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Abstract
This paper proposes the use of repetitive broadcast as a way of
augmenting the memory hierarchy of clients in an asymmetric
communication environment. We describe a new technique called
“Broadcast Disks” for structuring the broadcast in a way that
provides improved performance for non-uniformly accessed data.
The Broadcast Disk superimposes multiple disks spinning at
different speeds on a single broadcast channel — in effect creating an
arbitrarily fine-grained memory hierarchy. In addition to proposing
and defining the mechanism, a main result of this work is that
exploiting the potential of the broadcast structure requires a re-
evaluation of basic cache managementpolicies. We examine several
“pure” cache management policies and develop and measure
implementable approximations to these policies. These results and
others are presented in a set of simulation studies that substantiates
the basic idea and develops some of the intuitions required to design
a particular broadcast program.

1 Introduction
1.1 Asymmetric Communication Environments

In many existing and emerging application domains the
downstream communication capacity from servers to clients
is much greater than the upstream communication capacity
from clients back to servers. For example, in a wireless
mobile network, servers may have a relatively high bandwidth
broadcast capability while clients cannot transmit or can do
so only over a lower bandwidth (e.g., cellular) link. Such
systems have been proposed for many application domains,
including traffic information systems, hospital information
systems, public safety applications, and wireless classrooms
(e.g.,[Katz94, Imie94a]). We refer to these environments as
Asymmetric Communications Environments.

Communications asymmetry can arise in two ways: the
first is from the bandwidth limitations of the physical com-
munications medium. An example of physical asymmetry
is the wireless environment as described above; stationary
servers have powerful broadcast transmitters while mobile

clients have little or no transmission capability. Perhaps less
obviously, communications asymmetry can also arise from
the patterns of informationflow in the application. For exam-
ple, an information retrieval system in which the number of
clients is far greater than the number of servers is asymmetric
because there is insufficient capacity (either in the network or
at the servers) to handle the simultaneous requests generated
by the multiple clients.

Because asymmetry can arise due to either physical
devices or workload characteristics, the class of asymmetric
communications environments spans a wide range of
important systems and applications, encompassing both
wired and wireless networks. Examples include:

� Wireless networks with stationary base stations and
mobile clients.

� Information dispersal systems for volatile, time-sensitive
information such as stock prices, weather information,
traffic updates, factory floor information, etc.

� Cable or satellite broadcast television networks with set-
top boxes that allow viewers to communicate with the
broadcasting home office, and video-on-demand servers.

� Information retrieval systems with large client popula-
tions, such as mail-order catalog services, mutual fund
information services, software help desks, etc.

1.2 Broadcast Disks
In traditional client-server information systems, clients
initiate data transfers by sending requests to a server. Such
systems are pull-based; the clients “pull” data from the server
in order to provide data to locally running applications.
Pull-based systems are a poor match for asymmetric
communications environments, as they require substantial
upstream communications capabilities. To address this
incompatibility, we have proposed a new information
system architecture that exploits the relative abundance
of downstream communication capacity in asymmetric
environments. This new architecture is called Broadcast
Disks. The central idea is that the servers exploit their
advantage in bandwidth by broadcasting data to multiple
clients. We refer to this arrangement as a push-based
architecture; data is pushed from the server out to the clients.

In this approach, a server continuously and repeatedly
broadcasts data to the clients. In effect, the broadcast
channel becomes a “disk” from which clients can retrieve
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data as it goes by. Broadcasting data has been proposed
previously [Herm87, Giff90, Imie94b]. Our technique
differs, however, in two ways. First, we superimpose
multiple disks of different sizes and speeds on the broadcast
medium, in effect, creating an arbitrarily fine-grained
memory hierarchy. Second, we exploit client storage
resources as an integral part of this extended memory
hierarchy.

The broadcast is created by assigning data items to
different “disks" of varying sizes and speeds, and then
multiplexing the disks on the broadcast channel. Items stored
on faster disks are broadcast more often than items on slower
disks. This approach creates a memory hierarchy in which
data on the fast disks are “closer” to the clients than data on
slower disks. The number of disks, their sizes, and relative
speeds can be adjusted, in order to more closely match the
broadcast with the desired access probabilities at the clients.
If the server has an indication of the client access patterns
(e.g., by watching their previous activityor from a description
of intended future use from each client), then hot pages (i.e.,
those that are more likely to be of interest to a larger part of
the client community) can be brought closer while cold pages
can be pushed further away.

1.3 Scope of the Paper
In this paper, we focus on a restricted broadcast environment
in order to make an initial study of the broadcast disk
approach feasible. The restrictions include:

� The client population and their access patterns do not
change. This implies that the content and the organization
of the broadcast program remains static.

� Data is read-only; there are no updates either by the clients
or at the servers.

� Clients retrieve data items from the broadcast on demand;
there is no prefetching.

� Clients make no use of their upstream communications
capability, i.e., they provide no feedback to servers.

In this environment, there are two main interrelated issues
that must be addressed:

1. Given a client population and a specification of their
access probabilities for the data items, how does the server
construct a broadcast program to satisfy the needs of the
clients?

2. Given that the server has chosen a particular broadcast
program, how does each client manage its local data cache
to maximize its own performance?

The remainder of the paper is organized as follows.
Section 2 discusses the way in which we structure the
broadcast program and Section 3 shows how the client’s cache
management policy should be designed to complement this
choice. Section 4 describes our simulationmodel and Section
5 develops the main experimental results derived from this
model. Section 6 compares our work to previous work on
repetitive broadcast. Section 7 summarizes our results and
describes our future work.

2 Structuring the Broadcast Disk
2.1 Properties of Broadcast Programs
In a push-based information system, the server must construct
a broadcast “program” to meet the needs of the client
population. In the simplest scenario, given an indication
of the data items that are desired by each client listening to
the broadcast, the server would simply take the union of the
requests and broadcast the resulting set of data items cyclicly.
Such a broadcast is depicted in Figure 1.

