described
in this paper, severa projects in maobile databases and other
areas have performed related work. As stated previoudly,
the notion of using a repetitive broadcast medium for
database storage and query processing was investigated
in the Datacycle project at Bellcore [Herm87, Bowe92].
Datacycle was intended to exploit high bandwidth, optical
communi cation technol ogy and employed custom VLSI data
filters for performing associative searches and continuous
gueries on the broadcast data. Datacycle broadcast data
using aflat disk approach and so the project did not address
the multi-level disk issues that we have addressed in this
paper. However, the Datacycle project did provide an
optimistic form of transaction management which employed
an “upstream network” that allowed clients to communicate
with the host. We intend to investigate issues raised
by alowing such upstream communication through low-
bandwidth links as part of our ongoing work. An early
effort in information broadcasting, the Boston Community
Information System (BCIYS) is described in [Giff90]. BCIS
broadcast newspapers and information over an FM channel
to clients with personal computers specially equipped with
radio receivers. Like Datacycle, they too used a flat disk
approach.

More recently, the mobile computing group at Rutgers
has investigated techniques for indexing broadcast data
[Imie9db]. The main thrust of this work has been to
investigate ways to reduce power consumption at the clients
in order to preserve battery life. Some of the indexing
techniques described in [Imied4b] involve the interleaving
of index information with data, which forms arestricted type
of multilevel disk. However, thiswork did not investigate the
notion of replicating the actua data to support non-uniform
access patterns and did not investigate the impact of caching.
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In our current work we have assumed a fixed broadcast
program, so that indexing was not needed. However, we
are currently investigating waysto integrate indexes with the
multilevel disk inorder to support broadcast program changes
due to client population changes and updates. Caching
in a mobile environment has been considered in [Barb94].
However, their model was different in that it considered
volatile data and clients who could be inactive (and/or
disconnected) over long periods of time. Thus, the focus of
both broadcasting and caching in thiswork wasto efficiently
detect and avoid access to stale data in the cache. Very
recently, another approach to broadcasting data for video on
demand has been taken in [Vish94]. The technique, called
pyramid broadcasting, splits an object (e.g., a video clip)
into a number of segments of increasing sizes. To minimize
latency the first segment is broadcast more frequently than
the rest. While similar in spirit, a key differenceis that the
data needed by the client is known a priori once the first
segment (the choice of movie) isdecided upon and thus, they
do not need to address the issues related to caching dealt in
this paper.

The issuesthat arise dueto our use of abroadcast medium
as a multi-level device aso arise in other, more traditional
types of complex memory hierarchies. The need for cost-
based caching and page replacement has been recognized in
other domainsinwhich thereisawidevariationin the cost of
obtaining data from different levels of the storage hierarchy.
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For example, [Anto93] describes the need for considering
“cost of acquisition” for page replacement in deep-store file
systems involving tertiary mass storage. Thisissueis aso
addressedfor client-server databasesystemsinwhichagloba
memory hierarchy is created by alowing clients to obtain
data from other clients that have that data cached [Fran92].
In this work, server page replacement policies are modified
to favor pages that are not cached at clients, as they must be
obtained from disk, which is more expensive. Recently, a
technique called “Disk-Directed 1/0O” has been proposed for
High Performance Computing applications [Kotz94]. Disk-
Directed 1/0 sends large requests to 1/0O devices and alows
the devices to fulfill the requests in a piecemeal fashion in
an order that improves the disk bandwidth. Finally, the
tradeoff between replication to support access to hot data
while making cold data more expensive to access has been
investigated for magnetic disks [Akyu92].

7  Summary and Future Work

In this paper, we have described our design of a multilevel
broadcast disk and cache management policies for this
style of memory. We believe that this approach to data
management is highly applicable to asymmetric network
environments such as those that will naturaly occur in the
NIl aswell as many other modern data delivery systems. We
have demonstrated that in designing such disks, the broadcast
program and the caching policy must be considered together.

It has been shown that there are cases in which the
performance of bothtwo and threelevel diskscan outperform
a flat broadcast even when there is no caching. We have
argued that our scheme for interleaving the datais desirable
because it provides a uniform expected latency.

Wehavefurther shownthat introducing acachecan provide
an advantage by smoothing out disagreement between the
broadcast and the client access patterns. The cache gives
the clients a way to hoard their hottest pages regardless of
how frequently they are broadcast. However, doing page
replacement solely on probability of access can actually
increase a client’s sengitivity to the server’s broadcast.

We then introduced a caching policy that also took into
account the broadcast frequency during replacement. We
showed that this not only improves client performance but
also shields it from vagaries of the server broadcast. Thisis
because the clients can cache itemsthat are relatively hot and



reside on aslow disk and thus, avoid paying high cache miss
penalties.

Finally, we demonstrated a straightforward implementa-
tion techniquethat approximates our ideal cost-based caching
scheme. Thistechnique is a modification of LRU which ac-
countsfor the differencesin broadcast frequency of the data

Webelievethat thisstudy whileinterestingand useful inits
ownright, isjust thetip of theiceberg. There are many other
opportunitiesthat can be exploited in future work. Here, we
have only considered the static read-only case. How would
our results have to change if we allowed the broadcast datato
changefrom cycleto cycle? What kindsof changes wouldbe
allowed in order to keep the scheme manageable, and what
kindsof indexing would be needed to all ow the client to make
intelligent decisions about the cost of retrieving a data item
from the broadcast?

We are currently investigating how prefetching could be
introduced into thepresent scheme. Theclient cachemanager
would usethebroadcast asaway to opportunistically increase
the temperature of its cache. We are exploring new cache
management metrics for deciding when to prefetch a page.

Wewould aso liketo provide more guidanceto auser who
wantsto configure abroadcast. We have experimental results
to show that good things can happen, but given a workload,
wewouldliketo have concrete design principlesfor deciding
how many disksto use, what the best rel ative spinning speeds
should be, and how to segment the client access range across
these disks. We are pursuing an anaytic model to address
this.

Finally, once the basic design parameters for broadcast
disks of this kind are well-understood, work is needed to
develop query processing strategies that would exploit this
type of media
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