A B C D E

ABCDE

Server

Figure 1: A Flat Broadcast Program
When an application running on a client needs a data

item, it first attempts to retrieve that item from the local
memory or disk. If the desired item is not found, then
the client monitors the broadcast and waits for the item to
arrive.1 With the flat broadcast, the expected wait for an
item on the broadcast is the same for all items (namely, half
a broadcast period) regardless of their relative importance
to the clients. This “flat” approach has been adopted in
earlier work on broadcast-based database systems such as
Datacycle[Bowe92] and [Imie94a].

Alternatively, the server can broadcast different items
with differing frequency. Such a broadcast program
can emphasize the most popular items and de-emphasize
the less popular ones. Theoretically, the generation of
such non-flat broadcast programs can be addressed as a
bandwidth allocation problem; given all of the client access
probabilities, the server determines the optimal percentage
of the broadcast bandwidth that should be allocated to each
item. The broadcast program can then be generated randomly
according to those bandwidth allocations, such that the
average inter-arrival time between two instances of the same
item matches the needs of the client population. However,
such a random broadcast will not be optimal in terms of
minimizing expected delay due to the variance in the inter-
arrival times.

A simple example demonstrating these points is shown
in Figure 2. The figure shows three different broadcast
programs for a data set containing three equal-length items
(e.g., pages). Program (a) is a flat broadcast, while (b) and
(c) both broadcast page A twice as often as pages B and
C. Program (b) is a skewed broadcast, in which subsequent
broadcasts of page A are clustered together. In contrast,
program (c) is regular; there is no variance in the inter-
arrival time for each page. The performance characteristics
of program (c) are the same as if page A was stored on a disk
that is spinning twice as fast as the disk containing pages B
andC. Thus, we refer to program (c) as a Multi-disk broadcast.

1This discussion assumes that broadcast items are self-identifying.
Another option is to provide an index, as is discussed in [Imie94b].
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Figure 2: Three Example Broadcast Programs

Access Probability Expected Delay
(in broadcast units)

A B C Flat Skewed Multi-disk
(a) (b) (c)

0.333 0.333 0.333 1.50 1.75 1.67
0.50 0.25 0.25 1.50 1.63 1.50
0.75 0.125 0.125 1.50 1.44 1.25
0.90 0.05 0.05 1.50 1.33 1.10
1.0 0.0 0.0 1.50 1.25 1.00

Table 1: Expected Delay For Various Access Probabilities

Table 1 shows the expected delay for page requests
given various client access probability distributions, for the
three different broadcast programs. The expected delay is
calculated by multiplying the probability of access for each
page times the expected delay for that page and summing the
results. There are three major points that are demonstrated
by this table. The first point is that for uniform page
access probabilities (1/3 each), a flat disk has the best
expected performance. This fact demonstrates a fundamental
constraint of the Broadcast Disk paradigm, namely, that due
to fixed bandwidth, increasing the broadcast rate of one
item must necessarily decrease the broadcast rate of one
or more other items. The second point, however, is that
as the access probabilities become increasingly skewed, the
non-flat programs perform increasingly better.

The third point demonstrated by Table 1 is that the
Multi-disk program always performs better than the skewed
program. This behavior is the result of the so-called Bus
Stop Paradox. If the inter-arrival rate (i.e., broadcast rate) of
a page is fixed, then the expected delay for a request arriving
at a random time is one-half of the gap between successive
broadcasts of the page. In contrast, if there is variance in the
inter-arrival rate, then the gaps between broadcasts will be
of different lengths. In this case, the probability of a request
arriving during a large gap is greater than the probability of
the request arriving during a short gap. Thus the expected
delay increases as the variance in inter-arrival rate increases.

In addition to performance benefits, a Multi-diskbroadcast
has several other advantages over a random (skewed)
broadcast program. First, the randomness in arrivals can
reduce the effectiveness of some prefetching techniques that
require knowledge of exactly when a particular item will

next be broadcast [Zdon94]. Second, the randomness of
broadcast disallows the use of “sleeping” to reduce power
consumption (as in [Imie94b]). Finally, there is no notion of
“period” for such a broadcast. Periodicity may be important
for providingcorrect semantics for updates (e.g., as was done
in Datacycle [Herm87, Bowe92]) and for introducing changes
to the structure of the broadcast program. For these reasons,
we argue that a broadcast program should have the following
features:

� The inter-arrival times of subsequent copies of a data item
should be fixed.

� There should be a well defined unit of broadcast after
which the broadcast repeats (i.e., it should be periodic).

� Subject to the above two constraints, as much of the
available broadcast bandwidthshould be used as possible.

2.2 Broadcast Program Generation
In this section we present a model for describing the
structure of broadcast programs and describe an algorithm
that generates broadcast programs with the desired features
listed in the previous section. The algorithm imposes a
Multi-disk structure on the broadcast medium in a way that
allows substantial flexibility in fitting the relative broadcast
frequencies of data items to the access probabilitiesof a client
population.

The algorithm has the following steps (for simplicity,
assume that data items are “pages”, that is, they are of a
uniform, fixed length):

1. Order the pages from hottest (most popular) to coldest.

2. Partition the list of pages into multiple ranges,where each
range contains pages with similar access probabilities.
These ranges are referred to as disks.

3. Choose the relative frequency of broadcast for each of
the disks. The only restriction on the relative frequencies
is that they must be integers. For example given two
disks, disk 1 could be broadcast three times for every two
times that disk 2 is broadcast, thus, rel freq(1) = 3, and
rel freq(2) = 2.

4. Split each disk into a number of smaller units. These
units are called chunks (

��� �
refers to the ����� chunk in

disk 	 ). First, calculate max chunks as the Least Common
Multiple (LCM) of the relative frequencies. Then, split
each disk 	 into num chunks(i) = max chunks / rel freq(i)
chunks. In the previous example, num chunks(1) would
be 2, while num chunks(2) would be 3.

5. Create the broadcast program by interleaving the chunks
of each disk in the following manner:

01 for 	 := 0 to max chunks - 1
02 for � := 1 to num disks
03 Broadcast chunk

��
� �������������� �������� ��� 
�!"!
04 endfor
05 endfor
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Figure 3: Deriving a Server Broadcast Program

Figure 3 shows an example of broadcast program
generation. Assume a list of pages that has been partitioned
into three disks, in which pages in disk 1 are to be broadcast
twice as frequently as pages in disk 2, and four times as
frequently as pages in disk 3. Therefore, rel freq(1) = 4,
rel freq(2) = 2, and rel freq(3) = 1. These disks are split
into chunks according to step 4 of the algorithm. That is
max chunks is 4, so num chunks(1) = 1, num chunks(2) = 2,
and num chunks(3) = 4. Note that the chunks of different
disks can be of differing sizes. The resulting broadcast
consists of 4 minor cycles (containing one chunk of each
disk) which is the LCM of the relative frequencies. The
resulting broadcast has a period of 16 pages. This broadcast
produces a three-level memory hierarchy in which disk one is
the smallest and fastest level and disk three is the largest and
slowest level. Thus, the multi-level broadcast corresponds to
the traditional notion of a memory hierarchy.

The algorithm produces a periodic broadcast program with
fixed inter-arrival times per page. Some broadcast slots may
be unused however, if it is not possible to evenly divide
a disk into the required number of chunks (i.e., in Step 4
of the algorithm). Of course, such extra slots need not be
wasted, they can be used to broadcast additional information
such as indexes, updates, or invalidations; or even for extra
broadcasts of extremely important pages. Furthermore, it is
anticipated that the number of disks will be small (on the
order of 2 to 5) and the number of pages to be broadcast
will be substantially larger, so that unused slots (if any) will
be only a small fraction of the total number of slots; also,
the relative frequencies can be adjusted slightly to reduce the
number of unused slots, if necessary.

The disk model, while being fairly simple, allows for the
creation of broadcast programs that can be fine-tuned to
support a particular access probability distribution. There
are three inter-related types of knobs that can be turned to
vary the shape of the broadcast. First, the number of disks
(num disks) determines the number of different frequencies
with which pages will be broadcast. Then, for each disk,
the number of pages per disk, and its relative frequency of
broadcast (rel freq(i)) determine the size of the broadcast,
and hence the arrival rate (in real, rather than relative time)
for pages on each disk. For example, adding a page to a

fast disk can significantly increase the delay for pages on the
slower disks. Intuitively, we expect that fast disks will be
configured to have many fewer pages than the slower disks,
although our model does not enforce this constraint.

Recall that the only constraint on the relative broadcast
frequencies of the disks is that they be expressed as positive
integers. Thus, it is possible to have arbitrarily fine
distinctions in broadcasts such as a disk that rotates 141 times
for every 98 times a slower disk rotates. However, this ratio
results in a broadcast that has a very long period (i.e., nearly
14,000 rotations of the fast disk). Furthermore, this requires
that the slower disk be of a size that can be split into 141
fairly equal chunks. In addition, it is unlikely that such fine
tuning will produce any significant performance benefit (i.e.,
compared to a 3 to 2 ratio). Therefore, in practice, relative
frequencies should be chosen with care and when possible,
approximated to simpler ratios.

While the algorithm specified above generates broadcast
programs with the properties that we desire, it does not help
in the selection of the various parameter values that shape the
broadcast. The automatic determination of these parameters
for a given access probabilitydistribution is a very interesting
optimization problem, and is one focus of our on-going
work. This issue is beyond the scope of the current paper,
however. In this paper we focus on examining the basic
properties of this new paradigm of broadcast disks. The
broadcast disk changes many basic assumptions on which
traditional pull-based memory hierarchies are founded. As
a result, it is imperative to first develop an understanding
of the fundamental tradeoffs that affect the performance of
a broadcast system. The performance study described in
Section 5 presents an initial investigation of these issues.

3 Client Cache Management
The shared nature of the broadcast disk, while in principle
allowing for nearly unlimited scalability, in fact gives rise
to a fundamental tradeoff: tuning the performance of the
broadcast is a zero-sum game; improving the broadcast
for any one access probability distribution will hurt the
performance of clients with different access distributions.
The way out of this dilemma is to exploit the local memory
and/or disk of the client machines to cache pages obtained
from the broadcast. This observation leads to a novel and
important result of this work: namely, that the introductionof
broadcast fundamentally changes the role of client caching in
a client-server information system. In traditional, pull-based
systems clients cache their hottest data (i.e., the items that
they are most likely to access in the future). In the push-
based environment, this use of the cache can lead to poor
performance if the server’s broadcast is poorly matched to
the client’s page access distribution. This difference arises
because of the serial nature of the broadcast disk — broadcast
pages are not all equidistant from the client.

If the server can tailor the broadcast program to the needs
of a particular client, then the client can simply cache its
hottest pages. Once the client has loaded the hottest pages
in its cache, then the server can place those pages on a
slower spinning disk. This frees up valuable space in the
fastest spinning disks for additional pages. In general,
however, there are several factors that could cause the server’s
broadcast to be sub-optimal for a particular client:
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� The access distribution that the client gives the server
may be inaccurate.

� A client’s access distribution may change over time.

� The server may give higher priority to the needs of other
clients with different access distributions.

� The server may have to average its broadcast over the
needs of a large client population. Such a broadcast
program is likely to be sub-optimal from the point of
view of any one client.

For these reasons, in a push-based system clients must use
their cache not to store simply their hottest pages, but rather,
to store those pages for which the local probability of access is
significantly greater than the page’s frequency of broadcast.
For example, if there is a page P that is accessed frequently
only by client C and no other clients, then that page is likely
to be broadcast on a slow disk. To avoid long waits for the
page, client C must keep page P cached locally. In contrast, a
page Q that is accessed frequently by most clients (including
client C), will be broadcast on a very fast disk, reducing the
value of caching it.

The above argument leads to the need for cost-based page
replacement. That is, the cost of obtaining a page on a
cache miss must be accounted for during page replacement
decisions. A standard page replacement policy tries to
replace the cache-resident page with the lowest probability
of access (e.g., this is what LRU tries to approximate). It
can be shown that under certain assumptions, an optimal
replacement strategy is one that replaces the cache-resident
page having the lowest ratio between its probability of access
(P) and its frequency of broadcast (X). We refer to this ratio
(P/X) as

�����
(P Inverse X). As an example of the use of�����

, consider two pages. One page is accessed 1% of the
time at a particular client and is also broadcast 1% of the
time. A second page is accessed only 0.5% of the time at the
client, but is broadcast only 0.1% of the time. In this example,
the former page has a lower

�����
value than the latter. As

a result, a page replacement policy based on
�����

would
replace the first page in favor of the second, even though the
first page is accessed twice as frequently.

While
�����

can be shown to be an optimal policy
under certain conditions, it is not a practical policy to
implement because it requires: 1) perfect knowledge of
access probabilities and 2) comparison of

�����
values for

all cache-resident pages at page replacement time. For
this reason we have investigated implementable cost-based
algorithms that are intended to approximate the performance
of
�����

. One such algorithm, adds frequency of broadcast
to an LRU-style policy. This new policy is called � ��� and
is described and analyzed in Section 5.4.

4 Modeling the Broadcast Environment
In order to better understand the properties of broadcast
program generation and client cache management we have
constructed a simulation model of the broadcast disk
environment. The simulator, which is implemented using
CSIM [Schw86], models a single server that continuously
broadcasts pages and a single client that continuously
accesses pages from the broadcast and from its cache. In

CacheSize Client cache size (in pages)
ThinkTime Time between client page accesses

(in broadcast units)
AccessRange # of pages in range accessed by client�

Zipf distribution parameter
RegionSize # of pages per region for Zipf distribution

Table 2: Client Parameter Description

the simulator, the client generates requests for logical pages.
These logical pages are then mapped to the physical pages
that are broadcast by the server.

The mapping of logical pages to physical pages allows
the server broadcast to be varied with respect to the client
workload. This flexibility allows the simulator to model the
impact of a large client population on the performance of
a single client, without having to model the other clients.
For example, having the client access only a subset of the
pages models the fact that the server is broadcasting pages
for other clients as well. Furthermore, by systematically
perturbing the client’s page access probabilities with respect
to the server’s expectation of those probabilities, we are able
to vary the degree to which the server broadcast favors the
particular client that we are modeling. The simulation model
is described in the following sections.

4.1 Client Execution Model
The parameters that describe the operation of the client are
shown in Table 2. The simulator measures performance
in logical time units called broadcast units. A broadcast
unit is the time required to broadcast a single page. In
general, the results obtained from the simulator are valid
across many possible broadcast media. The actual response
times experienced for a given medium will depend on the
amount of real time required to broadcast a page.

The client runs a continuous loop that randomly requests
a page according to a specified distribution. The client has a
cache that can hold CacheSize pages. If the requested page is
not cache-resident, then the client waits for the page to arrive
on the broadcast and then brings the requested page into its
cache. Client cache management is done similarly to buffer
management in a traditional system; if all cache slots are
occupied, then a page replacement policy is used to choose
a victim for replacement.2 Once the requested page is cache
resident, the client waits ThinkTime broadcast units of time
and then makes the next request. The ThinkTime parameter
allows the cost of client processing relative to page broadcast
time to be adjusted, thus it can be used to model workload
processing as well as the relative speeds of the CPU and the
broadcast medium.

The client chooses the pages to access from the range
0 to AccessRange � 1, which can be a subset of the pages
that are broadcast. All pages outside of this range have
a zero probability of access at the client. Within the
range the page access probabilities follow a Zipf distribution
[Knut81, Gray94], with page 0 being the most frequently
accessed, and page AccessRange � 1 being the least frequently
accessed. The Zipf distribution is typically used to model
non-uniform access patterns. It produces access patterns that

2We discuss the performance of various replacement policies in Section 5.
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ServerDBSize Number of distinct pages to be broadcast
NumDisks Number of disks
DiskSize � Size of disk

�
(in pages)�

Broadcast shape parameter
Offset Offset from default client access
Noise % workload deviation

Table 3: Server Parameter Description

become increasingly skewed as � increases — the probability
of accessing any page numbered 	 is proportional to � 1 ��	��	� .
Similar to earlier models of skewed access [Dan90], we
partition the pages into regions of RegionSize pages each,
such that the probability of accessing any page within a region
is uniform; the Zipf distribution is applied to these regions.
Regions do not overlap so there are AccessRange/RegionSize
regions.

4.2 Server Execution Model
The parameters that describe the operation of the server
are shown in Table 3. The server broadcasts pages in
the range of 0 to ServerDBSize � 1, where ServerDBSize 

AccessRange. These pages are interleaved into a broadcast
program according to the algorithm described in Section 2.
This program is broadcast repeatedly by the server. The
structure of the broadcast program is described by several
parameters. NumDisks is the number of levels (i.e., “disks”)
in the multi-diskprogram. By convention disks are numbered
from 1 (fastest) to N=NumDisks (slowest). DiskSize

�
, 	��

[1..N], is the number of pages assigned to each disk 	 . Each
page is broadcast on exactly one disk, so the sum of DiskSize

�
over all 	 is equal to the ServerDBSize.

In addition to the size and number of disks, the model must
also capture their relative speeds. As described in Section 2,
the relative speeds of the various disks can be any positive in-
tegers. In order to make experimentation tractable, however,
we introduce a parameter called  , which determines the
relative frequencies of the disks in a restricted manner. Us-
ing  , the frequency of broadcast ����� ����������	�� of each disk	 , can be computed relative to ����� ��������� N � , the broadcast
frequency of the slowest disk (disk N) as follows:����� ������� � � !

����� ������� � N !
= (N - i)  + 1

When  is zero, the broadcast is flat: all disks spin at the
same speed. As  is increased, the speed differentials among
the disks increase. For example, for a 3-disk broadcast, when
�� 1, disk 1 spins three times as fast as disk 3, while disk
2 spins twice as fast as disk 3. When  � 3, the relative
speeds are 7, 4, and 1 for disks 1, 2, and 3 respectively. It is
important to note that  is used in the study only to organize
the space of disk configurations that we examine. It is not
part of the disk model as described in Section 2.

The remaining two parameters, Offset and Noise, are used
to modify the mapping between the logical pages requested
by the client and the physical pages broadcast by the server.
When Offset and Noise are both set to zero, then the logical to
physical mapping is simply the identity function. In this case,
the DiskSize1 hottest pages from the client’s perspective (i.e.,
0 to DiskSize1 � 1) are placed on disk 1, the next DiskSize2
hottest pages are placed on disk 2, etc. However, as discussed

K

0

K K
OffSet 0

OffSet K

Access
    of

AccessRange ServDBSize
K

DISK 1 DISK2

Probability OffSet K

Figure 4: Using Offset to vary client access

in Section 3, this mapping may be sub-optimal due to client
caching. Some client cache management policies tend to fix
certain pages in the client’s buffer, and thus, those pages do
not need to be broadcast frequently. In such cases, the best
broadcast can be obtained by shifting the hottest pages from
the fastest disk to the slowest. Offset is the number of pages
that are shifted in this manner. An offset of ! shifts the
access pattern by ! pages, pushing the ! hottest pages to
the end of the slowest disk and bringing colder pages to the
faster disks. The use of offset is demonstrated in Figure 4.

In contrast to Offset, which is used to provide a better
broadcast for the client, the parameter Noise is used to
introduce disagreement between the needs of the client and
the broadcast program generated by the server. As described
in Section 2, such disagreement can arise in many ways,
including dynamic client access patterns and conflicting
access requirements among a population of clients. Noise
determines the percentage of pages for which there may be
a mismatch between the client and the server. That is, with
probability Noise the mapping of a page may be switched
with a different page.

The generation of the server broadcast program works as
follows. First, the mapping from logical to physical pages is
generated as the identity function. Second, this mapping is
shifted by Offset pages as described above. Third, for each
page in the mapping, a coin weighted by Noise is tossed. If
based on the coin toss, a page 	 is selected to be swapped
then a disk " is uniformly chosen to be its new destination.3

To make way for 	 , an existing page � on " is chosen, and 	
and � exchange mappings.

5 Experiments and Results
In this section, we use the simulation model to explore
the performance characteristics of the broadcast disk. The
primary performance metric employed in this study is the
response time at the client, measured in broadcast units. The
server database size (ServerDBSize) was 5000 pages, and the
client access range AccessRange was 1000 pages. The client
cache size was varied from 1 (i.e., no caching) to 500 (i.e.,
half of the access range). We studied several different two-
disk and three-disk configurations of broadcast programs. All

3Note that a page may be swapped with a page on its own disk. Such
a swap does not affect performance in the steady state, so Noise represents
the upper limit on the number of changes.
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ThinkTime 2.0
ServerDBSize 5000
AccessRange 1000
CacheSize 50(5%), 250(25%), 500(50%)�

1,2, ����� 7�
0.95

Offset 0, CacheSize
Noise 0%, 15%, 30%, 45%, 60%, 75%
RegionSize 50

Table 4: Parameter Settings
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Figure 5: Client Performance, Cache Size = 1, Noise = 0%

of the results presented in the paper were obtained once the
client performance reached steady state. The cache warm-up
effects were eliminated by beginning our measurements only
after the cache was full, and then running the experiment for
15,000 or more client page requests (until steady state).

Table 4 shows the parameter settings used in these
experiments. It should be noted that the results described
in this section are a very small subset of the results that
have been obtained. These results have been chosen because
they demonstrate many of the unique performance aspects
and tradeoffs of the broadcast disk environment, and because
they identify important areas for future study.

5.1 Experiment 1: No Caching, 0% Noise
The first set of results examine the case where the client
performs no caching (i.e., it has a cache size of one page).
Figure 5 shows the client response time vs.  for a number
of two and three disk configurations. In this graph, Noise is
set to 0%, meaning that the server is providing preferential
treatment to the client (i.e., it is giving highest priority to
this client’s pages). As  is increased along the x-axis of
the figure, the skew in the relative speeds of the disks is
increased (as described in Section 4). As shown in the figure,
the general trend in these cases is that response time improves
with increasing disk skew. When  � 0, the broadcast is flat
(i.e., all disks rotate at the same speed). In this case, as would
be expected, all disks result in a response time of 2500 pages
— half the ServerDBSize. As  is increased, all of the disk
configurations shown provide an improvement over the flat
disk. The degree of improvement begins to flatten for most
configurations around a  value of 3 or 4.

Turning to the various disk configurations,we first examine
the two-disk configurations: D1, D2, and D3. For D1, 500
pages fit on the first (i.e., fastest) disk. Because Noise and
Offset are both zero, the hottest half of the client’s access

range is on the fast disk, and the colder half is on the slower
disk. As  is increased, performance improves until  � 3
because the hotter pages are brought closer. Beyond this
point, the degradation caused by the access to the slow pages
(which get pushed further away) begins to hurt performance.
In contrast, D2, which places 90% of the client access range
(900 pages) on the fast disk improves with increasing  for
all values of  in this experiment. Because most of the
accessed pages are on the fast disk, increasing  pushes the
colder and unused pages further away, allowing the accessed
pages to arrive more frequently. At some point, however, the
penalty for slowing down the 10% will become so great that
the curve will turn up again as in the previous case. The final
two-disk configuration, D3, has equal sized disks. Although
all of the accessed data fits on the fast disk, the fast disk also
includes many unaccessed pages. The size of the fast disk
causes the frequencies of the pages on this disk to be lower
than the frequencies of pages on the fast disks of D2 and D1
at corresponding values of  . As a result, D3 has the worst
performance of the two-disk configurations for most of the
 values shown.

Turning to the three-disk configurations: D4 and D5, it can
be seen that configuration D4, which has a fast disk of 300
pages has the best performance across the entire range. At
a  of 7, its response time is only one-third of the flat-disk
response time. D5, which is simply the D3 disk with its first
disk split across two disks, performs better than its two-disk
counterpart. The extra level of disk makes it easier to match
the broadcast program to the client’s needs. However, note
that response time for D5 is typically higher than the two-disk
D2, and thus, the extra disk level does not necessarily ensure
better performance.

5.2 Experiment 2: Noise and No Caching
In the previous experiment, the broadcast program generation
was done giving our client’s access pattern the highest
priority. In this experiment we examine the performance
of the broadcast disk as the server shifts its priority away
from this client (i.e., as Noise is increased). These results are
shown in Figures 6 and 7,which show how the client performs
in the presence of increasing noise for configurations D3
(two-disks) and D5 (three-disks) from Figure 5 respectively.
As expected, performance suffers for both configurations as
the Noise is increased; as the mismatch between the broadcast
and the client’s needs increases, the skew in disk speeds
starts to hurt performance. Ultimately, if the mismatch
becomes great enough, the multi-disk approach can have
worse performance than the flat disk. This is shown in the
performance disk of D3 (Figure 6). This susceptibility to a
broadcast mismatch is to be expected, as the client accesses
all of its data from the broadcast channel. Thus, it is clear
that if a client does not have a cache, the broadcast must be
well suited for that client’s access demands in order to gain
the benefits of the multi-disk approach.

5.3 Experiment 3: Caching and Noise
The previous experiments showed that even in the absence of
caching, a multi-level disk scheme can improve performance,
but that without a cache, performance can suffer if the
broadcast program is poorly suited to the client’s access
demands. In this experiment we introduce the use of a
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Figure 6: Noise Sensitivity - Disk D3( � 2500,2500 � )
CacheSize = 1
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Figure 7: Noise Sensitivity - Disk D5( � 300,1200,3500 � )
CacheSize = 1

client cache, to reduce the expected page access delay and to
increase the client’s tolerance to mismatches in the broadcast
program. We use an idealized page replacement policy called�

, which keeps the pages with the highest probability of
access in the cache.

�
, however, it is not an implementable

policy, as it requires perfect knowledge of access probabilities
and a great deal of local computation.4 We use

�
, therefore,

to gain an understanding of the performance in a simplified
setting and as a point-of-reference for other (implementable)
policies.

In steady state, a client using the
�

replacement policy will
have the CacheSize hottest pages in its cache. Consequently,
broadcasting these cache-resident pages on the fastest disk
is a waste of bandwidth. Thus, as stated in Section 4.2,
the best broadcast program will be obtained by shifting the
CacheSize hottest pages from the fastest disk to the slowest.
Such shifting is accomplished in the simulation model by
setting Offset � CacheSize.5 Given this Offset, we now
examine the effectiveness of a cache (using the idealized

�
replacement policy) in allowing a client to tolerate Noise in
the broadcast. Figure 8 shows the impact of increasing Noise
on the performance of the three-disk configuration D5 as 
is varied. In the case shown, CacheSize and Offset are both
set to 500 pages. Comparing these results with the results
obtained in the no caching case (see Figure 7), we see that
although as expected the cache greatly improves performance
in an absolute sense, surprisingly, the cache-based numbers
are if anything, somewhat more sensitive to the degree of
Noise than the non-caching numbers. For example, in the
caching case, when  is greater than 2, the higher degrees
of noise have multi-disk performance that is worse than the
flat disk performance, whereas this crossover did not occur
for similar  values in the non-caching case. The reason for
this additional sensitivity is that when Noise is low and Offset
= CacheSize,

�
does exactly what it should do — it caches

those hot pages that have been placed on the slowest disk,
and it obtains the remainder of the hottest pages from the
fastest disk. However, as noise increases,

�
caches the same

pages regardless of what disk they are stored on. Caching
a page that is stored on the fastest disk is often not a good
use of the cache, as those pages are broadcast frequently. As
noise increases,

�
’s cache hit rate remains the same, but its

4It is trivial to implement � in the simulator, as the probability of each
page is known from the client access distribution.

5The impact the Offset parameter is discussed in more detail in [Acha94].

cache misses become more expensive, as it has to retrieve
some pages from the slower disks. These expensive cache
misses are the cause of

�
’s sensitivity to Noise.

5.4 Cost Based Replacement Algorithms
In the previous section, it was shown that while standard
caching can help improve performance in a multi-disk
broadcast environment, it can actually increase the client’s
sensitivity to Noise. Recall that Noise represents the degree
to which the server broadcast deviates from what is best for
a particular client. It is likely, therefore, that some type of
“noise” will be present in any application in which there
are multiple clients that access the broadcast disk. The�

replacement policy was found to be sensitive to noise
because it ignored the cost of re-acquiring a page when
choosing a victim for replacement. To address this deficiency,
we examine a second idealized algorithm called

�����
, that

extends
�

with the notion of cost. As stated in Section 3,�����
always replaces the page with the lowest ratio of access

probability to broadcast frequency. Thus, the cost of re-
accessing a replaced page is factored into the replacement
decision.

5.4.1 Experiment 4:
�����

and Noise
Figure 9 shows the response time of the client using

�����
for the same case that the previous experiment showed for�

(see Figure 8). Comparing the two figures it can be seen
that

�����
is much more successful at insulating the client

response time from effects of Noise. Of course, an increase
in Noise still results in a degradation of performance; this
is to be expected. However, unlike the case with

�
, using�����

the performance of the client remains better than the
corresponding flat disk performance for all values of Noise
and  in this experiment. Under

�����
, the performance

of the client for a given Noise value remains stable as 
is increased beyond a certain point. In contrast, under�

, in the presence of noise, the performance of the client
quickly degrades as  is increased beyond a value of 1 or
2. This experiment demonstrates the potential of cost-based
replacement for making the broadcast disk practical for a
wider range of applications.

Figure 10 shows results from the same set of experiments in
a slightlydifferent light. In this figure, the effect of increasing
noise on the response time of the two algorithms for  � 3
and  � 5 is shown. The performance for the flat disk
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Figure 8: Noise Sensitivity - Disk D5
CacheSize = 500, Replacement Policy =
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Figure 9: Noise Sensitivity - Disk D5
CacheSize = 500, Replacement Policy =
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Figure 11: Access Locations for
�

vs.
�����

Disk D5, CacheSize = 500, Noise = 30%,  = 3

(  � 0) is given as a baseline.6 Note that
�

degrades
faster than

�����
and eventually becomes worse than the

flat disk at around Noise = 45%.
�����

rises gradually and
manages to perform better than the flat disk within these
parameters. Also, notice how

�
’s performance degrades for

 � 5; unlike
�����

it fails to adapt the cache contents with
increasing differences in disk speeds.

The performance differences between the two algorithms
result from the differences in the places from which they
obtain their pages (as shown in Figure 11 for the case where
Noise = 30%). It is interesting to note that

�����
has a lower

cache hit rate than
�

. A lower cache hit rate does not mean
lower response times in broadcast environments; the key is
to reduce expected latency by caching important pages that
reside on the slower disks.

�����
gets fewer pages from the

slowest disk than does
�

, even though it gets more pages
from the first and second disks. In this case, this tradeoff
results in a net performance win.

5.5 Implementing Cost Based Policies
The previous sections have shown that multi-disk broadcast
environments have special characteristics which when
correctly exploited can result in significant performance
gains. They also demonstrated the need for cost-based page
replacement and examined a cost-based algorithm (

�����
).

Unfortunately, like
�

, the policy on which it is based,
�����

6Note that at
���

0 (i.e., a flat disk), � and ����� are identical, as all
pages are broadcast at the same frequency.

is not an implementable algorithm. However, based on the
insight that we gained by examining

�
and

�����
we have

designed and implemented an approximation of
�����

, which
we call � ��� .
� ��� is a modification of LRU that takes into account the

broadcast frequency. LRU maintains the cache as a single
linked-list of pages. When a page in the cache is accessed, it
is moved to the top of the list. On a cache miss, the page at
the end of the chain is chosen for replacement.

In contrast, � ��� maintains a number of smaller chains:
one corresponding to each disk of the broadcast ( � ���
reduces to LRU if the broadcast uses a single flat disk). A
page always enters the chain corresponding to the disk in
which it is broadcast. Like LRU, when a page is hit, it is
moved to the top of its own chain. When a new page enters
the cache, � ��� evaluates a lix value (see next paragraph)
only for the page at the bottom of each chain. The page
with the smallest lix value is ejected, and the new page is
inserted in the appropriate queue. Because this queue might
be different than the queue from which the slot was recovered,
the chains do not have fixed sizes. Rather, they dynamically
shrink or grow depending on the access pattern at that time.
� ��� performs a constant number of operations per page
replacement (proportional to the number of disks) which is
the same order as that of LRU. Figure 12 shows an example
of � ��� for a two-disk broadcast. Pages g and k are at the
bottom of each chain. Since g has a lower lix value it is
chosen as the victim. The new page z, being picked from the
second disk, joins Disk2Q. Note the relative changes in the

9



Disk1Q Disk2Q Disk1Q Disk2Q

New Page = 

New Page

lix = 0.85lix =0.37

Victim

a
b
c
d
e
f
g k

j
i
h

f

d

b
c

a

e

z
h
i
j
k

z

Figure 12: Page replacement in � ���

sizes of both the queues.
In order to compute the lix value, the algorithm maintains

two data items per cached page 	 : a running probability
estimate (p

�
) and the time of the most recent access to the

page (t
�
). When the page 	 enters a chain, p

�
is initially set to

zero and t
�

is set to the current time. If 	 is hit again, the new
probability estimate for 	 is calculated using the following
formula:

p
�

=
�

/ (CurrentTime- t
�
) + ( 1-

�
)p

�
t
�

is then subsequently updated to the current time.
�

is a
constant used to appropriately weigh the most recent access
with respect to the running probability estimate; in these
experiments, it is set to 0.25. This formula is evaluated for
the least recently used pages of each chain to estimate their
current probability of access. This value is then divided by
the frequency for the page (which is known exactly) to get
the lix value. The page with the lowest lix value is ejected
from the cache. � ��� is a simple approximation of

�����
,

yet in spite of this, it performs surprisingly well (as is shown
below). Better approximations of

�����
, however, might be

developed using some of the recently proposed improvements
to LRU like 2Q[John94] or LRU-k[ONei93].

5.5.1 Experiment 5: � ��� vs. LRU
The next set of experiments are similar to those for

�
and�����

and compare � ��� and LRU. However, unlike
�

, the
best performance for LRU isn’t at an offset equal to the cache
size. Being only an approximation of

�
, LRU isn’t able to

retain all of the hot pages that are stored on the slowest disk
and thus, it performs poorlyat this offset. For similar reasons,
� ��� also does not perform best at this offset. As a result,
we also compared the performance of � ��� and LRU to a
modified version of � ��� called � . � behaves exactly like
� ��� except that it assumes the same value of frequency for
all pages. Thus, the difference in performance between � and
LRU indicates how much better (or worse) an approximation
of probability � provides over LRU, and the performance
difference between � ��� and � shows the role that broadcast
frequency plays (if any) in the performance of the caching
strategies.

Figure 13 shows the performance of the three algorithms
for differentvalues of  . These results show the sensitivityof
the algorithms to changing  for the same case as in Figure 10

(i.e., Offset=CacheSize=500), with Noise set to 30%. In this
experiment, LRU performs worst and consistently degrades
as  is increased. � does better at  � 1 but then
degrades. The benefits of using frequency are apparent from
the difference in response time between � ��� and � . The
response time of � ��� is only between 25% to 50% that of � .
The solid line on the bottom of the graph shows how the ideal
policy (

�����
) performs; it does better than � ��� , but only

by a small margin. The factors underlying these results can
be seen in Figures 14, which shows the distribution of page
access locations for the results of Figure 13 when  is set to
3. In this case, � ��� obtains a much smaller proportion of
its pages from the slowest disk than do the other algorithms.
Given that the algorithms have roughly similar cache hit rates,
the differences in the distributions of access to the different
disks is what drives the performance results here.

Figure 15 shows the performance of the three algorithms
with varying Noise with  � 3. In this case, it can be
seen that � performs only somewhat better than LRU. The
performance of � ��� degrades with noise as expected, but
it outperforms both � and LRU across the entire region of
Noise values. These results demonstrate that the frequency-
based heuristic of � ��� can provide improved performance
in the presence of noise.

6 Previous Work
While no previous work has addressed multilevel broadcast
disks and the related cache management techniques described
in this paper, several projects in mobile databases and other
areas have performed related work. As stated previously,
the notion of using a repetitive broadcast medium for
database storage and query processing was investigated
in the Datacycle project at Bellcore [Herm87, Bowe92].
Datacycle was intended to exploit high bandwidth, optical
communication technology and employed custom VLSI data
filters for performing associative searches and continuous
queries on the broadcast data. Datacycle broadcast data
using a flat disk approach and so the project did not address
the multi-level disk issues that we have addressed in this
paper. However, the Datacycle project did provide an
optimistic form of transaction management which employed
an “upstream network” that allowed clients to communicate
with the host. We intend to investigate issues raised
by allowing such upstream communication through low-
bandwidth links as part of our ongoing work. An early
effort in information broadcasting, the Boston Community
Information System (BCIS) is described in [Giff90]. BCIS
broadcast newspapers and information over an FM channel
to clients with personal computers specially equipped with
radio receivers. Like Datacycle, they too used a flat disk
approach.

More recently, the mobile computing group at Rutgers
has investigated techniques for indexing broadcast data
[Imie94b]. The main thrust of this work has been to
investigate ways to reduce power consumption at the clients
in order to preserve battery life. Some of the indexing
techniques described in [Imie94b] involve the interleaving
of index information with data, which forms a restricted type
of multilevel disk. However, this work did not investigate the
notion of replicating the actual data to support non-uniform
access patterns and did not investigate the impact of caching.

10



0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5

Re
sp

on
se

 T
im

e 
(B

ro
ad

ca
st

 U
ni

ts
)

Delta 

                                  

LRU
L

LIX
PIX

Figure 13: Sensitivity to  - Disk D5
CacheSize = 500, Noise = 30%

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f P
ag

es
 A

cc
es

se
d

Cache
Disk1
Disk2
Disk3

LRU L LIX 
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In our current work we have assumed a fixed broadcast
program, so that indexing was not needed. However, we
are currently investigating ways to integrate indexes with the
multilevel disk in order to support broadcast program changes
due to client population changes and updates. Caching
in a mobile environment has been considered in [Barb94].
However, their model was different in that it considered
volatile data and clients who could be inactive (and/or
disconnected) over long periods of time. Thus, the focus of
both broadcasting and caching in this work was to efficiently
detect and avoid access to stale data in the cache. Very
recently, another approach to broadcasting data for video on
demand has been taken in [Vish94]. The technique, called
pyramid broadcasting, splits an object (e.g., a video clip)
into a number of segments of increasing sizes. To minimize
latency the first segment is broadcast more frequently than
the rest. While similar in spirit, a key difference is that the
data needed by the client is known a priori once the first
segment (the choice of movie) is decided upon and thus, they
do not need to address the issues related to caching dealt in
this paper.

The issues that arise due to our use of a broadcast medium
as a multi-level device also arise in other, more traditional
types of complex memory hierarchies. The need for cost-
based caching and page replacement has been recognized in
other domains in which there is a wide variation in the cost of
obtaining data from different levels of the storage hierarchy.

For example, [Anto93] describes the need for considering
“cost of acquisition” for page replacement in deep-store file
systems involving tertiary mass storage. This issue is also
addressed for client-server database systems in which a global
memory hierarchy is created by allowing clients to obtain
data from other clients that have that data cached [Fran92].
In this work, server page replacement policies are modified
to favor pages that are not cached at clients, as they must be
obtained from disk, which is more expensive. Recently, a
technique called “Disk-Directed I/O” has been proposed for
High Performance Computing applications [Kotz94]. Disk-
Directed I/O sends large requests to I/O devices and allows
the devices to fulfill the requests in a piecemeal fashion in
an order that improves the disk bandwidth. Finally, the
tradeoff between replication to support access to hot data
while making cold data more expensive to access has been
investigated for magnetic disks [Akyu92].

7 Summary and Future Work
In this paper, we have described our design of a multilevel
broadcast disk and cache management policies for this
style of memory. We believe that this approach to data
management is highly applicable to asymmetric network
environments such as those that will naturally occur in the
NII as well as many other modern data delivery systems. We
have demonstrated that in designing such disks, the broadcast
program and the caching policy must be considered together.

It has been shown that there are cases in which the
performance of both two and three level disks can outperform
a flat broadcast even when there is no caching. We have
argued that our scheme for interleaving the data is desirable
because it provides a uniform expected latency.

We have further shown that introducing a cache can provide
an advantage by smoothing out disagreement between the
broadcast and the client access patterns. The cache gives
the clients a way to hoard their hottest pages regardless of
how frequently they are broadcast. However, doing page
replacement solely on probability of access can actually
increase a client’s sensitivity to the server’s broadcast.

We then introduced a caching policy that also took into
account the broadcast frequency during replacement. We
showed that this not only improves client performance but
also shields it from vagaries of the server broadcast. This is
because the clients can cache items that are relatively hot and
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reside on a slow disk and thus, avoid paying high cache miss
penalties.

Finally, we demonstrated a straightforward implementa-
tion technique that approximates our ideal cost-based caching
scheme. This technique is a modification of LRU which ac-
counts for the differences in broadcast frequency of the data.

We believe that this study while interestingand useful in its
own right, is just the tip of the iceberg. There are many other
opportunities that can be exploited in future work. Here, we
have only considered the static read-only case. How would
our results have to change if we allowed the broadcast data to
change from cycle to cycle? What kinds of changes would be
allowed in order to keep the scheme manageable, and what
kinds of indexing would be needed to allow the client to make
intelligent decisions about the cost of retrieving a data item
from the broadcast?

We are currently investigating how prefetching could be
introduced into the present scheme. The client cache manager
would use the broadcast as a way to opportunistically increase
the temperature of its cache. We are exploring new cache
management metrics for deciding when to prefetch a page.

We would also like to provide more guidance to a user who
wants to configure a broadcast. We have experimental results
to show that good things can happen, but given a workload,
we would like to have concrete design principles for deciding
how many disks to use, what the best relative spinning speeds
should be, and how to segment the client access range across
these disks. We are pursuing an analytic model to address
this.

Finally, once the basic design parameters for broadcast
disks of this kind are well-understood, work is needed to
develop query processing strategies that would exploit this
type of media.
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